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Abstract. Estimation of bounds for the two-dimensional discrete harmonic

Green's function is obtained. These estimations can then be used to obtain approxi-

mate solutions to two-dimensional boundary problems associated with the har-

monic difference operator.

1. Introduction. In dealing with partial differential operators, it is desirable to

obtain the "free-space" Green's function (valid in the entire space under con-

sideration) for the Laplacian operator, A, which permits writing solutions for bound-

ary value problems in integral form [4].

A similar situation exists in solving boundary value problems associated with

partial difference operators. It is desirable to find the analog free-space discrete

harmonic Green's function g(m, n), which permits writing solutions in summation

form for the boundary value problems of the difference equations [l]-[3].

Unlike the two-dimensional continuous case, where the Green's function is

known to be log r, an exact estimate for g(m, n) (where m and n are integers and

where the mesh widths are unity) is not available (see [3] and [6]). This is because

the evaluation involves an elliptic integral (see Eqs. (6) and (7) ) ; only asymptotic

estimates for g(m, n) are known.

In this paper, we obtain explicit bounds (see Theorem 1 ) for g(m, n) which yield

very reasonable numerical estimates for intermediate values of m and n. Then,

by making a suitable transformation, similar results are obtained for the discrete

harmonic Green's function gP(Q), associated with mesh widths^ inx and y (x = mh,

y = nh).

2. Known Results. Let D be the harmonic difference operator; i.e.,

Du(m, n) = u(m + 1, n) + u(m — 1, n) + u(m, n + 1)

(1)
+ u(m, n — 1) — \u(m, n),

where m and n are integers. Then, g(m, n) is defined [2] as the unique solution of

(2) Dg(m, n) = 0,       except at (0, 0)

(3) 00(0,0) = -1

(4) 9(0,0) =0

(5) the first differences of g(m, n) —> 0 as k = (m  + n2)1'2 —►  qo,

Duffin and Shaffer [3] showed, by means of an operational calculus based on Fourier

series, that

(6) g(m, n) =     *    f f ^ exP [i{mX + ny)]
(2tt)2 J-t J-x 4(sii(sin2 x/2 + sin2 y/2)
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On the other hand, McCrea and Whipple [6] showed, by considering a two-di-

mensional random walk problem, that

/t\ ,       v        1   f* 1 — exp [— | m I y] cos nx ,
(7) g(m, n) = — /   ■-E—. ' -dx.

2t Jo sinh y

with

(8) cos x + cosh y = 2.

The asymptotic estimates obtained by [3] and [6] are, respectively

g'm, n) - ¿ [log fc + | log 2 + T] + O (]-)

(9)
1 /      2     i 2\l/2

as    k = (m  + n )     —> *>.

( 10)    p(m, «) = —   log k + - log 2 + 7   + o (-J as fc ->• °o.

Here 7 is the Euler's constant.

3. Statement of Main Results. The main results of this paper are contained in

the following theorem, which will be proved in Section 5.

Theorem l.Ifk  = m + n   ^ 0 and the mesh widths are unity (i.e., m, n = 0,

±1, ±2, etc.), then

(lia) =^-6 Ik 2rg(m,n) - log fc - § log 2 - y ^ ¿ + 5-^° .

Let P = (xP , yP), Q = (xQ , yQ), and m = (xQ — xP)/h, n = («/<, — yP)/h. If

P = PQ = \/((£o — ^p)2 + (yo ~~ yp)2)> then the bounds for the Green's functions

gr(Q) associated with mesh widths h are

(lib)     ^   g 2^,(0) -logp-?log2-7= ^t|,/.^ >0.
pz 2 p¿ \¿p

Remark. As will be shown later, estimates (11) could be improved to also con-

tain terms of the form 0(l/fc4) or 0(l/p4), 0(l/fc6) or 0(l/p6), etc.

4. Preliminary Results and Lemmas. To obtain explicit bounds for g(m, n), we

shall use representation (7) with the two properties:

(12) g(m, n) = g(n, m)

and

1   m        l

(13) g(m,m) = -T.—-
7T i-1 ¿3—I

obtained in [6]. Next, one notes from Eq. (7) that g(m, n) = g(m, —n) and, hence

(14) g(m,n) = g(m, —n) = g(n,m) = g(n, -m) = g(-m,n) = g(-m, -n).

This means that it is sufficient to consider the behavior of g(m, n) for m = n = 0

and, without loss of generality, assume that m ^ 1. In addition, for any given x,
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we shall consider only the non-negative values of y determined by relation (8).

FromEq. (7),

(15) 2rr[g(m, n) — g(m,m)] =   /
Jo

* (cos mx — cos nx) -my ,

sinh y

When m is large, the important part of the integral above occurs with small values

of x. Accordingly, we divide the range of integration at e, defined by « = m_1/3.

Next, define

.        r" (cos mi — cosnx)  -mx ,
A =   /    -e      dx;

Jo x

(cosmx — cosnx)  -,, ,
B =   I    -e      ox:

(16)
-a

0 _   fx (cos mx — cos nx)   -my ,

Jt sinh y

r r e
D =  /   [cos mx — cos nx]   —

Jo Lsir
dx.

_sinh y x

Then, by relation (15) and by letting A" = A + 27ro(m, n), there results

(17)    A* -  \B\ -  \C\ - \D\ £ 2rrg(m, n)  ^ A* + | B \ + | C | + | D \.

4.1. Bounds for A   and \ B \. By using Laplace transforms,

A = \ log (m2 + n)/2n.

Next, it is well known [5] that

where the B/s are Bernouli-type numbers given by Bx = \, B2 = ^, etc. Combining

results, therefore, we have the following bounds for A  :

(19) 0 ^ A* - log fc - | log 2 - 7 á ¿2, m fe 1.

Finally, by recalling ß from Eq. (16), it is easily deduced that

(20) | B | g 2»T2/3 exp [-m2/3], m fe 1.

4.2. Bounds for \C \. To find bounds for | C |, the following lemma is needed:

Lemma Í. If t — x = it, where 0 < e = 1, iAen 7/ > 9e/10.

Proof. By considering the series for cosh ?/ = 2 — cos x and cosh 9i/10, it can

easily be shown that cosh y > cosh 9e/10, so that y > 9e/10.

Using Lemma 1 and the fact that 1/sinh y < \/y < 10/9e for 0 < e á 1, « =

x ^ 7T, one obtains, after neglecting negative valued terms,

(21) | C | < VW exp [-9m2/3/10], m fe 1.
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4.3. Bounds for | D |. To obtain bounds for | D \, the intermediary iaequalities

contained in the following lemma are needed :

Lemma 2. 7/0 ^ x = 1, i/ien

(22) x fe J/ fe a; - z'AO

(23) sinh y ^ 9x/10

(24) sinh x ^ 6x/5

(25) cosh x < 8/5.

Proof, cosh 2/ =  1 + t/2/2! + t/4/4! + • ■ • fe  1 + 7/2/2 and cosh y = 2 -

cos x ^ 1 + x2/2. Therefore, y = x. Next,

x2      x4
COSh 7/ =   2  —  COS X ^   1+ÍT- KT

2       24

and

cosh (x-Q-l=coshí-l42 + ¿[l + ¿ + ^_+...]

c f       Í4 |\   ,   i2   .   <4    . 1      i2 , 25Í4S[i+S+í+-]-í+2   '   24 L        52      54 J      2      24(25 - i2)

= x2^     xe - 20x4      104x4 - 4000x6 + 600x8 - 40x10 + x12 x2     9a;4

= Y+      200 96[2500 - lOOx2 + 20x4 - x6 ='"=2      200'

Hence

2 Q   4 2 4
r       yx   ^ i   \   x       x

2  _ 200 = 2~" ™ 24

and, therefore

3
x

(3 \ 2 Q   4 2 4

x -  Jö) =  ! óññ * 1 57 Í

yfe*-îô-

Now

Therefore,

Finally

Si^=y = *-ï^=*-ïo = ïo-

3 5

sinhx=x + |j + |]+-.- ^x + - + |] +

. .   ,       x(e2 - 1)   , 6x
= x sinh 1 = —- s — .

2e 5

cosh2 x = 1 + sinh2 x^l + ^^l + |=6i
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SO that

cosh x < f.

This completes the proof of Lemma 2.

Now, from Eq. (16)

D\ Ú 2 f  \4
Jo     sisinh y

dx.

However

sinh y        x

sinh x

sinh y      sinh x     x

—my —mx      / 2 4

4_-4_(1 + L+L +
sinh y      sinh x \        3!      5!

sinh y      sinh x
+

e

sin hx\3!
+ - + - +

5! T 7! ^ ■)!•

Therefore,

and

r« I  ,-■»
¿> I ^ 2(di + di),   where   di =   /     4-1—

Jo   \ sinh )/ sinh x
c/.r

• f        —mi       /    2 4 6 \

i   smh-iV3! + 5! + 7l + ' '  ) ^

We shall first consider di. Let/(x) = e-,ni/sinh x, so that di = Jo* | f(x) — f(y) | dx.

Since m ^ 1 is assumed in all of these estimates of g(m, n), we need only to con-

sider x in the range 0 ^ x ^ 1 (as in Lemma 2). By the Mean Value Theorem, we

have

d, =   f (x - y) | /({)
Jo

dx

where

Now

and, since

we have

Therefore

y á i. ú x.

I/(Í)I =
—mí

sinh2*
(m sinh £ + cosh f)

y -á íú x,

sinh 7/ ^ sinh £ ;S sinh x    and    cosh £ ^ cosh x.

!/(*)
sinh2 7/

(m sinh x + cosh x).
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But from Eqs. (22) through (25), we have

—my   ^.     —mix—x3/10)   ^      —m(x-x/10) —9mx/10 •   ,2        ^    81X_5X
e      è e Ú e = e ,   sinh y fe  -— fe -g-

and

m sinh x + cosh x g ——— + - .
5        5

Therefore

—9mx/10
I   f'(t)   I    <   e     mX      (QmX   "*"   8-*

I 1    W   I    = 4a.2

and, hence

.    .   f'x1 éTwl0(6mx + 8)   ,        37B fe   2 _9mx,io ,    ,   If    -*»»/m ,
di ^  /   —-—5- dx = —- /   x e dx + - /   xe dx.

Jo   10 4x2 20 Jo 5 Jo

Substituting e = m-13 then, after dropping negative valued terms, there results

(26) d!^, «fel.

In considering (¿2, let

2 4 6 2
•C- I       iv i       •*/ 1 CI

3!      5!      7!      '*' = 3!   '

where

S = 1 + — + —-+ .. • < 1 + * + Î + ■... = _VL_ < iË
^4-5      4-5-6-7 -     ^42^44^ 16 - x2 - 15

Hence,

r2_S<8¿_

3!   - 45  '- 5
x2 S < 8af < x2

Furthermore, by Eqs. (22) and (23), sinh x 2: 9x/10 and, therefore,

d2 ^ 2/9 Jo* xe~mx dx i= 2/9m , m ^ 1 (after negative terms have been dropped

and e = m_I/3 has been substituted). Combining the above results, we obtain

(27) |J>IS«* + *>í!(jjg + 0.í¿, »1

5. Proof of Theorem 1. Letting

r,/     \ o    -2/3 r 2/3i    .    207T      1/3 9to      1    ,       9
F(m) = 2m      exp [-m ' ] + -<— m ' exp    - —-    + —¿

and

G(m) = m2F(m)

one notes that

^<0    for     m ^ 8.
dm
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Therefore, G(m) is a monotonie decreasing function for m ^ 8 i.e.,

G(8) > G(m), m = 9, 10, 11, etc.

One may also verify that

max [G(l), (7(2), • • • , G(8)\ = G(8) = 26-80.

Hence

(28) \B\ + \C\ + \D\ g ^|1 = 2^80
m2 m?

Combining this with Eqs. (17) and (19), one obtains

(29) -^|lá2xff(m,n) - log fc - f log 2 - 7 = J-, + ^ ,
m2 2 24m2       m2

where

m ja n   and   m = 1, 2, 3, • • ■ .

Finally, since m2 + n2 ^ 2n2, we are led to

(30) -^Z2irg(m,n) - log fc - |log 2 -7 ^ ^ +
W     -     *     '   ' " 2    & ' -     fc2      '   12fc2'

This completes the verification of estimate (11a). As for estimate (lib), it follows

from the definition

DgP(Q) =5^ = IifP = Q; OifP^Q

and from the fact that

0p(Q) = g(m,n) + — log h.
¿IT

To verify the remark following estimates (11), we shall make use of Eq. (18)

by taking more terms in that series. The estimates for | B |, | C |, and | D | remain

unchanged, while only A changes. For example, by taking an additional term in

Eq. (18), one is led to

(31) 2Í - 9ëL á A* - l0gfc - Il0g2 - * á Í*

and, hence

1        53-60 7      _. _    ,    ,.       ,     ,       3.     _
24F - -¥~ - Ï9ÔT4 = 2^(a'6) - l0gfc - 2l0g2 - T

(32)
53-60 1

=     fc2    + 12fc2 "

This process of taking more terms in relation (18) may be continued indefinitely.
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