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less than those given in Table I. Table II gives the value of s corresponding to

each value of k.

However this method of producing solutions to (A) with a small number of

terms is subject to the following weakness. We had assumed that from any particular

solution to (A) solutions of higher degree would be generated containing the least

number of terms s, so long as the most frequent difference d was used at each step.

After producing the following results this assumption was seen to be false.

When forming Table I the multiplier (1 — x) was used with JIy=i (1 — x')

to produce a solution to the extended problem where s = 22 for k = 11. This is

equivalent to starting with the solution 0, 2 = 1, 1 and using Theorem 2 with

d = 2, 3, • • • ,11. Table III compares the lengths of the solutions generated in this

manner with those generated from the same initial solution but using the most

frequent difference d at each step.

Thus, by a more careful choice of d, the length of solutions can be decreased

for k = 6,7,8, 9,10. But for k = 11 this produces a solution to the extended problem

where s = 24. This solution is longer than that obtained from a sequence of solu-

tions which was constructed from values for d that did not always represent the

most frequent difference.

Finally, although solutions to (A) for k = 6 and s = 7 exist, we proved that no

such solution can be obtained from a sequence generated by any solution for k = 1

and s = 2 using the most frequent difference d at each step.

Although Theorem 2 was used to generate most solutions for k ¿ 9 where

s = k -\- 1, it appears that for k 3ï 10 it alone will not be sufficient.

3. Acknowledgments. The author is indebted to Dr. Z. A. Melzak for his sug-

gestions and helpful criticisms.
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Numerical Solutions of the Diophantine Equation
3 2,

y   — x   = k

By M. Lai, M. F. Jones and W. J. Blundon

Introduction. The distribution of squares and cubes differing by a given integer

is very interesting [1] and has attracted many mathematicians over the past few

centuries. Probably this is due to the fact that y — x = k is the simplest of all

nontrivial Diophantine equations of degree greater than two. The solution of this

equation is equivalent to the problem of representation of numbers by binary cubic

Received September 7, 1965.
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Table 1

Values of | k [ with No. of Solutions  ^ 6

K

17
73

100
113
207
225
252
297
316
343
368
388
431
496
503
512
516
568
648
676
775
828
847
873
892
964
999

1016
1025
1071
1088
1225
1304
1305
1439
1712
1724
1727
1729

N+      N-

0
0
3
0
7
0
1
0
1
5
7
0
9
6
8
1
4
0
6
6
7
5
7
0
1
4
6
0
0
6
0
1
0
0
8
6
5
7
1

8
6
6
6
0

13
5
9
7
2
1
6
0
1
0
5
3
7
0
1
2
1
0
9
5
3
0
7

16
0
9
5
6
9
0
1
1
0
5

K

1737
1792
1809
1872
1900
1999
2052
2071
2089
2188
2241
2312
2351
2600
2628
2817
3025
3033
3332
3356
3592
3664
3807
3844
3896
3969
4032
4087
4112
4220
4312
4329
4356
4481
4598
4600
4672
4799
4825

N+

0
3
0
0
0
6
0
6
0
5
0
1

10
1
0
0
0
0
6
0
1
0

11
0

11
0
2
7
0
6
0
0
0
0
4
1
0
7
0

N-

11
3
6
7
6
0
6
0

14
1
6
5
0
5
9

10
11
8
2
6
5

0
9
4
0

10
0

10
7
8

12
2
5
7
0
7

K

4977
5328
5400
5543
5696
5841
5887
6236
6400
6479
6625
6908
6921
7057
7100
7232
7353
7568
7600
7785
7804
7948
8036
8225
8281
8289
8433
8532
8623
8673
8676
8712
8900
9052
9297
9559
9748
9936
9967

N+

0
0
0
6
3
0
4
6
4
6
0
5
0
0
5
0
0
0
4
0
7
0
3
0
0
0
0
7
5
0
1
6
1
1
0
7
9
0
6

N-

0
5

10
2
1
7
0
6
1
6

11
4

0
6
4

11
9
7
6
0
2
6
9
0

12
5
8
1
0
6
0

forms [2]. Thus the solution of the indeterminate equation of third degree

(1) y  — x = k

is equivalent to solving a finite number of equations (a, b, c, d) = 1, where (a, 6, c, d)

is a binary cubic form.

At present, very little is known about the theory of binary cubic forms. In this

respect, the theory for negative discriminants is better developed and for

0 < — A; ̂  100, all solutions of (1) have been found [3]. However for positive dis-

criminants, progress has been rather slow and for the equivalent positive range,
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Table 2

Range of y
Number of solutions

20 cases remain to be resolved [3], [4]. For | k \ > 100, it appears that complete

solutions are lacking. It was therefore felt desirable to obtain solutions of (1) by

means of a numerical search.

This search was conducted with

| k | é 9999, k 5¿ 0 and

0 ^ x < 1010.

These parameters fix the range of y to be

-21 ^ y < ymax ;       í/max = 4,641,589.

We anticipate that the results of such an extensive search will be useful for

checking some of the conjectures concerning this equation and also provide further

insight into the theory of binary cubic forms.

Method. By rewriting (1) as

2 3
x   = y

then, for a given y, x is bounded by

aw < x < iy  4- 9999)1'2;

k,

= if - 9999)
1/2

Thus, if y is large, the possible values of x in this search are severely limited.

There are two methods of finding the starting values of x for a given y.

(1) To compute the square-root directly.

(2) To compute it by a search routine.

A routine was programmed, using the fact for y > 21, xm-m is a monotonie in-

creasing function of y. This was found to be considerably quicker than (1) and was

used throughout.

Results. The final output is rather large and it is intended to deposit a copy in

the UMT file. A limited number of copies have been retained by the authors for

distribution to interested mathematicians.

The tables contain all solutions found in ascending order of k as well as a sum-

mary giving the total number of solutions for each value.
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The present paper contains in Table 1 a somewhat shortened version of that

summary, and lists all values of | k \ for which six or more solutions were found.

We summarize some of our results as follows:

(1) For positive k g 100, no solution could be appended to the Table in [3].

(2) For negative k 2ï —9999, the last solution found was

(1,775,104)3 - (2,365,024,826)2 = -5412;

whilst, for positive fc ^ 9999, the last solution was

(939,787)3 - (911,054,064)2 = 307.

(3) In addition to solutions for [ k | ^ 9999, we have solutions, for y ^ 104

and | k | g 99999; there are 1221 for positive k and 799 for negative k.

The vast majority of solutions are with y < 100 and Table 2 gives the number

of solutions for various ranges of y.

The fact that the number of solutions is a rapidly decreasing function of y

suggests that for at least some k the solution set may be complete.
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Experiments on Gram-Schmidt Orthogonalization

By John R. Rice*

1. Orthogonalization Procedures. In this note we present a brief resume of

some experiments made on orthogonalization methods. We have a set

{ui | i = 1, 2, • ■ • ,n] of m-vectors and wish to obtain an equivalent orthonormal set

[vi | i = 1, 2, • • • , n] of m-vectors. We consider the following methods:

(a) Gram-Schmidt (GS). Vi = Ui/\\ «i ||.

k-l

vk  = uk — Yj ÍVj , uk)vj,   vk = vk'/[[ vk || ;       k = 2, • • • , n.
3=1

(b) Modified Gram-Schmidt (MGS), vi = mi/|| ux ||,

m/1' = u,- — iuj, üi>i , j = 2, ■■■ ,n.

(k-l) /il       (*-l)   ||
vk = uk      /\\uk        II

_u/k) = «/*"" - («¡M, vk)vk   j = k 4- 1, • • • , n
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k = 2, ■■■ ,n.


