
Computation of Successive Derivatives of /(«)/.z*

By Walter Gautschit

1. Introduction. It is sometimes necessary to calculate derivatives of the form

(1.1) dÁz)=í^f) (*-0,1,2, •••),

where / is a function whose derivatives can be formed readily. Analytic differentia-

tion in (1.1), while elementary, is obviously tedious, and the resulting expressions

are of doubtful practical value. In the following we present a simple and effective

recursive algorithm to generate these derivatives. As an example, we consider the

cases where/(z) = ez,f(z) = cosz, and f(z) = sinz.

Our main observation may be paraphrased in the following surprising way. The

calculation of a large number of derivatives (1.1) at a fixed point z is a stable process

if the function g(t) = /(f)/f has a pole at f = 0, and an unstable process if g(t) is

regular at f = 0.

2. The Recurrence Relation. Let z ?¿ 0 be arbitrary complex, and let /(f) be

analytic in the circle |f — z| ^ r, r > \z\, which includes the origin f = 0. Our

point of departure is the identity

f^LzM = £/w dt.

Differentiating n times gives

(2.1) dn(z) - (-1)" .ÍÍ/(0) =   ftnfin+1\tz) dt.

Denoting the integral on the right by In , integration by parts yields

n,      _fM(z)
1 n   "T   - i n-l   —   - ,

z z

hence, together with (2.1), the recurrence relation

(2.2) dn(z) + - dn-i(z)  = f-^ (n = 1, 2, 3, • • • ).
z z

We note that (2.2) represents a linear inhomogeneous first-order difference

equation for d„ . Computational aspects of such difference equations were discussed

at length in [1], It was noted there, that a naive application of (2.2) in the forward

direction is accompanied by an undesirable build-up of rounding errors whenever

the quantity

djln

dn
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becomes large in absolute value for some n. Here, h„ denotes the solution (nor-

malized by ho = 1) of the homogeneous difference equation that corresponds to

(2.2), i.e.

*.■- (-i)n-n!.

zn

Numerical instability is particularly prominent if limn^oo \ pn\ = °°, or, equiva-

lently, if

(2.3) lim ^ = 0.
n-*co  tln

By (2.1) we have

j n+l    -1

(2.4) z p = /(0) + (-l)nZ ffln+1)(tz) dt.
K. n!  Jo

The second term on the right, disregarding the sign, we recognize as being the nth

remainder (in integral form) of the Taylor expansion of /(0) about z. Because of the

analyticity assumption made at the beginning of this section, this remainder tends

to zero, as n —► <x>, and so

(2.5) lim £ = O® .
n-*°o nn z

In particular, if/(0) = 0, then (2.3) holds, and we have numerical instability. On

the other hand, if /(O) ^ 0, then

!r»p"=/iör
and | pn | is bounded for all n, provided dn(z) does not vanish for some n. Hence¡

no serious numerical difficulties should attend the use of (2.2), unless |/(z)//(0) I

is very large, or | p„ | reaches a large peak prior to converging to the limiting value

|/(z)//(0)|..
An alternate proof of (2.5) can be given using Cauchy's formula for the nth

derivative of an analytic function,

2iri Jc (f - z)n+1f '

If/(0) = 0, we may take for C a circle about z containing the origin and contained

in the circle of analyticity of/. If /(0) ^ 0, we must add to C a small contour C0

encircling the origin in the negative direction. Taking for C0 a small circle, and

letting its radius tend to zero, we arrive at

cUz) = (-1)^/(0)+^     /(f)df
3n+i ' 2iri Jc (f - z)n+1f

Hence,

(2.6) z £ = /(0) + ÍZ!£ j (-^-)n+1 ZU dt.
K 2irl     Jc \f — 2/ f
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Since /(f )/f is bounded on C, and

it is clear that the integral in (2.6) tends to zero, as n —» », and so we again ob-

tain (2.5).

We may summarize as follows : Let f be analytic in a circle about z which includes

the origin in its interior. Then the generation of a large number of derivatives (1.1),

using forward recursion by (2.2), is in general numerically stable if f(0) ^ 0, but

highly unstable if f(0) = 0.
We observe, however, that forward recursion by (2.2), even in the case/(0) = 0,

may still be adequate, if only a relatively small number of derivatives are required.

In fact, the recursion should be adequate as long as n ^ \z\.

3. Recursive Algorithm in the Case /(0) = 0. We take advantage of a remark

made on p. 25 of [1]. Since | p„ | —» °o, we may apply the recursion (2.2) in the

backward direction, starting with n = v sufficiently large, and using zero initial

value,

(3.1)    di'li = (/<n,(z) - zdnM)/n        (n - v, r - 1, • • • , 1),       d,w = 0.

Then, forn ^ 0 in any bounded set, we will have

d„M —* dn   as    v —> oo.

Moreover, the relative error of dnM is given by

/o o\ an On _ pn

dn Pr

It remains to estimate a reasonable starting value v for n, given, say, that the

results for n = 0, 1, 2, • • • , N are to be accurate to S significant digits. According

to (3.2), we must require that | pn/p, | ^ e for all 0 ^ n ^ N, where

* = h io-s,

that is,

«        (n = 0,1,2, •••, N).(3.3) ^ | 2
\v—n d,

<ln

In addition to the analyticity assumption introduced earlier, we now assume that

f " is uniformly bounded, and bounded away from zero on the segment from 0 to z as

n —> oo. Then it is clear from (2.1), where now /(0) = 0, that | dv/dn \ < 1 for v

sufficiently large. Hence, it appears reasonable to replace | d,/dn \ in (3.3) by 1,

and to require

(3.4) ^|«H^i (« = 0,1,2, ■■-,N).

Denote the expression on the left by pn . Clearly, \pn\ is a sequence of positive

numbers which initially decrease, until n is near \z\, and from then on increase

rapidly to oo. (The case \z\ < 1, in which pn increases from the beginning, is of
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Izl      —¡^ V >   n

Figure 1. Behavior of p« = n\\z \'~K/yl

little consequence for the following.) Denote by no the integer n > 0 for which

pn is near to ¡o0 "for the second time" (see Figure 1), hence | z |n/n! near 1. Then,

(3.4) is implied by p0 á e, if N ^ no, and by p^ ^ « if N > no. We may replace

(3.4) therefore by

/!
(N ^ no),

Nl
Z\        Se (N > no).

Using Stirling's formula, these conditions are adequately approximated by

We note, incidentally, that again by Stirling's formula,

n0 « [e | z |],       e = 2.71828

The first inequality, upon taking logarithms, can be written in the form

s
(3.5)

where

e   z \e\z\/ e   z

s = S In 10 + In 2.

Similarly, the second inequality amounts to

•'"teH-G^i)^
which can be written in the form

(3.6) (s-'K-raK1^ ¿V"

Since certainly v > N, and moreover N ^ e | z | (N now being larger than n0, and

no Rá e | z |), the first term on the left is igO. Hence, (3.6) will be satisfied if we

require
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Both conditions (3.5), (3.7) now have the form tint ^ c. Denoting by t(y) the

inverse function of y = t In t (t ^ 1), we obtain our final estimate of v in the form

(3.8)    v è e | 2 | t (-r^) (N = no),        v ^ Nt (Û (N > n0).

We note that in (3.8) the function t(y) need only be available to low accuracy.

Formulas giving 1% accuracy, or better, may be found in [2].

The algorithm just described may still be unsatisfactory, numerically, if | z |

is relatively large. The recursion (3.1) then is likely to suffer from loss of accuracy,

due to cancellation of digits, particularly for n near 1. For such n, indeed, z/n in

(3.1) will have large absolute value, yet dL-i has normally the same order of mag-

nitude as dnM. The difficulty may be resolved by applying (2.2) in forward direction

as long as n ^ \z\, and using the backward recurrence algorithm described above for

the remaining n with \ z \ < n ^ N.

4. Examples. Consider first /(z) = ez, and let

Then (2.2) gives immediately

(4.1) dn(z) + - dn-i(z) = - (n = 1, 2, 3, • • •)•
z z

Our theory of Sections 2 and 3 clearly applies. Since/(0) = 1, it follows that (4.1)

is numerically stable in the forward direction. We note, incidentally, that

(4.2) dn(z) = (-IY ^e'en(-z),

where

(4.3) e„(z)  - È r,
(fc=-0 k\

is the nth partial sum of the exponential series.

Likewise, if f(z) = cos z, and

, s        <f /cos z\

CÁZ) =drA~)'

we obtain

(4.4) Cn(z) + "■ cn-i(z) = tM (n = 1, 2, 3, • • •),

where {t„(z)} n=i = {—sinz, — cos z, sin z, cos z, • ■ • }. Like the previous recursion,

(4.4) is numerically stable. On the other hand, if f(z) = sin z, and

, s        <f /sin z\

SÁZ) = dF {-T) '



214 WALTER  GAUTSCHI

then

(4.5) Sn(z) +-sn-i(z) = o-n(z) (n = 1, 2, 3, • ■ •),
z

{o-„(z)}n-i = {cosz, — sinz, — cosz, sinz, ■•• }, is numerically unstable, and the

algorithm of Section 3 should be applied, including the device mentioned at the

end of Section 3.

In terms of (4.3), we may also write

c"(2) =     o *+™' te"e"(~iZ) + e~"en(iz)],

s»(z) = ^=fr lei!en(-iz) - e-%n(iz)\,

as follows readily from (4.2) and Euler's formula.

The functions sn(x) have found wide applications in diffraction theory, and are

extensively tabulated (see [4]). The generation of dn ,cn , and s„ , may also be useful

for the analytic continuation of the exponential-, cosine-, and sine-integrals, re-

spectively. ALGOL procedures generating d„(x), cn(x), and sn(x) for real x may

be found in [3].
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