Bounds for the Two-Dimensional Discrete Harmonic Green's Function

By Moshe Mangad

Abstract

Estimation of bounds for the two-dimensional discrete harmonic Green's function is obtained. These estimations can then be used to obtain approximate solutions to two-dimensional boundary problems associated with the harmonic difference operator.

1. Introduction. In dealing with partial differential operators, it is desirable to obtain the "free-space" Green's function (valid in the entire space under consideration) for the Laplacian operator, Δ, which permits writing solutions for boundary value problems in integral form [4].

A similar situation exists in solving boundary value problems associated with partial difference operators. It is desirable to find the analog free-space discrete harmonic Green's function $g(m, n)$, which permits writing solutions in summation form for the boundary value problems of the difference equations [1]-[3].

Unlike the two-dimensional continuous case, where the Green's function is known to be $\log r$, an exact estimate for $g(m, n)$ (where m and n are integers and where the mesh widths are unity) is not available (see [3] and [6]). This is because the evaluation involves an elliptic integral (see Eqs. (6) and (7)); only asymptotic estimates for $g(m, n)$ are known.

In this paper, we obtain explicit bounds (see Theorem 1) for $g(m, n)$ which yield very reasonable numerical estimates for intermediate values of m and n. Then, by making a suitable transformation, similar results are obtained for the discrete harmonic Green's function $g_{p}(Q)$, associated with mesh widths h in x and y ($x=m h$, $y=n h$).
2. Known Results. Let D be the harmonic difference operator; i.e.,

$$
\begin{gather*}
D u(m, n)=u(m+1, n)+u(m-1, n)+u(m, n+1) \\
+u(m, n-1)-4 u(m, n), \tag{1}
\end{gather*}
$$

where m and n are integers. Then, $g(m, n)$ is defined [2] as the unique solution of

$$
\begin{align*}
D g(m, n) & =0, \quad \text { except at }(0,0) \tag{2}\\
D g(0,0) & =-1 \tag{3}\\
g(0,0) & =0 \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\text { the first differences of } g(m, n) \rightarrow 0 \text { as } k=\left(m^{2}+n^{2}\right)^{1 / 2} \rightarrow \infty . \tag{5}
\end{equation*}
$$

Duffin and Shaffer [3] showed, by means of an operational calculus based on Fourier series, that

$$
\begin{equation*}
g(m, n)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1-\exp [i(m x+n y)]}{4\left(\sin ^{2} x / 2+\sin ^{2} y / 2\right)} \tag{6}
\end{equation*}
$$

Received November 30, 1964.

On the other hand, McCrea and Whipple [6] showed, by considering a two-dimensional random walk problem, that

$$
\begin{equation*}
g(m, n)=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{1-\exp [-|m| y] \cos n x}{\sinh y} d x \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\cos x+\cosh y=2 \tag{8}
\end{equation*}
$$

The asymptotic estimates obtained by [3] and [6] are, respectively

$$
\begin{equation*}
g(m, n)=\frac{1}{2 \pi}\left[\log k+\frac{3}{2} \log 2+\gamma\right]+O\left(\frac{1}{k^{2}}\right) \tag{9}
\end{equation*}
$$

$$
\text { as } k=\left(m^{2}+n^{2}\right)^{1 / 2} \rightarrow \infty .
$$

$$
\begin{equation*}
g(m, n)=\frac{1}{2 \pi}\left[\log k+\frac{3}{2} \log 2+\gamma\right]+o\left(\frac{1}{k}\right) \quad \text { as } k \rightarrow \infty . \tag{10}
\end{equation*}
$$

Here γ is the Euler's constant.
3. Statement of Main Results. The main results of this paper are contained in the following theorem, which will be proved in Section 5.

Theorem 1. If $k^{2}=m^{2}+n^{2} \neq 0$ and the mesh widths are unity (i.e., $m, n=0$, $\pm 1, \pm 2$, etc.), then
(11a) $\quad \frac{-53 \cdot 6}{k^{2}} \leqq 2 \pi g(m, n)-\log k-\frac{3}{2} \log 2-\gamma \leqq \frac{1}{12 k^{2}}+\frac{53 \cdot 6}{k^{2}}$.
Let $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right)$, and $m=\left(x_{Q}-x_{P}\right) / h, n=\left(y_{Q}-y_{P}\right) / h$. If $\rho=\overline{P Q}=\sqrt{ }\left(\left(x_{Q}-x_{P}\right)^{2}+\left(y_{Q}-y_{P}\right)^{2}\right)$, then the bounds for the Green's functions $g_{P}(Q)$ associated with mesh widths h are

$$
\begin{equation*}
\frac{53 \cdot 6 h^{2}}{\rho^{2}} \leqq 2 \pi g_{P}(Q)-\log \rho-\frac{3}{2} \log 2-\gamma \leqq \frac{53 \cdot 6 h^{2}}{\rho^{2}}+\frac{h^{2}}{12 \rho^{2}}, \rho \geqq h>0 \tag{11b}
\end{equation*}
$$

Remark. As will be shown later, estimates (11) could be improved to also contain terms of the form $O\left(1 / k^{4}\right)$ or $O\left(1 / \rho^{4}\right), O\left(1 / k^{6}\right)$ or $O\left(1 / \rho^{6}\right)$, etc.
4. Preliminary Results and Lemmas. To obtain explicit bounds for $g(m, n)$, we shall use representation (7) with the two properties:

$$
\begin{equation*}
g(m, n)=g(n, m) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
g(m, m)=\frac{1}{\pi} \sum_{j=1}^{m} \frac{1}{2 j-1} \tag{13}
\end{equation*}
$$

obtained in [6]. Next, one notes from Eq. (7) that $g(m, n)=g(m,-n)$ and, hence

$$
\begin{equation*}
g(m, n)=g(m,-n)=g(n, m)=g(n,-m)=g(-m, n)=g(-m,-n) \tag{14}
\end{equation*}
$$

This means that it is sufficient to consider the behavior of $g(m, n)$ for $m \geqq n \geqq 0$ and, without loss of generality, assume that $m \geqq 1$. In addition, for any given x,
we shall consider only the non-negative values of y determined by relation (8).
From Eq. (7),

$$
\begin{equation*}
2 \pi[g(m, n)-g(m, m)]=\int_{0}^{\pi} \frac{(\cos m x-\cos n x)}{\sinh y} e^{-m \nu} d x . \tag{15}
\end{equation*}
$$

When m is large, the important part of the integral above occurs with small values of x. Accordingly, we divide the range of integration at ϵ, defined by $\epsilon=m^{-1 / 3}$. Next, define

$$
\begin{align*}
& A=\int_{0}^{\infty} \frac{(\cos m x-\cos n x)}{x} e^{-m x} d x \\
& B=\int_{\epsilon}^{\infty} \frac{(\cos m x-\cos n x)}{x} e^{-m x} d x \\
& C=\int_{\epsilon}^{x} \frac{(\cos m x-\cos n x)}{\sinh y} e^{-m y} d x \tag{16}\\
& D=\int_{0}^{\epsilon}[\cos m x-\cos n x]\left[\frac{e^{-m y}}{\sinh y}-\frac{e^{-m x}}{x}\right] d x
\end{align*}
$$

Then, by relation (15) and by letting $A^{*}=A+2 \pi g(m, n)$, there results

$$
\begin{equation*}
A^{*}-|B|-|C|-|D| \leqq 2 \pi g(m, n) \leqq A^{*}+|B|+|C|+|D| \tag{17}
\end{equation*}
$$

4.1. Bounds for A^{*} and $|B|$. By using Laplace transforms,

$$
A=\frac{1}{2} \log \left(m^{2}+n^{2}\right) / 2 n^{2}
$$

Next, it is well known [5] that

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{1}{2 j-1}=\frac{1}{2}(\gamma+\log n)+\log 2+\frac{B_{1}}{8 n^{2}}-\frac{\left(2^{3}-1\right) B_{2}}{64 n^{4}}+\cdots \tag{18}
\end{equation*}
$$

where the B_{j} 's are Bernouli-type numbers given by $B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}$, etc. Combining results, therefore, we have the following bounds for A^{*} :

$$
\begin{equation*}
0 \leqq A^{*}-\log k-\frac{3}{2} \log 2-\gamma \leqq \frac{1}{24 m^{2}}, \quad m \geqq 1 \tag{19}
\end{equation*}
$$

Finally, by recalling B from Eq. (16), it is easily deduced that

$$
\begin{equation*}
|B| \leqq 2 m^{-2 / 3} \exp \left[-m^{2 / 3}\right], \quad m \geqq 1 \tag{20}
\end{equation*}
$$

4.2. Bounds for $|C|$. To find bounds for $|C|$, the following lemma is needed:

Lemma 1. If $\epsilon \leqq x \leqq \pi$, where $0<\epsilon \leqq 1$, then $y>9 \epsilon / 10$.
Proof. By considering the series for $\cosh y=2-\cos x$ and $\cosh 9 \epsilon / 10$, it can easily be shown that $\cosh y>\cosh 9 \epsilon / 10$, so that $y>9 \epsilon / 10$.

Using Lemma 1 and the fact that $1 / \sinh y<1 / y<10 / 9 \epsilon$ for $0<\epsilon \leqq 1, \epsilon \leqq$ $x \leqq \pi$, one obtains, after neglecting negative valued terms,

$$
\begin{equation*}
|C|<\frac{20}{9} \pi m^{1 / 3} \exp \left[-9 m^{2 / 3} / 10\right], \quad m \geqq 1 \tag{21}
\end{equation*}
$$

4.3. Bounds for $|D|$. To obtain bounds for $|D|$, the intermediary inequalities contained in the following lemma are needed:

Lemma 2. If $0 \leqq x \leqq 1$, then

$$
\begin{align*}
x & \geqq y \geqq x-x^{3} / 10 \tag{22}\\
\sinh y & \geqq 9 x / 10 \tag{23}\\
\sinh x & \leqq 6 x / 5 \tag{24}\\
\cosh x & <8 / 5 . \tag{25}
\end{align*}
$$

Proof. $\cosh y=1+y^{2} / 2!+y^{4} / 4!+\cdots \geqq 1+y^{2} / 2$ and $\cosh y=2-$ $\cos x \leqq 1+x^{2} / 2$. Therefore, $y \leqq x$. Next,

$$
\cosh y=2-\cos x \geqq 1+\frac{x^{2}}{2}-\frac{x^{4}}{24}
$$

and

$$
\begin{gathered}
\cosh \left(x-\frac{x^{3}}{10}\right)-1 \equiv \cosh t-1=\frac{t^{2}}{2}+\frac{t^{4}}{24}\left[1+\frac{t^{2}}{5 \cdot 6}+\frac{t^{4}}{5 \cdot 6 \cdot 7 \cdot 8}+\cdots\right] \\
\quad \leqq \frac{t^{2}}{2}+\frac{t^{4}}{24}\left[1+\frac{t^{2}}{5^{2}}+\frac{t^{4}}{5^{4}}+\cdots\right]=\frac{t^{2}}{2}+\frac{25 t^{4}}{24\left(25-t^{2}\right)}=\cdots \\
=\frac{x^{2}}{2}+\frac{x^{6}-20 x^{4}}{200}+\frac{10^{4} x^{4}-4000 x^{6}+600 x^{8}-40 x^{10}+x^{12}}{96\left[2500-100 x^{2}+20 x^{4}-x^{6}\right.} \leqq \cdots \leqq \frac{x^{2}}{2}-\frac{9 x^{4}}{200} .
\end{gathered}
$$

Hence

$$
\cosh \left(x-\frac{x^{3}}{10}\right) \leqq 1+\frac{x^{2}}{2}-\frac{9 x^{4}}{200} \leqq 1+\frac{x^{2}}{2}-\frac{x^{4}}{24} \leqq \cosh y
$$

and, therefore

$$
y \geqq x-\frac{x^{3}}{10}
$$

Now

$$
\sinh y \geqq y \geqq x-\frac{x^{3}}{10} \geqq x-\frac{x}{10}=\frac{9 x}{10}
$$

Therefore,

$$
\begin{aligned}
\sinh x & =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \leqq x+\frac{x}{3!}+\frac{x}{5!}+\cdots \\
& =x \sinh 1=\frac{x\left(e^{2}-1\right)}{2 \epsilon} \leqq \frac{6 x}{5} .
\end{aligned}
$$

Finally

$$
\cosh ^{2} x=1+\sinh ^{2} x \leqq 1+\frac{36 x^{2}}{25} \leqq 1+\frac{36}{25}=\frac{61}{25}
$$

so that

$$
\cosh x<\frac{8}{5}
$$

This completes the proof of Lemma 2.
Now, from Eq. (16)

$$
|D| \leqq 2 \int_{0}^{\epsilon}\left|\frac{e^{-m y}}{\sinh y}-\frac{e^{-m x}}{x}\right| d x
$$

However

$$
\begin{aligned}
\left|\frac{e^{-m y}}{\sinh y}-\frac{e^{-m x}}{x}\right| & =\left|\frac{e^{-m y}}{\sinh y}-\frac{e^{-m x}}{\sinh x} \frac{\sinh x}{x}\right| \\
& =\left|\frac{e^{-m y}}{\sinh y}-\frac{e^{-m x}}{\sinh x}\left(1+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots\right)\right| \\
& \leqq\left|\frac{e^{-m y}}{\sinh y}-\frac{e^{-m x}}{\sinh x}\right|+\left|\frac{e^{-m x}}{\sinh x}\left(\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\frac{x^{6}}{7!}+\cdots\right)\right|
\end{aligned}
$$

Therefore,

$$
|D| \leqq 2\left(d_{1}+d_{2}\right), \quad \text { where } \quad d_{1}=\int_{\theta}^{\epsilon}\left|\frac{e^{-m y}}{\sinh y}-\frac{e^{-m x}}{\sinh x}\right| d x
$$

and

$$
d_{2}=\int_{0}^{!} \frac{e^{-m x}}{\sinh x}\left(\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\frac{x^{6}}{7!}+\cdots\right) d x
$$

We shall first consider d_{1}. Let $f(x)=e^{-m x} / \sinh x$, so that $d_{1}=\int_{0}{ }^{e}|f(x)-f(y)| d x$. Since $m \geqq 1$ is assumed in all of these estimates of $g(m, n)$, we need only to consider x in the range $0 \leqq x \leqq 1$ (as in Lemma 2). By the Mean Value Theorem, we have

$$
d_{1}=\int_{0}^{t}(x-y)\left|f^{\prime}(\xi)\right| d x
$$

where

$$
y \leqq \xi \leqq x .
$$

Now

$$
\left|f^{\prime}(\xi)\right|=\left|\frac{e^{-m \xi}}{\sinh ^{2 \xi}}(m \sinh \xi+\cosh \xi)\right|
$$

and, since

$$
y \leqq \xi \leqq x
$$

we have
$\sinh y \leqq \sinh \xi \leqq \sinh x \quad$ and $\quad \cosh \xi \leqq \cosh x$.
Therefore

$$
\left|f^{\prime}(\xi)\right| \leqq \frac{e^{-m y}}{\sinh ^{2} y}(m \sinh x+\cosh x)
$$

But from Eqs. (22) through (25), we have

$$
e^{-m y} \leqq e^{-m\left(x-x^{3} / 10\right)} \leqq e^{-m(x-x / 10)}=e^{-9 m x / 10}, \quad \sinh ^{2} y \geqq \frac{81 x^{2}}{100} \geqq \frac{5 x^{2}}{5}
$$

and

$$
m \sinh x+\cosh x \leqq \frac{6 m x}{5}+\frac{8}{5}
$$

Therefore

$$
\left|f^{\prime}(\xi)\right| \leqq \frac{e^{-9 m x / 10}(6 m x+8)}{4 x^{2}}
$$

and, hence

$$
d_{1} \leqq \int_{0}^{\epsilon} \frac{x^{3}}{10} \frac{e^{-9 m x / 10}(6 m x+8)}{4 x^{2}} d x=\frac{3 m}{20} \int_{0}^{\epsilon} x^{2} e^{-9 m x / 10} d x+\frac{1}{5} \int_{0}^{\epsilon} x e^{-9 m x / 10} d x
$$

Substituting $\epsilon=m^{-1 / 3}$ then, after dropping negative valued terms, there results

$$
\begin{equation*}
d_{1} \leqq \frac{160}{243 m^{2}} \tag{26}
\end{equation*}
$$

$$
m \geqq 1
$$

In considering d_{2}, let

$$
\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\frac{x^{6}}{7!}+\cdots=\frac{x^{2}}{3!} S
$$

where

$$
S=1+\frac{x^{2}}{4 \cdot 5}+\frac{x^{4}}{4 \cdot 5 \cdot 6 \cdot 7}+\cdots \leqq 1+\frac{x^{2}}{4^{2}}+\frac{x^{4}}{4^{4}}+\cdots=\frac{16}{16-x^{2}} \leqq \frac{16}{15}
$$

Hence,

$$
\frac{x^{2} S}{3!} \leqq \frac{8 x^{2}}{45} \leqq \frac{x^{2}}{5}
$$

Furthermore, by Eqs. (22) and (23), $\sinh x \geqq 9 x / 10$ and, therefore, $d_{2} \leqq 2 / 9 \int_{0}{ }^{t} x e^{-m x} d x \leqq 2 / 9 m^{2}, m \geqq 1$ (after negative terms have been dropped and $\epsilon=m^{-1 / 3}$ has been substituted). Combining the above results, we obtain

$$
\begin{equation*}
|D| \leqq 2\left(d_{1}+d_{2}\right) \leqq \frac{2}{m^{2}}\left(\frac{160}{243}+\frac{2}{9}\right) \leqq \frac{9}{5 m^{2}}, \quad m \geqq 1 \tag{27}
\end{equation*}
$$

5. Proof of Theorem 1. Letting

$$
F(m)=2 m^{-2 / 3} \exp \left[-m^{2 / 3}\right]+\frac{20 \pi}{9} m^{1 / 3} \exp \left[-\frac{9 m^{2 / 3}}{10}\right]+\frac{9}{5 m^{2}}
$$

and

$$
G(m)=m^{2} F(m)
$$

one notes that

$$
\frac{d G}{d m}<0 \quad \text { for } \quad m \geqq 8
$$

Therefore, $G(m)$ is a monotonic decreasing function for $m \geqq 8$ i.e.,

$$
G(8)>G(m), \quad \quad m=9,10,11, \text { etc. }
$$

One may also verify that

$$
\max [G(1), G(2), \cdots, G(8)]=G(8)=26 \cdot 80
$$

Hence

$$
\begin{equation*}
|B|+|C|+|D| \leqq \frac{G(8)}{m^{2}}=\frac{26 \cdot 80}{m^{2}} \tag{28}
\end{equation*}
$$

Combining this with Eqs. (17) and (19), one obtains

$$
\begin{equation*}
-\frac{G(8)}{m^{2}} \leqq 2 \pi g(m, n)-\log k-\frac{3}{2} \log 2-\gamma \leqq \frac{1}{24 m^{2}}+\frac{G(8)}{m^{2}} \tag{29}
\end{equation*}
$$

where

$$
m \geqq n \quad \text { and } \quad m=1,2,3, \cdots
$$

Finally, since $m^{2}+n^{2} \geqq 2 n^{2}$, we are led to

$$
\begin{equation*}
-\frac{53 \cdot 60}{k^{2}} \leqq 2 \pi g(m, n)-\log k-\frac{3}{2} \log 2-\gamma \leqq \frac{53 \cdot 60}{k^{2}}+\frac{1}{12 k^{2}} \tag{30}
\end{equation*}
$$

This completes the verification of estimate (11a). As for estimate (11b), it follows from the definition

$$
D g_{P}(Q)=\frac{\delta_{P, Q}}{h^{2}}=\frac{1}{h^{2}} \quad \text { if } P=Q ; \quad 0 \text { if } P \neq Q
$$

and from the fact that

$$
g_{P}(Q)=g(m, n)+\frac{1}{2 \pi} \log h
$$

To verify the remark following estimates (11), we shall make use of Eq. (18) by taking more terms in that series. The estimates for $|B|,|C|$, and $|D|$ remain unchanged, while only A^{*} changes. For example, by taking an additional term in Eq. (18), one is led to

$$
\begin{equation*}
\frac{1}{24 m^{2}}-\frac{7}{960 m^{4}} \leqq A^{*}-\log k-\frac{3}{2} \log 2-\gamma \leqq \frac{1}{24 m^{2}} \tag{31}
\end{equation*}
$$

and, hence

$$
\begin{align*}
\frac{1}{24 k^{2}}-\frac{53 \cdot 60}{k^{2}}-\frac{7}{190 k^{4}} & \leqq 2 \pi g(a, b)-\log k-\frac{3}{2} \log 2-\gamma \\
& \leqq \frac{53 \cdot 60}{k^{2}}+\frac{1}{12 k^{2}} \tag{32}
\end{align*}
$$

This process of taking more terms in relation (18) may be continued indefinitely.

1. R. J. Duffin, "Discrete potential theory," Duke Math. J., v. 20, 1953, pp. 233-251. MR 16, 1119.
2. R. J. Duffin \& E. P. Shelly, "Difference equations of polyharmonic type," Duke Math. J., v. 25, 1958, pp. 209-238. MR 20 \#5374.
3. R.J. Duffin \& D. H. Shaffer, "Asymptotic expansion of double Fourier transforms," Duke Math. J., v. 27, 1960, pp. 581-596. MR $22 * 8280$.
4. B. Friedman, Principles and Techniques of Applied Mathematics, Wiley, New York, 1960.
5. L. B. W. Jolley, Summation of Series, 2nd rev. ed., Dover, New York, 1961. MR 24 *B511.
6. W. H. McCrea \& F. J. W. Whipple, "Random paths in two and three dimensions," Proc. Roy. Soc. Edinburgh, v. 60, 1939.
