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Abstract. In this paper a method is presented for evaluating

f"
j   f(x)elwx dx   where   coA7 = p-2x,   p integer.

Jo

The idea is to approximate/(x) instead of the whole integrand by aid of poly-

nomials. The Romberg-Stiefel algorithm has been extended to this case. The new

method is complementary to the usual Romberg-Stiefel algorithm in the sense that

it is more advantageous for larger values of co. An expression for the remainder term

is also included. Results for the real part are exact if f(x) is of at most 7th degree

and for the imaginary part if f(x) is of at most 8th degree.

1. Introduction. The conventional methods of numerical integration are generally

less suitable for the computation of integrals of the form

/   f(x) cos cox dx   and    /   f(x) sin cox dx,
Jo Jo

if os is large. Due to the oscillatory character of the integrand, its approximation

by aid of polynomials requires a large number of points where the integrand must

be evaluated.

In the present paper a method is given where instead of the whole integrand

only the function f(x) is approximated by polynomials. Moreover, the purely

numerical part of the method is confined to the evaluation of

(1.1) /   f(x) cos u>x dx   and    /   f(x) sin cox dx,
Jo Jo

where

(1.2) oiN = p-2x   and p an integer.

The value of p should be chosen so large that the remaining part of the original

integrals referring to the interval (N, <x> ) can be calculated by asymptotic ex-

pansion of f(x).
The idea of the method is to extend Stiefel 's method of numerical integration

[1] to integrals with strongly oscillating integrands. Stiefel's method can be seen

as an iteration method in which the number of points where the integrand must be

evaluated, is doubled at each step. As soon as the change in the result is less than a

certain tolerance, the process is stopped. Hence, one obtains an automatic check

of the accuracy obtained.

In order to retain this principle for the evaluation of the integrals (1.1), where

only/(x) is approximated by polynomials, it is necessary that the points where/(x)
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must be evaluated have fixed positions with regard to the wave occurring in the

goniometric function. This leads to the condition (1.2) for the upper integration

limit N. The maximum number of evaluation points for which in this report formulae

for the values of the integrals are presented, is 16 per wavelength. It may be, how-

ever, that f(x) is so smooth or co so large, that this number is unnecessarily large

for the accuracy required. Therefore, it is preferable if p is not only an integer, but

if it is some power of 2. This enables one to perform more iteration steps with the

possibility that the process needs not to be continued until the finest division of the

interval (16 points per wavelength).

The method works better for larger values of co and, in this respect, can be seen

as a useful complement to the normal Stiefel routine.

In many cases it may be advisable, as with Stiefel's method, to divide before-

hand the total interval from 0 to A7 in a few parts over which the integrals are cal-

culated separately. This gives the advantage that if somewhere in the interval

f(x) is relatively difficult to approximate by polynomials, which then compels

to a large number of evaluation points, this same number does not need to be

retained everywhere in the interval from 0 to N.

Like in Stiefel's method, it is also possible in the present method to derive from

two consecutive steps by linear combination a new approximation which is still

exact for a polynomial of higher degree (deferred approach to the limit, see e.g.

Fox [2]). However, the coefficients occurring in the linear combination are more

difficult to calculate in the present method and, moreover, they become dependent

on the number of the step. In this paper coefficients are given which lead to exact

results if in the cosine-integral f(x) is of at most 7th degree and in: the sine-integral

of at most 8th degree.

For the case of the most accurate formulae presented in this report ( 16 evalua-

tion points per wavelength), the truncation error has been calculated.

The oldest method for the numerical calculation of integrals with oscillating

integrands is probably due to Filon [3]. He approximates the function f(x) in

parts of the interval by parabola and then calculates the integral with arbitrary

limits. This method has been extended by Luke [4], who approximates the function

f(x) in a certain interval by a polynomial of at most 10th degree. This makes his

method related to the Newton-Cotes integration formulae. The moments

Mm = f xmeiux dx

are calculated by aid of the function

This function as well as its derivatives are in Luke's method available in the

form of a table which make it less suitable for a computer. Also, there is no indica-

tion of the accuracy of the numerical result obtained. It has, however, the advantage

that the points where f(x) must be evaluated are independent of co. This is not so

in the method presented in this report, since here these points have fixed positions

with regard to the wavelength.

Hurwitz and Zweifel [5], [6] suggested the application of Gauss-Jacobi quadra-
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ture to obtain numerical approximations of Fourier transforms. Recently, however,

it was shown by Sänger [7], that this method is nothing else than the application

of the trapezoidal rule to the complete integrand.

2. Integration Formulae for J* f(x) cos wx dx. Approximation of f(x) by a con-

stant or a linear function yields zero, since the integration is over an integer number

of wavelengths. Therefore the first sensible approximation of f(x) is by a parabola,

which agrees with/(x) in the points x = 0, N/2 and N. This leads to the following

result for the integral

Assuming now that the number p of wavelengths in not only an integer, but is

equal to a power of two, i.e.

(2.1) oiN = 2nx,       n = 1, 2, ■•• .

we may write the result also in the form

(2.2) At :    ^ |/(0) - 2/ (2-1 ^ + / (2" l)\ .

We can improve this result by doubling the number of points where f(x) has

to be evaluated. We then approximate by aid of two parabola, one through the

values of f(x) at x = 0, iV/4, AT/2 and the other through/(x) at x = AT/2, 3A74
and N. This yields

(2.3) A2 :    — |/(0) - 2/(2n"2 ^ + 2/ (2"-1 ?) - 2/ (3 • 2n~2 ¿\ + f (2" ^Yj>.

We can proceed in the same way, obtaining as next approximation

A3 :    — 1/(0) - 2/ (2n~3 *) +2/(2-2n"3 -\ -2/(3-2"-3 -)
XCÚ    ( \ CO/ \ CO/ \ CO/

(2.4) + 2/ ^4 • 2"~3 ̂  - 2/ ^5 • 2n~3 ?) + 2/ (ô • 2"~3 -\

- 2/^7•2"-3 -\+fU-2n'3 -H.

This can be continued until the nth approximation. Thej'th approximation (j ^ n)

can be written as

ni+l-n ti-1 I-     ( \

Ay:- Z    /   (2fc-2)2-^
XCO      jfc-1   L col

(2-5) r i     V        n
-2fl(2k- 1)2^3 +n2k'2"~il\ ■

The last (nth) approximation of this series becomes

(2-6) a" = ¿ S D{(2fc -2) -} - *{{2k -i)*h f{2k =}] '
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where p is not necessarily 2n_1. In formula (2.6) the function/(x) is approximated

by different parabola over each wavelength 2x/co. Hence, the same formula can be

retained for any integer value of p, which is in agreement with Eq. (1.2).

The next step would be to approximate/(x) over each half wavelength x/co by a

parabola. After evaluation this appears to lead to exactly the same result as the

previous approximation and formula (2.6) is again obtained.

Next, the approximation of f(x) by parabola is performed over a quarter of a

wavelength. This leads to

An+1 :    A (3 - *) É \f{(2k - 2) 4 - 2f((2k - 1) Ú +,f hk *)]
xco \       x/ k-i L( <¿) ( wj I     Wj J

«•«      +MH£['{(*-0lRM);}

Finally, f(x) is approximated over each eighth wavelength by another parabola

and we have

An+2 :   -1 U + V2 - ^?) È [>{(» - 2) 4 - 2fl(2k - 1) ï)
XCO \ X       / k-1  \_     ( 03) ( 03)

+ ^}] + A(1+3V^)g[,{(2*-^}

-'MM*-!) ¿MM);}]

-'{(*-ï)â+'{(*-i)â]
+¿(^^-^)e[/{(--f)í}-/{(--¥)a

-'{C--Ôâ+'{0*-Ô5>3-
The formulae (2.6), (2.7) and (2.8) have the favourable property that for any

value of x the contribution of f(x) has the same sign as/(x) cos cox. These same for-

mulae can also be used for the evaluation of arbitrary Fourier cosine coefficients of

f(x) in the interval (0, N).

Finally, it can easily be shown that all formulae given hitherto are not only

exact when f(x) is a parabola but also if it is a third degree polynomial over each

wavelength.

Similar to Stiefel's method, it is now possible to obtain integration formulae

which are exact for polynomials up to the 5th degree by linear combination of two

consecutive results in the Ay-sequence. Hence, we shall show that coefficients «y and

a/ can be determined such that

(2.9) Bj  -   ctjAj + ay'Ay+1



236 A.   I.   VAN  DE   VOOREN  AND   H.   J.   VAN  LINDE

is an approximation for

f*
/   f(x) cos cox dx,
Jo

which is exact if f(x) is a polynomial of at most 5th degree over intervals of 2n~'

wavelengths.* First, we shall determine ay and ay  such that B¡ is exact for 4th

degree polynomials/(x). Next, the coefficients a¡ and a¡ are uniquely determined

by the further requirement that

(2.10) ay + ay' =  1,

expressing that B¡ is also exact for 2nd degree polynomials.

By aid of an argument similar to that which was used to show that the Ay-

results, derived for 2nd degree polynomials, hold also for 3rd degree polynomials,

it follows that the .By-results then are also exact for 5th degree polynomials.

The exact result for/(x) = x4 is given by

(2.11) [   x4
Jo

cos cox dx =
4AT3      24A"

or

The approximate result for this same case as following from Eq. (2.5) is

N3 {.       2
(2.12) Ay:   ^<4-£>,       i= 1,2,

CO' 2'

where use has been made of Eq. (2.1) and of the series

m TO -j -j tn 111

(2.13) 2 k° = m,   X) k = - rn  + - m,    2 k2 = - m  + - m  + - m.
*=1 k—l ¿ ¿ k=l O Z O

The approximate results for/(x) = x4, following from Eqs. (2.7) and (2.8) are

(2.14) A„+1:   _--^_ + 6xj,

(2.15) An+2:    ^-^ + 3x(l+V2)},

where Eq. (1.2) has been used as well as Eq. (2.11). The coefficients of N/03 ap-

pearing in the last two formulae are approximately —23.77 and —23.93, respec-

tively.

The equations (2.9) and (2.10) now form two equations for the unknowns ay

and ay'. For B, the exact result (2.11) is substituted, while Ay is given by (2.12),

(2.14) and (2.15). We obtain

1      16 22y        , _ 4      16 22y . _
a¡ - -3 "I" ¿i 2^ '   aj   ~ 3      x7 W" '       J ~   '   ' ' ' ' ' n        '

(oirt 1 _,_ 16(x - 3) ,      4      16(x - 3)
(,2.1b)      a„ =  —- + —j--r-,    an   = - — -—--r-,

ó       3x(4 — x) ó       dir(i — ir)

_1      16(x + 2xV2 - 12)        ,       = 4 _ 16(x + 2xV2 - 12)
a"+1 ~     3 +   3x(8V2 - x - 8)   '   a"+1      3        3x(8V2 - r - 8)   '

As mentioned already above, the results obtained in this way are also exact if

* With the exception that for j = n + l,/(x) may be a different 5th degree polynomial over

each quarter wavelength.



NUMERICAL CALCULATION OF INTEGRALS WITH OSCILLATING INTEGRAND     237

f(x) is a polynomial of 5th degree. If f(x) is different, the sequence Bi,B2, ■ ■ ■ , B„+1

gives results of increasing accuracy.

We can continue this procedure and form a linear combination of B¡ and BJ+i

which we make exact for/(x) being a 6th degree polynomial and which then will be

exact also for 7th degree polynomials (over intervals of 2n~3 wavelengths). This com-

bination is

(2.17) Cj - ßßi + ß/Bj+i   with   ßi + ß/ = 1.

The exact result for/(x) = x6 is

(2.18) /    x6 cos cox dx = —-1-— ,
Jo or co4 co6

(2.19)

while the approximate results following from Eqs. (2.5), (2.7) and (2.8) are for

this case

A       #Y« 10    I      6 \
Ar-oJ\?--W + ¥i)>       J = l>2,---,n

. 6AT5      /5  .  30\   2N3   ,   /69  ,  315\   tN

6AT6      /5   .   15   .   15\/2\   2AT3
A„+2 '•    —:-bi-r - I v —j

03L \ö X X       / CO*

/_159_      45V2      1395      1035y/2\   « N

+ \1024 +   512    + 128x +     128x   / T co6 "

The approximate numerical values of the coefficients of Af3/co4 are —118.9 and

-119.9 and those of AT/co6 are 716.3 and 720.2.
Besides Eqs. (2.13) the following series have been used

mnr\\        X~*   1¡ 1       4,1       3,1       2        V"1   ,4 1 _f    .     1 _4    I     1 _1 1(2.20)     2..K   = 7 m   +öm   + 7 m >    ¿^k   =cm   + ö m   +öm   — ™ m-
k=i 4/4 ¡t=i o Z ó öl)

Forming now the By-approximations from (2.9) and (2.16) we obtain

*=<-¿.)5-KS)5. '-"•••■-.»
D     6AT5      120AT3  .   /    9    4  ,  315   2\Ar
ß-: ^--c^ + v-ïë^ +^7r;^'

(2.21) Wb      120N3

Bn+i :    —i-j—
ClT CO*

+
/     39    4   .   15\/2   4   .  315   s   ,  45V2   ,   .   945   ,      45>/2   2\ N
V"256,r   + ^28~T   +  MT   +^2~V   +   1~QT   ~ "S" T j ¡? "

The coefficients of AVco6 are approximately equal to 723.0 and 721.4.

The quantities ft- and /3y  can now be calculated from Eqs. (2.17), when Cj

is replaced by the expression (2.18) and B¡ by (2.21). The result is

__1_      64 2^ 1 - (40/x2) (22V22n)

A 15      5x2 22" 1 - (48/x2)(22'/22n) '
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A.   =

, = 16 _ 64 22'' 1 - (40/x2)(22V22")
Pl   '    15      5x222» 1 - (48/x2)(22V22") ' 3      x> ̂ > ' '- >n      *>

(2 2£\ 8- —   L 16(tt4 + 60x2 - 720)        , 16 _ 16(x4 + 60x2 - 720)
l'    jfcl 15 +      375x2(x2 - 12)       '    ^n_1      15 375x2(x2 - 12)     '

J_ _ 32 x4 - x4a/2 - 42x3 - 12x3\/2 - 462x2 + 48x2-y/2 + 5760

15      15 (7 + 2V2V(x2 + 12x - 48)

/ = 16      32 x4 - x4 V2 - 42x3 - 12x3 V2 - 462x2 + 48x2y/2 + 5760
Pn   " 15 + 15 " (7 + 2V2>V + 12x - 48)

Using these coefficients in Eqs. (2.17), the Cj values become exact if f(x) is a

polynomial of at most 7th degree, while in other cases the Cy-sequence gives re-

sults of increasing accuracy.

3. Integration Formulae for Jo f(x) sin cox dx. Approximation of f(x) by a con-

stant yields zero for the integral, but approximation by a linear function leads to

-{/(0) -f(N)}.
CO

If f(x) is approximated by a different linear function over each half of the in-

terval, the same result appears. For further halving of the interval, this invariance

of the result continues until f(x) is approximated over each quarter wavelength

x/2co by a different linear function. However, since the results up to this division

are invariant, it is neither possible to obtain better results by linear combination.

Therefore, the linear approximation is not very suitable to be used as starting

point for a scheme comparable to that used for the cosine-integral.

Since the results for linear functions are also exact for 2nd degree polynomials,

the following step could be to derive formulae by approximating f(x) by a 3rd

degree polynomial fitting at the points x = 0, N/3, 2N/3 and N.

However, this would lead to points of evaluation for f(x), which differ from

those required in the calculation of the cosine-integral. For this reason, it has been

preferred to approximate f(x) by a 4th degree polynomial fitting at x = 0, N/4,

N/2, 3AV4 and N. After some elementary calculations this leads to the first ap-

proximation

a,-. i{/(o)-/(r'-)}
(3.1)

- $c7 {/(0) - 2/i2"" i) + 2/(3-2"~21) - f (2" tfj '

where n has been defined by Eq. (2.1).

The second approximation, obtained by aid of two different 4th degree poly-

nomials, one for each half of the total interval is

(3.2)
A*-- l{m -/(/;)}-Sr"H -2'(r30 + 2/(3-2""")

- 2/ (ô • 2-3 ^\ + 2f(j- 2-3 ^) - / (s • 2-3 lj>.
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Continuing this procedure, we obtain as jth approximation (j g n)

- 2 g [fUk - 3)2"-' 4 - //(4t - 1)2'-'-' i}]].

The nth approximation will be

A„:   I(l-i){/(0) -f(N)}
CO \ it'/

(3.4) +£SW(--1);}->{(*-*-);}]■
where p is not necessarily equal to 2"~ . In this last formula/(x) has been approxi-

mated by a different 4th degree polynomial over each wavelength 2x/co.

The next approximation follows by approximating f(x) separately over each

half wavelength

x2 + 2x - 16

+

X CO

4(3x - 8)

{/(0) -f(N)\

X'CO k=

(3.5)
+ ?(-

m(-n-'¥-m

Finally, the (n + 2)th approximation is

An+2 :   ^V (3t4 + 6x3 - 560x2 - 2304x + 12288) {/(0) - f(N)}
ox'co

+ -i- (25x3 - 88x2 - 1920x + 6144) £ [/((2* - |) -i
áx'co t=iL    (\ 2/ coj

(»-OS
+ -+- (3x3 - 76x2 - 768x + 3072) £ [/{( 2* - f) -

x4co *-i |_    (\ 4/ coj

<M> +H(»-ï)î}-/{(»-!)î}-/{(»-ï)î}]
+ 3Ä, ( "'" + 52'" + 336,r " 1536) lí Ki2* " ¥) »}

+'{(»-<$-'{(» :Oâ-'{("-<)â]
+ ¿1 ( -3x3 + 28x2 + 432x - 1536) £ Iftfa - *£) l\

ÖX4C0 k=\ \_    W 8 / coj
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The formulae (3.4), (3.5) and (3.6) have again the favourable property that for

any value of x the contribution oif(x) has the same sign as/(x) sin cox. These same

formulae can also be used to calculate arbitrary Fourier sine coefficients of f(x)

in the interval (0, AT).

All formulae of the Ay-sequence in this chapter are exact if f(x) is a polynomial

of at most 4th degree.

By linear combination of two consecutive results of the A3-sequence it is possible

to obtain formulae which are exact for polynomials of 5th degree and, by reasons

of symmetry, which are then also exact for polynomials of 6th degree (over inter-

vals of 2"~' wavelengths). The exact result for/(x) = x5 is given by

• _._ N*   ,   ™AT       innN

n,

(3.7) (   x" sin cox dx = - — + 20 i— -  120
Jo CO cod <

Approximate results are

A..    _N* + (20-   25\N3 j-12
A>-      v + r°    ¥^JU'    ^-1'2'

A       ■ N¡ 4- 90 N'        Í85    2 4- 15    *\NAn+i.    -_+20--^-x  +32-;-^,

An+2:    - —+ 20^- 120^5.
CO CO0 CO5

The last expression shows that An+2 is already exact for polynomials of at most

6th degree.
The coefficients ay and ay are determined by Eqs. (2.9) and (2.10), substitut-

ing for Bj the exact value (3.7). Then

1   .   64     22i ,4       64     22i .      ,  _
ai= "S + Sx"2'^'   ai   =3-5x2"22-«'       J-1.2,-,n-rl,

1   ,  4(x3 + 16x2 - 192) / _ 4      4(x3 + 16x2 - 192)
(3.8) an-      - + 37r2(7r _ 4) '   a"   :    3      -     3x2(x - 4)

an+i = 0,    an+i = 1.

If f(x) differs from a 6th degree polynomial, the By-sequence formed with the

coefficients (3.8) gives results of increasing accuracy.

By linear combination of two consecutive results of the By-sequence, it is again

possible to obtain results which are exact for polynomials up to the 8th degree.

The exact result for/(x) = x7 is given by

rN   7 N7 Nb Ns N

/    x7 sin cox dx = -       + 42 ±- - 840 \ + 5040 ~ .JO 03 03s CO0 CO'

Approximate results are



NUMERICAL CALCULATION OF INTEGRALS WITH OSCILLATING INTEGRAND     241

, AT7   ,   .„AT6     /105   3   ,  595   A AT3   .   /1155   6      5677   AN
An+l ■-h 42 —   — I —— x   + -5- X   I — + I ——- X--j—- X   I — ,

co co3      \ 32 8      / co5       \ 512 128     / co7

a      .        N'^ aoN&      QAnN' a.(      105   *      1267   «   ,  1575   ,   , 3675   2\N
An+2 ■      — - +4:2—-840 — + I   — ¿rjTT^ IT    — ——- IT    + —— x    H-— X   1^ .

co co3 co5       \     2048 512 64 8       /co7

Besides the series given by Eqs. (2.13) and (2.20), we used also

Z, 5 1       6,1       S     ,      5 4 1 2*   =-m  +-m  +-m   - ^ m ,

(3.9)

Z,6 1       7     .     1       5 1       3     .      1k  = -m  + - m   - -m  + —m.
k-i t 2 b 42

Establishing the By-approximations by aid of the coefficients ay and ay given in

(3.8),   we   find

r N\Íao       427\AT5      /...       1281W3 .      10
s>: -^+v42-2^j^-r0-2^;^'  í = i>2,•••,»-!,

w co3 co5        \      32 2        / co'

r N'JL aoN*      QAnN*^f     105    ^      1267   4   ,1575   3   ,3675   A AT"n+1 •     —-r 42 —-»40 — + I — ——- x   — —— x   + -—— x   + —— x  I — .
co co3 co5       \     2048 512 64 8       / co7

Linear combination of two consecutive By-results in the way of Eqs. (2.17) yields

exact values for Cj if f(x) is a polynomial up to the 8th degree. We have to take

A        64  22i 1 - (600/61x2)(22V22n)

ßi 15      25x222"    1 - (48/5x2)(22'"/22n)    '

.,      16        64  22y 1 - (600/61x2)(22V22")
j = 1, 2, •

io       ¿air- ¿—    i — y±o/OTr)\¿"/£~")

017_4   _   -¡QAQnJ2  _1_   1ß1O0n RQ'

(3.10)   ft.-! =

ßn    =

15      25x2 22"    1 - (48/5x2)(22'/22")    '

_ 217x4 - 18480x2 + 161280       ,     = 6832x4 - 81984x2 + 161280
6615x4 - 63504x2        '   ßn^ 6615x4 - 63504x2

(15/2048)x5 + (181/512)x4 - (225/64)x3 - 525/8)x2 + 720

(15/2048)x5 - (315/512)x4 - (225/64)x3 + (135/8)x2

, = _-(31/32)x4 + (165/2)x2 - 720_

ßn   ''    (15/2048)x5 - (315/512)x4 - (225/64)x2 + (135/8)x2 '

For arbitrary/(x) the Cy-sequence gives approximations of increasing accuracy.

4. Some Remarks. Both for the cosine- and for the sine-integral, the following

scheme of approximations is obtained

A:

A2       Bx

A3        B2      ft  .

An+2       Bn+1        Cn
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The results are obtained line after line. A tolerance can be built in in the pro-

gramme, making that the calculations are stopped as soon as, for instance, three

consecutive Cy-values differ by an amount smaller than the tolerance. If not yet

3 Cy-values are available, the tolerance test can be performed on A3, B2, Ci or on

B3, Ci and C2. In principle, the scheme could be extended both downward and to

the right, but this would require further derivations of formulae. For large values

of co this will, in general, not be necessary. Then the approximation of f(x) by a

polynomial of 7th or 8th degree over each wavelength 2x/co will be sufficiently

accurate. The fact that the method works better if co is larger makes that it is in

some sense complementary to the usual Stiefel procedure.

If the tolerance is not satisfied, the value C„ will, in general, be the best approxi-

mation. In Section 5 an estimation for the remainder term is given.

In many cases it may be preferable to divide the whole interval (0, N) in sub-

intervals. In the first place this has the advantage that if somewhere in the interval

f(x) is difficult to approximate by polynomials, which leads to many evaluation

points there, it is not necessary to take the evaluation points in the whole interval

at such a small distance. In the second place, if p is some arbitrary integer, it can

be written as a sum of powers of two. For those subintervals which contain a num-

ber of wavelengths, which is equal to 2 or some higher power of two, the possibility

exists that the tolerance is satisfied before/(x) has to be evaluated at 16 points per

wavelength.

A number of constants appeared in the integration formulae. They are listed

below together with their numerical values.

2
X

16\/2\

= +0.63661 97723 68

= +0.28872 03788 25

= +0.69579 87870 84

= +0.13476 16043 57

x \ rr)

x \ir J

2-U+V2-

-(1 + 3V2--) = +0.19058 16885 68

8 /8_V2 _2 _ ^2\ = +n4?632 32484 43
X \     X /

8 /16 - 8 y/2 _ ^/2\ m +0 19729 95495 79
X \ X /

1

X2

= +0.10132 11836 42

1  16(x - 3) = _0 05330 87559 60

3  3x(4 - x)

1  16(x + 2x a/2 - 12) _ -0.06348 43674 98
3   3x(8 V2 - x - 8)
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_ J_      32    x4 - x4 \/2 - 42x3 - 12x3 V2 - 462x2 + 48x2 y/2 + 5760

15      15 " (7 + 2 V2)x2(x2 + 12x - 48)

= +0.00513 06033 84

1 - —. = +0.18943 05308 61

x2 + 2x - 16

-i-r (3x4 + 6x3 - 560x2 - 2304x + 12288)
3x4

J-A (25x3 - 88x2 - 1920x + 6144)
3x4

-I (3x3 - 76x2 - 768x + 3072)
x4

oo

p. (-x3 + 52x2 + 336x - 1536)
3x4

-\ (-3x3 + 28x2 + 432x - 1536)
3x4

1      4(x3 + 16x2 - 192)

3 3x2(x - 4)

217x4 - 18480x2 + 161280

= +0.01548 08340 90

= +0.00361 70296 21

= +0.25697 58068 09

= +0.17950 99474 14

- +0.19582 38888 28

= +0.49256 12307 32

= +0.15140 09551 82

6615x4 - 63504x2

(15/2048)x5 + (181/512)/ - (225/64)x3 + (525/8)x2 + 720

= -0.00156 14002 30

(15/2048)x5 - (315/512)x4 - (225/64)x3 + (135/8)x2

+0.15344 61903 63

The texts of procedures written in ALGOL 60 is available by request to the

authors.

5. The Remainder Term. The error in the integration formulae can be investi-

gated by aid of the theory given by Milne [8, §§30 and 31]. The error over one

wavelength is defined as

r" cos
R(f) =  /   f(x)   ■    03X dx — value given by integration formula,

Jo sin

where R(f) is a linear operation to be performed on the function/(x) and a — 2x/co.

We shall say that the operator R is of degree n when

R(xm) =0       if m ^ n   and   Ä(xn+1) ^ 0.

The operator giving the error of the result C„ is of degree 7 in the case of the

cosine-integral and of degree 8 in the case of the sine-integral.
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It is shown by Milne that for an operator of degree n, one has

(5.1) R(f) = rfn+1)(s)G(s) ds,
J— 00

where G(s) is the result of applying the operator R to the function (x — s)n/nl

regarded as a function of the variable x. The function (x — s)n is defined by

(x - s)n = (x - s)n   if X > s,

(x - s)n = 0 if x < s.

If G(s), which only depends on the operator R but not on the function/, does

not change sign, the operator R is definite and then the equation for R(f) becomes

f      o-n+1

(5.2) R(f) =f(n+1)(OR<7
\(n+ 1)1

Where £ is some value of x in the range of integration.

The practical difficulty is that (5.2) is much easier to evaluate than (5.1),

but that on the other hand (5.2) only holds for definite operators R and that for

showing R to be definite it is necessary to show that G(s) does not change sign.

This has been shown by the authors [9] for the operator corresponding to C„ in the

case of the cosine-integral and it can be shown for the sine-integral along similar

lines. Hence Eq. (5.2) is valid for estimating the error. Thus we have to calculate

ß{x8/8!j for obtaining the error in the formula for the cosine-integral.

The exact value of

»a 8
r x
/   f(x) cos cox dx       with/(x) = —     and   ua = 2x
Jo 8!

is equal to

30.159127404

CO9

The approximation Cn , calculated by the program, gives for this case

30.159221885

CO9

Hence, it can be concluded that the remainder term for the approximation Cn

over one wavelength a is given by

_ 9^481^  <8)(?)
CO9

If the whole interval of integration, length N, corresponds to p wavelengths,

the remainder term becomes

-5       N   ,(8) ,
■1.5 * ht6* 4 r'(a

where £ lies somewhere in the interval.
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Similar derivations hold for the sine-integral with the result that then the re-

mainder term for the Cn-approximation over a length N becomes

+ i.i*io-7V9)(£),
CO9

where ij is somewhere in the interval.
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