The Chebyshev Polynomial of Best Approxi-
mation to a Given Function on an Interval

By O. Shisha

1. Let n be a positive integer, and let P, denote the set of all polynomials

Y roa;x’, a; real. It is known that for every real, finite set C containing at least

n + 1 points and for every real function f defined on C there exists a unique ¢ € P,
such that, for every p € P, ,

(1) max [f(z) — q(x)] = max | f(z) — p(x)].

Furthermore, the determination of this ¢ can be carried out by known methods in-
volving arithmetic operations only, and one can even give at the outset an upper
bound (perhaps large) for the number of the arithmetic operations necessary. For
instance, the determination of ¢ can be viewed as a linear programming problem.

2. Let f be a real function defined and continuous on [0, 1]. Consider the problem
of determining the (unique) € P, such that for every p € P, ,

(2) max | f(z) — p(a)] = max [f(z) — p(2)].

It has been shown [1] that given a positive 7, there is a finite subset C of [0, 1] (con-
taining at least n 4+ 1 points) such that the ¢ € P, satisfying (1) for every p € P,
is within less than # from # throughout [0, 1], i.e.,

max | p(z) — g(z)| <.
0<zgl

3. Our purpose is to give such a C in a completely closed form, assuming that f
satisfies a Lipschitz condition (Theorem 2), or has a continuous (n 4 1)st derivative
(Thereom 1). We make use of de la Vallée Poussin’s technique [1], but employ also
some other results.

4. TuroreM 1. Let n (= 1) be an integer, f a real function such that f" is con-
tinuous at each point of [0, 1]. Let S..2 be an arbitrary (n + 2)-point subset of [0, 1],

p1 = min max |f(z) — p(z)|,
PEPy z€8n2

and suppose that py (for which there is an explict formula, see Remark 1 below) ¢s posi-
tive. Let u, V, u1 and M be numbers such that throughout [0, 1], | f(2)| < u, | f'(z)| < w1,
[f™(z)| £ M and 3[maxo<.<1 f() — ming<.<i f(z)] £ V. Let

n—1

¢ = [M/{p(n + 1)!}]"("!)-11;0 1 — {20, v(n + 1)!I/M]},

U=(n+2) [I=Il v!]_l /140,00 + 1)
(A e - o) T
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V and M are positive since p; > 0. Also, ¢ is positive as shown below. Let n be an arbi-
trary positive number. Let € be a positive number such that eV[1 4+ {U/(1 4 €)}] < n/c
(for instance, let € be n {cV (1 + U)} ™). Let ¢, = [1 + cos (kr/n)1/2 (k = 0, 1,

-, n). Let C be an arbitrary finite subset of [0, 1] containing {co, ¢1, - - - , ¢x} and
such that the maximal distance d between two consecutive points of C is smaller or equal to
pie/ (w1 + 4un®). Let B, q be respectively, the elements of P, such that

p = max |f(z) — pz)| = neugl o |f(z) — p(2)],
max |f(z) — q(z)| = nenpn max |f(z) — p(2)].

Then mazogz<: | (x) — q(2)| < 9.
REMARK 1. If Snpe = {Yo, Y1, -, Ynsta}, With yo < 91 - -+ < Yuy1, then [1]
n+1

g (—l)vaf(yv)

n+1

2 G,
y=0

where Gy = H0§¢<ﬁ§n+l;a,£v,ﬂ,h°(yﬁ - ya) (V = 07 17 T, M + 1)
In particular,ify, = »/(n + 1) (» = 0,1, --- ,n 4+ 1), then from (3) one easily

obtains
n= ()7 E o (") 6+ ).

REMARK 2. In connection with the definition of C we note that, as is easily seen,
the largest distance between two consecutive c’s is sin [7/(2n)] if n is odd, and is
{sin (n — 1)x/(2n)]} sin [x/(2n)] if n is even.

(3)

5. In the proof of Theorem 1 we shall use the following
LEMMA. Let 0 £ 20 < 21 -+ <2, £ 1 (n = 1), and let

(4) T, —2,1>6>0 (r=1,2,---,n).
Let j be an integer,0 = j < n. Letx € [0, 1]. Then

@ I ls—alls-al<[Ta-w]/tim-iw

v=0,v5%]

Proof of the Lemma. (4) clearly implies that

n

|z; — x| > 3! (n — 7)18".

v=0,v5]

Therefore, to prove (5) it suffices to show that

n—1

(6) Il Iz—a| = TIQ->.
v=0,vytj =0

If z = 2., then [[’ousi| 2 — 2| £ JIiomwi (1 — v3). Similarly, (6) holds if

T < xp. Assume now 2, < ¢ < z, . We shall prove

n—1

(7) H|x—-x.l<H(1—v6)

v==0,v5£3
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(a) Suppose: =z < 1.Letr (1 < r < n) besuch that z,_; < 2 < z,. Then
)8

evidently (r — 1)<z <1—(n—r _k=r—1r---,n—l,l;t

[Hx+(v+1—r)6][ ];I (1 - vB—x)].
v=k+1—r
Ifr—1=<k<n—1,then

ap/ar =[x+ (k+2—r)3]/[t — (k+1—1)8 —2z] > 1.
Consequently, we always have a,_; < a,_; . Now

ML 1s-als[He-w]|[Ta-w-2]/1s-¢

=0,vyé; v=0

= ar1/|z — £]| £ /| v — £]
where £is76ifj < r — 1,andis 1 — (n — 7)8if j = r. In the first case

/| — E| = [v=ol_1__j_lx+ v+1-— 1')6] (11— (n—1r)8—2)
< [,=0:g_j_l 1—(n—1-— v)a] (1 —(n—1)5) éﬁo (1 = 1)

(an “empty” product means 1), which proves (7). In the second case also,

/| — E| = [nljox +G+1 —r)é](l —(n -8 —2)/1—n—7—2z)

§ﬁx+(»+l—r)8 <”I:Il(1—v6).

y=0 v=0

(b) Suppose 0 < z < &. Letz, = l—xn_,(V—O 1, ---,n). Then0 = 2,
<z <--- <xn'§l,x,'—x,_1>6>0(u— 1,2, ~,n).Nowl—x,,'<x
<1 — z and so 2, < 1—x<x,.,2 < 1—x< 1. Thus,H,,.o,.¢,|x—x.,|
= ITionmnil® — Zaes | = Tiowmni |1 — 2 — /| < TS0 (1 — v8).

6. Proof of Theorem 1. Let xo, x1, -+, Ty be points of [0, 1] such that
0=xy<z - <Zpy1 = landsuchthatforj=0,1,---,n+1,
p = |f(z;) — p(z;)| = min max, | f(z;) — p(x;)]-

PEP, 0<j<n+l
Their existence is well-known [1]. By another well-known theorem [1]*
8) =z — x> 2p(n 4+ 1)I/M = 2p1(n + 1)I/M r=12---,n+1),

and so ¢ > 0. Consider some arbitrary z; . Let u, v be consecutive points of C such
that v £ 2 < ». Then

[ (@) — g(ae)| = [f(ze) — f()| + [ g(m) — q(u)| + [ f(w) — q(u)].

* In the theorem as given by the text [1] it is required that | f®»+D(z)| be strictly
smaller than M throughout [0, 1]. But it is clear from the proof there, that it is sufficient to
assume merely that | f*D(z)} < M throughout [0, 1].
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Now, clearly | ¢(z)| < 2u throughout C, and a fortiori throughout {co, c1, - -, ¢a}.
Therefore, by a result of Duffin and Schaeffer [2] refining a previous result of A.
Markoff [3], | ¢'(x)| < 4un’ throughout [0, 1], and so

| f(zi) — q(@)] < d(w + 4un®) + p S epr+ p = (e + 1)p.

Let
p = max |f(xi) — gq(=j)l.
0<i<
It is known [1] that either f(z;) — ii(xj) = (-1 @G=0,1,---,n 4+ 1), or
f(z;) — p(zx;) = —(—1)’p (G = O, 1, -+, n 4+ 1). In the first case let u; =
(—1)7f(z;) — q(z)1/p (G = 0,1, n+ 1), and in the second case let
u; = —(=1)[f(z;) — q(z))/p (G = 0 1 -,n 4 1). Then [1]
n+1

l—u,-él: ]/[(1+6)A] where A; = 1I (x5 — %a)

(9) v=0 0< a<B< ntl;ai i

(.7 = 0)1’ ce,mn 4 1)
From (8) one easily deduces that

4> [T ] (" T 1)t + 0 ) G=0n D),

r=1

Also [4]

w2 () NI e -0y T

(7=0,1,---,n 4+ 1).
Consequently, for every j, (2_r23 A,)/A; < U and therefore, by (9),
1 — u; < eU/(1 + ).
Forj=0,1,---,n 41,
| 5(x;) — q(x;)| = [{f(z;) — g(z))} — {f(z;) — B(z))}]
lusp’ — p| = |u(" — p) — p(1 — u)|
o — o+ o(1 —u) <epll + {U/(1+ e)}]
= V[ + {U/(1 + e)}] = /e
By Lagrange’s interpolation formula and by the Lemma, for every z € [0, 1],

IIA

| () — q(z) |
< 3 1@) — a@)| 1T 12— al/ls - o)

n—1

< ; (n/c) [VI;IO 1 — {200(n + 1)!/M}:I/[j1(n — ) 20(n+ 1) /M) =
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7. THEOREM 2. Let n (=1) be an integer, f a real function satisfying throughout
[0, 1], for some constant \,

[f(ze) — f(m)| £ N 22 — 21 |-

Let S,42, ;1 , 1, V have the same meaning as in Theorem 1 and assume p; > 0. Let 6 be
an arbitrary number with 0 < 6 < 1. Let R be such that for some polynomial Q(x) with
real coefficients we have, throughout [0, 1], | f(z) — Q(z)| < 6p1, | Q"*'(x)| < R. (Ex-
plicit values for such an R, depending on \, p1 , u and 6 only, are given in the proof, where
we determine also a desirable choice for 0.) Let

n—1

¢ = [R/{m(1 — 0)(n + 1)!}]"(n!)“yI_I0 1— {2m»(1 —60)(n + 1)!/R},

n —1 n+1
U=(n+2) [I_Il v!] R/ {4m(1 — 8)(n + 1))

[HE e - T

V and R are positive since p1 > 0. Also, c is positive as shown below. Let n be an arbi-
trary positive number. Let e and ¢y, ¢1, - - - , . be defined as in Theorem 1, and let C be
an arbitrary finite subset of [0, 1] containing {c,, - - - , ¢} and such that the maximal
distance d between two consecutive points of C is smaller or equal to epy/ (N + 4un®).
Let p, B, q be defined as in Theorem 1. Then again maxo<z<1 | p(z) — q(z)| < 1.

Proof. Let 2o, 1, - - - , oy be as in the first sentence of the last proof. Let
po=min max |Q(z;) — p(z;)| = max |Q(z;) — p*(z)] (p* € P,).
PEP, 0Si<n+l 0<jigntl

Let z» be such that maxog;<np | f(z;) — p*(z;)| = | f(za) — p*(za)|. We have
1] po = | Q(za) — pH(xa)| 2 | fmn) — P*(xh)l — | f(z») — Q(x4)| Z p(1 — 6), and,
by the theorem used to derive (8), we have

€, — 2,1 > 2po(n + 1)1/ max | Q" (2)|
(10) 0<z<1
22p(l =0)(n+1)Y/R (v=1,2,---,n+1).

Soc > 0.

We shall now give explicitly two numbers, either of which can serve as an R. We
start by mentioning the following result of Favard [5] and Ahiezer and Krein [6]
which strengthens a previous result of D. Jackson. Let F (with period 27) map the
reals into the reals and satisfy for every real z; , z; , | F(22) — F(z1)| = L | 22 — 1 |,
L being a constant. Then for N = 0, 1, 2, - - -, there exists a trigonometric poly-
nomial Tx(z) = X s a,™ cos (vz) + b, sin (vzx) such that

max | F(z) — Tw(z)| £ La/{2(N + 1)}.

0<z<2x

From this result one obtains by the method of Jackson [7] that for N = 0,1, 2, - --
there exists a py(z) = 2 _a=0 6,V '2”, ¢, being reals, such that

Jnax, | f(x) — px(z)| = M/{4(N + 1)}.
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Let m be the smallest integer N (=0) such that M\r/{4(N + 1)} < 6p:, and let
Q(z) = pm(z). Then throughout [0, 1] we have | f(z) — Q(z)| = 8o, | Q(z)]
= p + 0p: . Therefore, by a theorem of W. Markoff [8],

max | Q0 (@)] S 277G + o) IT (' — /(20 4+ 1)
< 2% + 0a)lne/ (01T (20 + 1),

which gives two values for an R.

One can proceed now as in the proof of Theorem 1 (from the first sentence follow-
ing (8) on), and conclude that maxo<.<1 | #(z) — ¢(z)| < 1.

We finally makethe following remark on the choice of . One naturally seeks to
take d (and therefore €) as large as possible. If we take ¢ = n{cV (1 + U)}™’, then
we are interested in minimizing U, i.e., minimizing B/(1 — 6). Suppose we take
R = 2" (u + 0p))[\/(460:1)1"/]]~0 (2v + 1). Then we want to minimize
(1 + 6p1)072"%/(1 — 6), and as one easily sees, we have to choose 8 for this purpose
as the positive root of pyz® + [(2n 4+ 3)u — (2n + D) py]2(n + 1)z — p = 0.
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