
The Chebyshev Polynomial of Best Approxi-
mation to a Given Function on an Interval

By 0. Sbisha

1. Let n be a positive integer, and let Pn denote the set of all polynomials

^j"-o ajx', a¡ real. It is known that for every real, finite set C containing at least

n + 1 points and for every real function / defined on C there exists a unique q £ Pn

such that, for every p 6 P„ ,

(1) max|/(x) - qix)\ ^ max |/(x) - p(x)|.

Furthermore, the determination of this q can be carried out by known methods in-

volving arithmetic operations only, and one can even give at the outset an upper

bound (perhaps large) for the number of the arithmetic operations necessary. For

instance, the determination of q can be viewed as a linear programming problem.

2. Let / be a real function defined and continuous on [0,1]. Consider the problem

of determining the (unique) p 6 Pn such that for every p £ P„ ,

(2) max   l/(x) — pix)\ g   max   |/(x) — p(x)|.

It has been shown [1] that given a positive n, there is a finite subset C of [0,1] (con-

taining at least n + 1 points) such that the q Ç. Pn satisfying (1) for every p Ç. Pn

is within less than n from p throughout [0, 1], i.e.,

max   | p"(x) — <lix)\ < rj.
Ogigl

3. Our purpose is to give such a C in a completely closed form, assuming that /

satisfies a Lipschitz condition (Theorem 2), or has a continuous (n + 1 )st derivative

(Thereom 1). We make use of de la Vallée Poussin's technique [1], but employ also

some other results.

4. Theorem 1. Let n ( ̂  1) be an integer, f a real function such that f n+ is con-

tinuous at each point of [0, 1]. Let Sn+2 be an arbitrary in + 2)-point subset of [0, 1]

Pi = min  max   |/(x) — p(x)|,

and suppose that pi (for which there is an explict formula, see Remark 1 below) is posi-

tive. Let p., V, mi and M be numbers such that throughout [0,1], | f(x)\ ^ p., \ f (x) \ Ú Pi,

|/(n+1)(x)| ^ MandMmax0SlS1/(x) - min0¿x¿if(x)] ^ V.Let

c = [M/{pi(n + DlirUirn 1 - {2PlV(n + \)\/M\,
y=0

U = (n + 2) TE rll ' [M/{4Piin + 1) l}]^
tfn+l       'N     (n-l      \     (   n \ -lnl/2
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V and M are positive since pi > 0. Also, c is positive as shown below. Let n be an arbi-

trary positive number. Let tbea positive number such that eV[l + {U/(l + e)}] ^ n/c

(for instance, let e be n {cV(l + U)}-1). Let c* = [1 + cos (fcir/n)]/2 (fc = 0, 1,

• • • , n). Let C be an arbitrary finite subset of [0, 1] containing {c0, cx, • • ■ , c„) and

such that the maximal distance d between two consecutive points of C is smaller or equal to

Pie/(pi + 4:pn ). Let p, q be respectively, the elements of P„ such that

p = max |/(x) — p(x) | = min max |/(x) — p(x) \,

max |/(x) — q(x) | = min max |/(x) — p(x) \.
zgC PíPn  »ge

Then maxo¿x¿i | p(x) — q(x)\ < n.

Remark 1. If Sn+2 = {yo, 2/i, • • • , yn+i}, with y0 < yi ■ • ■ < yn+i, then [1]

(3) Pi =

n+l / n+1

E(-DU/(i/,) / Eft,
v—0 I       v"0

where G, = IIosa</3gn-i-i;a^,i^i)(2//s — ya) (" = 0,1, • • • , n + 1).

In particular, if yy = v/in + 1) (j/ = 0,1, • • • , n + 1), then from (3) one easily

obtains

*-($T\t<-'rÇ+,i)M(> + >»
Remark 2. In connection with the definition of C we note that, as is easily seen,

the largest distance between two consecutive Ci's is sin [x/(2n)] if n is odd, and is

{sin in — l)7r/(2n)]} sin [ir/(2n)] if n is even.

5. In the proof of Theorem 1 we shall use the following

Lemma. Let 0 ^ x0 < Xi • • • <x„ ¿ 1 (n è 1), and let

(4) x, - x„_i > ô > 0       (v = 1, 2, • • • , n).

Leij 6e an integer, 0 ^ j ^ n. Let x £ [0, 1]. TTim

(5) Ê    |x-x„|/|xy-x,| <|~n(l - v*)\ / W-(n - j)\n

Proof of the Lemma. (4) clearly implies that

n

u    | xy — x, | > j!(n-j)li".
y—0,*7¿j

Therefore, to prove (5) it suffices to show that

(6) n i*-ftisfi(i-"g)-
v=0,Vf¿j v=0

If x ^ x„ , then Hî-o.^«/1 x — x, | ^ JJ"_0,^y (1 — i>5). Similarly, (6) holds if
x ^ xo. Assume now x0 < x < x„ . We shall prove

(7) n \x-x,\ <iia-vô).
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(a) Suppose J S» x < 1. Let r (1 ^ r ^ n) be such that xr_i ^ x g xr. Then

evidently (r — 1)5 < x < 1 — (n — r)5. For fc = r — 1, r, ■ ■ ■ , n — 1, let

a* = m x + iv + 1 - r)sl      2    (1 - »* - x)l.
L'~0 J   \_i=k+l-r J

Ifr-l^fc<n-l, then

ak+i/ak = [x + (fc + 2 - r)S]/[l - (fc + 1 - r)S - x] > 1.

Consequently, we always have ar_i ^ a„_i. Now

n \x-xr\úVtiix-birria-v&-x)]/|x-?i
v=0,v& \_t~0 J L •'=0 J /

= Or-i/l x - ? | ^ a„-i/| x - £ |

where £ is jô if / £ r — 1, and is 1 — (n — j)8 if j ^ r. In the first case

an-i/| x-£|=[      n      a; + iv + 1 - r)d] (1 - (n - r)i - x)
]_,- o.y^r-j-l J

<\     ÏÎ       1- (n-l- v)o~\ il- in- 1)8) uliil-vô)
\_y=0,y^r-j-l J v=0

(an "empty" product means 1), which proves (7). In the second case also,

a„-i/l x- H\ = i "ft x + (v + 1 - r)sl (1 - (n - r)5 - x)/(l - (n - ¿)* - x)

^n^ + (* + 1 - 05 <ÏI(1 - vi).
v=0 v=0

(b) Suppose 0 < x < J. Let x/ = 1 — x„_„ (i< = 0, 1, • • ■ , n). Then 0 ^ x0'

< Xi  < • • ' < x„  ^ 1, £„' — xLi > ô > 0 (y = 1, 2, • • • , n). Now 1 — x„' < x

< 1 — xo' and so x0' < 1 — x < x„', J < 1 — x < 1. Thus,IJ"=0,,^y | x — x„ |

=   \_\_r—0,p?£n—j I X Xn_^ I   =   \_\_v=0 ,v?£n—j \   1 X X,    |   <   J.X"=0   (I    —   Vo).

6. Proof of Theorem 1. Let x0, Xi, • • • , xB+i be points of [0, 1] such that

0 ^ xo < Xi • • • < x„+i ^ 1 and such that for j = 0, 1, • • ■ , n + 1,

P = |/(xy) - P"(xy)| = min    max    |/(xy) - p(xy)|.
P£Pn OSiSn+1

Their existence is well-known [1]. By another well-known theorem [1]*

(8)    x, - x_i > 2P(n + l)l/M ^ 2Pl(n + 1)!/M        (v = 1, 2, • • • , n + 1),

and so c > 0. Consider some arbitrary xk . Let u, v be consecutive points of C such

that u ^ Xk ̂  v. Then

|/(*t) - g(x*)| á |/(x0 -/(«)! + |g(x*) - q(u)\ + |/(«) - q(u)\.

* In the theorem as given by the text [1] it is required that \ fin+1)(x)\ be strictly

smaller thanjlf throughout [0, 1]. But it is clear from the proof there, that it is sufficient to

assume merely that | /<n+1)(:l:)l = M throughout [0, 1].



CHEBYSHEV  POLYNOMIAL  OF  BEST  APPROXIMATION 269

Now, clearly | g(x)| < 2p throughout C, and a fortiori throughout {c0 ,cx, • ■ ■ , c„\.

Therefore, by a result of Duffin and Schaeffer [2] refining a previous result of A.

Markoff [3], | q(x)\ < 4/m2 throughout [0, 1], and so

\fixk) - qixk)\ < d(/*i + W) + P ^ «Pi + P á  (e + l)p.

Let

p' =    max    |/(xy) - g(xy)|.
0<i<n+l

(9)

It is known [1] that either/(xy) — j3(xy) = ( — 1)3P ij = 0, 1, • • • , n + 1), or

/(xy) — pixj) = -(-l)'p(i = 0, 1, • • • , n + 1). In the first case let My =

( — l)3\f(xj) — q(xj)]/p' ij = 0, 1, • • • , n + 1), and in the second case let

Uj = -i-l)V(xj) - q(xj)]/p (j - 0,1, • • - ,n + 1). Then [1]

1 - My ̂     «¿ A,   /[(l + e)Ay]    where    Ay = J[ ixß - xa)
\_    v-0 J/ OgaOgn+l;a^;,0ycy

0 = 0,1, ••■,n+ D-

From (8) one easily deduces that

Aj > [ft "!   (" j" *) [2pi(n + D !/M]ríl)        (j = 0, 1, • • • , n + 1).

Also [4]

(j = 0,1, •••,n + 1).

Consequently, for every y, ( ^"-o1 A„)/Ay < t/ and therefore, by (9),

1  -  My  <  eU/(l  +  f).

Forj = 0,1, •••,»+ 1,

\p(Xj)   -  q(Xj)\   =   |{/(Xy)   -  q(Xj)}   -   {/(Xy)   -  J5(Xy)}|

=   | Myp' -   p |   =   | My(p' -   p)   -   p(l   —  My)|

^  p   - p + p(l - My)  < ep[l + {[//(l + a))]

^ eF[l + {t//(i +«)}] ^ n/c

By Lagrange's interpolation formula and by the Lemma, for every x Ç [0,1],

\pix) - qix)\

^ 2 I fix,) — qixj) |    u    \x — x,\/\x, — xr\
3=0 V=Q,Vyáf

<

n \~n—l

e (v/c) n
¿=o L »=o

1 - {2Pli»(n + 1)\/M) / ÜKfi - i) !{2Pi(n + 1) !/M}n] = ,.
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—1-11/2

7. Theorem 2. Let n ( ^ 1) be an integer, f a real function satisfying throughout

[0, 1], for some constant X,

|/(x2) -/(xO|   g \\X,-Xi\.

Let Sn+2, pi, p,V have the same meaning as in Theorem 1 and assume pi > 0. Let 8 be

an arbitrary number with 0 < B < 1. Let R be such that for some polynomial Qix) with

real coefficients we have, throughout [0, 1], |/(x) — Q(x)\ S 8pi,\ Qn+1(x)| ^ R. iEx-

plicit values for such an R, depending on X, pi, p and B only, are given in the proof, where

we determine also a desirable choice for B.) Let

c = [P/{pi(l - e)(n + l)!}]"(n!)-in 1 - \2Piv(l - ö)(n + 1)!/Ä},
v-0

U = (n + 2) |jl „l] 1[P/{4P1(1 _e)(n+l)!}]ríl)

V and R are positive since p\ > 0. Also, c is positive as shown below. Let n be an arbi-

trary positive number. Let e and Co, Ci, • • • , c„ be defined as in Theorem 1, and let C be

an arbitrary finite subset of [0, 1] containing {c0, • • • , c„} and such that the maximal

distance d between two consecutive points of C is smaller or equal to epi/(X + Aun2).

Let p, p, q be defined as in Theorem 1. Then again max0SxSi | p(x) — q(x)\ < r\.

Proof. Let x0, xi, • • • , xn+i be as in the first sentence of the last proof. Let

po = min   max    | Q(xy) — p(x7)| =     max    | Q(x¡) — p*(xy)| (p* Ç P„).
J>gF„ OáiSn+l OáJSn+1

Let xh be such that maxosyá„+i |/(x3) — p*(x3)| = |/(xA) — p*(xh)\. We have

[l]po^ \Qixh)-p*ixh)\ ^ \f(xk) -p*(xh)\ - |/(x„) -Q(xh)\ 2: p(l-0),and,

by the theorem used to derive (8), we have

x, - x,-i > 2po(n + 1)1/max | Q(n+1)(x)|
(10) os*sl

^ 2P1(1 - B)(n + 1)\/R        iv = 1, 2, ••• , n + 1).

So c > 0.
We shall now give explicitly two numbers, either of which can serve as an R. We

start by mentioning the following result of Favard [5] and Ahiezer and Krein [6]

which strengthens a previous result of D. Jackson. Let F (with period 2x) map the

reals into the reals and satisfy for every real Xi, x2, \ P(x2) — P(xi) | ^ L | x2 — xt |,

L being a constant. Then for iV = 0, 1, 2, • ■ • , there exists a trigonometric poly-

nomial Tnix) = E?=o avw cos (vx) + 6„(iV) sin (vx) such that

max   | F(x) - TN(x)\ ^ Lir/{2(N + 1)}.

From this result one obtains by the method of Jackson [7] that for N = 0, 1, 2,

there exists &pN(x) = 2Z?=o cyiN)x", c,im being reals, such that

max |/(x) - pN(x)\ S Xtt/{4(ÍV + 1)}.
OäiSl
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Let m be the smallest integer N (^0) such that Xtt/{4(ÍV + 1)} á öpi, and let

Q(x) = pm(x). Then throughout [0, 1] we have |/(x) - Q(x)\ ^ BPl, | Q(x)\

^ n + 0pi . Therefore, by a theorem of W. Markoff [8],

max | Q(n+1)(x)l ̂  2"+1(M + 0Pl) Ê (m* ~ v2)H2v + 1)
Oglgl v=0

< 2"+1(p. + 0Pl)[Xx/(40Pl)]2n+7n (2v + 1),
>—0

which gives two values for an R.

One can proceed now as in the proof of Theorem 1 (from the first sentence follow-

ing (8) on), and conclude that maxoSiSi | ¡5(x) — g(x)| < i?.

We finally make the following remark on the choice of 8. One naturally seeks to

take d (and therefore e) as large as possible. If we take e = t/{cV(1 + £/)}_I, then

we are interested in minimizing U, i.e., minimizing R/(l — B). Suppose we take

R = 2n+1(p + 0pi)[Xx/(40Pl)]2n+7II"=o (2v + l). Then we want to minimize

(p + 0p1)0_2n_2/(l — 0), a-nd as one easily sees, we have to choose 6 for this purpose

as the positive root of pix2 + [(2n + 3)p. — (2n + l)pi][2(n + l)]_1x — p. = 0.
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