
TECHNICAL NOTES AND SHORT PAPERS

A Note on Equal Sums of Like Powers

By Ian Barrodale

1. Nature of the Problem. The numbers 1, 2, and 6 have the same sum and

same sum of squares as 0, 4, 5. These two sets are a solution of degree 2 to the prob-

lem of sets of integers having equal sums of like powers, i.e., to find integer solutions

for the system of equations

(A) ¿o«'- ¿6í'       (j = 1,2,... ,*).
»=i t—i

A solution of (A) is written ai, ■ ■ ■ , a. = bi, • • • ,b. and is said to be of degree k.

A solution of (A) in which the o's are merely a permutation of the 6's is called

trivial; we are concerned with nontrivial solutions. Goldbach and Euler noted

(1750-1751) that

a, b, c, a -f b 4- c = a + b, a -f- c, 6 -f c, 0

whereas the following two theorems prove the existence of solutions to (A) for

any value of s and k.

Theorem 1. If ai, ■ ■ ■ , a. = bi, ■ ■ ■ , b. then

Mai + K, ■■■ ,Ma. + K = Mbi + K, ■■■ , Mb. + K

where M, K are arbitrary integers.

Theorem 2. If ai, ■ ■ ■ , a. = bi, • • • ,b. then

oi, • • • , a., h -f d, ■ ■ ■ , b. + d k= bx, ■ ■ • , b,, eti + d, ■ ■ ■ , a, + d

for any integer d.

Theorem 1 is due to Frolov [2] and allows one to operate on a solution of (A)

according to the rules of elementary algebra, while Theorem 2 is due to Tarry [5]

and enables one to build up a solution for (A) of any desired degree.

Thus

gives

0, 3 = 1, 2

0, 4, 5 = 1, 2, 6 id = 3)

which gives

0, 4, 7, 11 = 1, 2, 9, 10 id = 5)

and so on.
A number of writers have been interested in finding the least value of s for

which (A) has solutions for any particular k. Bastien [1] proved that s 3ï k + 1

and Tarry [5] proved that s ^ 2k"\ Wright [6, p. 261] defined Nik) as the least
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Figure 1. Graph of the numerical bounds.

k

number N such that ai, ■ ■ ■ ,a¡¡ = bi, ■ ■ ■ ,bx , proved that Nik) ^ \ (k2 -\- 4) =

W(k), and conjectured that in fact N(k) = k + 1 for all k. This conjecture has

been proved by examples for all k ^ 9 but for no other degree [3, p. 338].

2. Results. In an extension of the problem of equal sums of like powers Wright

[6, p. 261] has defined M(k) as the smallest number M such that (A) has a solu-

tion with

„ *+i _L
«1       + + aM     7* bi     + + b,

and proved that M(k) g N(k2). Clearly M(k) ^ N(k) è k + 1 and in particular

M(k) = N(k) = k 4- 1 for all k ^ 9. We now prove Theorem 3 which is a modifica-

tion of a result due to Melzak [4, p. 234].

Theorem 3.

M(k) = enfin S[P(x)il - x)k+1]
PgQ'

where 0 is the class of all polynomials whose coefficients are integers, not all zero, and

furthermore if P Ç. Q,' then P(l) ^ 0; and

S[P] = Ê | o,-1   for   P = Pix) = ¿ aix\
i—0 ¿=0

Proof. For every P € Q', Pix) (1 — x)k+1 is the generating function for a solution
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Table I

Numerical Bounds for the Extended Problem

Mk

3
4
6
6

10
12
18
18
22
22
30
32
41
46
58
58
68
74
88
92

119
124
118
146
159
166
196
198
207
228
274
258
305
308
344
332
381
402
472
462
525
514

2
1
2
2
2
2
2
2
2
3
2
3
2
3
2
3
3
3
3
3
3
3
3
3
4
3

k

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Mk

588
588
627
644
742
802
830
872
834
896
958

1072
1202
1206
1218
1248
1270
1376
1517
1464
1694
1750
1866
1902
1990
1994
2120
2224
2372
2618
2947
2906
2902
2822
2853
3150
3386
3604
3903
4136
4502
4547

of degree k to the extended problem. For suppose P(l) =0, then P(a;) (1 — x)k+1 =

Qix) (1 — x)k+2 which generates a solution to (A) of degree k + 1. Q.E.D.

Unfortunately Theorem 3 has not allowed us to prove ilf(fc) = Nik) = A4- 1

for any k ^ 10 but for every P £ o' it does provide a solution to the extended

problem and an estimate Mk for Af(fc). Using an IBM 1620 we evaluated the ex-

pression 5<S[P(a;)(l — x)k+l] for various P £ ti' and 1 g k ^ 40, obtaining the

lowest estimates Mk when Pix) was of the form
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Table II

Smaller Solutions for Certain Degrees

k      10      11      12      13      14      15      16      17      18
s      14      18     24     30     30     30     38     48      58

19     20     21      22
58     65     80     84

Table III

Example Illustrating a Weakness in the Algorithm

1
2
3
4
5
6
7
8
9

10
11

2
3
5
4
7

11
9

13
17
19

2
3
4
6
6
8

10
14
14
18
24

1 S [(1-aOjJ (!-*')]

2
3
4

11
12
18
18
22
22

Hx) = [n(i-x'')][nE^

where 1 ^ p ^ 7. Then

where

M, = hs [qíx) n (i - *')]

qíx) = n (i - *').

Table I was formed by selecting the lowest estimate Mk for 2 ^ k ^ 85 and

inserting the value of p relevant to each k. Figure 1 is the graph of Table I together

with the graph of the best upper bound for Nik) (since M(fc) = Nik) for k ^ 9

it is perhaps more realistic to compare the estimates Mk to bounds for Nik)). It is

obvious from Figure 1 that while the estimates Mk are lower than Wik)

for 2 g k ^ 73 they soon become larger than Wik). Hence if this method is to give

further useful results new multipliers Pix) are needed.

Using Theorem 2 we attempted to obtain solutions to (A) for k ^ 10 where the

number of terms s is less than the estimates Mk given in Table I. We programmed a

computer so that it would read a solution to (A) of any reasonable length and

degree, and then calculate the difference d that occurs most frequently between

any two terms from the same side of this given solution. It would then use d with

Theorem 2 to produce a solution to (A) of the next higher degree, and continue

in this manner. By considering solutions to (A) of different lengths and degrees we

have found examples of solutions for 10 ^ k ^ 22 where the number of terms s is
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less than those given in Table I. Table II gives the value of s corresponding to

each value of k.

However this method of producing solutions to (A) with a small number of

terms is subject to the following weakness. We had assumed that from any particular

solution to (A) solutions of higher degree would be generated containing the least

number of terms s, so long as the most frequent difference d was used at each step.

After producing the following results this assumption was seen to be false.

When forming Table I the multiplier (1 — x) was used with JIy=i (1 — x')

to produce a solution to the extended problem where s = 22 for k = 11. This is

equivalent to starting with the solution 0, 2 = 1, 1 and using Theorem 2 with

d = 2, 3, • • • ,11. Table III compares the lengths of the solutions generated in this

manner with those generated from the same initial solution but using the most

frequent difference d at each step.

Thus, by a more careful choice of d, the length of solutions can be decreased

for k = 6,7,8, 9,10. But for k = 11 this produces a solution to the extended problem

where s = 24. This solution is longer than that obtained from a sequence of solu-

tions which was constructed from values for d that did not always represent the

most frequent difference.

Finally, although solutions to (A) for k = 6 and s = 7 exist, we proved that no

such solution can be obtained from a sequence generated by any solution for k = 1

and s = 2 using the most frequent difference d at each step.

Although Theorem 2 was used to generate most solutions for k ¿ 9 where

s = k -\- 1, it appears that for k 3ï 10 it alone will not be sufficient.
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Numerical Solutions of the Diophantine Equation
3 2,

y   — x   = k

By M. Lai, M. F. Jones and W. J. Blundon

Introduction. The distribution of squares and cubes differing by a given integer

is very interesting [1] and has attracted many mathematicians over the past few

centuries. Probably this is due to the fact that y — x = k is the simplest of all

nontrivial Diophantine equations of degree greater than two. The solution of this

equation is equivalent to the problem of representation of numbers by binary cubic
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