## Computation of Successive Derivatives of $f(z)/z^*$

## By Walter Gautschi†

1. Introduction. It is sometimes necessary to calculate derivatives of the form

(1.1) 
$$d_n(z) = \frac{d^n}{dz^n} \left( \frac{f(z)}{z} \right) \qquad (n = 0, 1, 2, \dots),$$

where f is a function whose derivatives can be formed readily. Analytic differentiation in (1.1), while elementary, is obviously tedious, and the resulting expressions are of doubtful practical value. In the following we present a simple and effective recursive algorithm to generate these derivatives. As an example, we consider the cases where  $f(z) = e^z$ ,  $f(z) = \cos z$ , and  $f(z) = \sin z$ .

Our main observation may be paraphrased in the following surprising way. The calculation of a large number of derivatives (1.1) at a fixed point z is a stable process if the function  $g(\zeta) = f(\zeta)/\zeta$  has a pole at  $\zeta = 0$ , and an unstable process if  $g(\zeta)$  is regular at  $\zeta = 0$ .

**2.** The Recurrence Relation. Let  $z \neq 0$  be arbitrary complex, and let  $f(\zeta)$  be analytic in the circle  $|\zeta - z| \leq r$ , r > |z|, which includes the origin  $\zeta = 0$ . Our point of departure is the identity

$$\frac{f(z) - f(0)}{z} = \int_0^1 f'(tz) \ dt.$$

Differentiating n times gives

(2.1) 
$$d_n(z) - (-1)^n \frac{n!}{z^{n+1}} f(0) = \int_0^1 t^n f^{(n+1)}(tz) dt.$$

Denoting the integral on the right by  $I_n$ , integration by parts yields

$$I_n + \frac{n}{2} I_{n-1} = \frac{f^{(n)}(z)}{z}$$
,

hence, together with (2.1), the recurrence relation

(2.2) 
$$d_n(z) + \frac{n}{z} d_{n-1}(z) = \frac{f^{(n)}(z)}{z} (n = 1, 2, 3, \cdots).$$

We note that (2.2) represents a linear inhomogeneous first-order difference equation for  $d_n$ . Computational aspects of such difference equations were discussed at length in [1]. It was noted there, that a naive application of (2.2) in the forward direction is accompanied by an undesirable build-up of rounding errors whenever the quantity

$$\rho_n = \frac{d_0 h_n}{d_n}$$

Received September 10, 1965.

<sup>\*</sup> Work performed under the auspices of the U.S. Atomic Energy Commission.

<sup>†</sup> Present address: Purdue University.

becomes large in absolute value for some n. Here,  $h_n$  denotes the solution (normalized by  $h_0 = 1$ ) of the homogeneous difference equation that corresponds to (2.2), i.e.

$$h_n = (-1)^n \frac{n!}{z^n}.$$

Numerical instability is particularly prominent if  $\lim_{n\to\infty} |\rho_n| = \infty$ , or, equivalently, if

$$\lim_{n \to \infty} \frac{d_n}{h_n} = 0.$$

By (2.1) we have

$$2\frac{d_n}{h_n} = f(0) + (-1)^n \frac{z^{n+1}}{n!} \int_0^1 t^n f^{(n+1)}(tz) dt.$$

The second term on the right, disregarding the sign, we recognize as being the *n*th remainder (in integral form) of the Taylor expansion of f(0) about z. Because of the analyticity assumption made at the beginning of this section, this remainder tends to zero, as  $n \to \infty$ , and so

(2.5) 
$$\lim_{n\to\infty} \frac{d_n}{h_n} = \frac{f(0)}{z} .$$

In particular, if f(0) = 0, then (2.3) holds, and we have numerical instability. On the other hand, if  $f(0) \neq 0$ , then

$$\lim_{n\to\infty}\,\rho_n\,=\frac{f(z)}{f(0)}\,,$$

and  $|\rho_n|$  is bounded for all n, provided  $d_n(z)$  does not vanish for some n. Hence, no serious numerical difficulties should attend the use of (2.2), unless |f(z)/f(0)| is very large, or  $|\rho_n|$  reaches a large peak prior to converging to the limiting value |f(z)/f(0)|.

An alternate proof of (2.5) can be given using Cauchy's formula for the nth derivative of an analytic function,

$$d_n(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta) d\zeta}{(\zeta - z)^{n+1} \zeta}.$$

If f(0) = 0, we may take for C a circle about z containing the origin and contained in the circle of analyticity of f. If  $f(0) \neq 0$ , we must add to C a small contour  $C_0$  encircling the origin in the negative direction. Taking for  $C_0$  a small circle, and letting its radius tend to zero, we arrive at

$$d_n(z) = (-1)^n \frac{n!}{z^{n+1}} f(0) + \frac{n!}{2\pi i} \oint_C \frac{f(\zeta) d\zeta}{(\zeta - z)^{n+1} \zeta}.$$

Hence,

$$(2.6) z \frac{d_n}{h_n} = f(0) + \frac{(-1)^n}{2\pi i} \oint_C \left(\frac{z}{\zeta - z}\right)^{n+1} \frac{f(\zeta)}{\zeta} d\zeta.$$

Since  $f(\zeta)/\zeta$  is bounded on C, and

$$\left|\frac{z}{\zeta-z}\right| \leq q < 1,$$

it is clear that the integral in (2.6) tends to zero, as  $n \to \infty$ , and so we again obtain (2.5).

We may summarize as follows: Let f be analytic in a circle about z which includes the origin in its interior. Then the generation of a large number of derivatives (1.1), using forward recursion by (2.2), is in general numerically stable if  $f(0) \neq 0$ , but highly unstable if f(0) = 0.

We observe, however, that forward recursion by (2.2), even in the case f(0) = 0, may still be adequate, if only a relatively small number of derivatives are required. In fact, the recursion should be adequate as long as  $n \le |z|$ .

3. Recursive Algorithm in the Case f(0) = 0. We take advantage of a remark made on p. 25 of [1]. Since  $|\rho_n| \to \infty$ , we may apply the recursion (2.2) in the backward direction, starting with  $n = \nu$  sufficiently large, and using zero initial value.

$$(3.1) d_{n-1}^{[\nu]} = (f^{(n)}(z) - zd_n^{[\nu]})/n (n = \nu, \nu - 1, \dots, 1), d_{\nu}^{[\nu]} = 0.$$

Then, for  $n \ge 0$  in any bounded set, we will have

$$d_n^{[\nu]} \to d_n$$
 as  $\nu \to \infty$ .

Moreover, the relative error of  $d_n^{[\nu]}$  is given by

$$\frac{d_n^{[\nu]} - d_n}{d_n} = \frac{\rho_n}{\rho_\nu}.$$

It remains to estimate a reasonable starting value  $\nu$  for n, given, say, that the results for  $n=0, 1, 2, \dots, N$  are to be accurate to S significant digits. According to (3.2), we must require that  $|\rho_n/\rho_\nu| \le \epsilon$  for all  $0 \le n \le N$ , where

$$\epsilon = \frac{1}{2} \cdot 10^{-8},$$

that is,

$$(3.3) \frac{n!}{\nu!} |z|^{\nu-n} \left| \frac{d_{\nu}}{d_{n}} \right| \leq \epsilon (n = 0, 1, 2, \dots, N).$$

In addition to the analyticity assumption introduced earlier, we now assume that  $f^{(n)}$  is uniformly bounded, and bounded away from zero on the segment from 0 to z as  $n \to \infty$ . Then it is clear from (2.1), where now f(0) = 0, that  $|d_{\nu}/d_n| < 1$  for  $\nu$  sufficiently large. Hence, it appears reasonable to replace  $|d_{\nu}/d_n|$  in (3.3) by 1, and to require

(3.4) 
$$\frac{n!}{\nu!} |z|^{\nu-n} \leq \epsilon \qquad (n = 0, 1, 2, \dots, N).$$

Denote the expression on the left by  $p_n$ . Clearly,  $\{p_n\}$  is a sequence of positive numbers which initially decrease, until n is near |z|, and from then on increase rapidly to  $\infty$ . (The case |z| < 1, in which  $p_n$  increases from the beginning, is of



Figure 1. Behavior of  $p_n = n! |z|^{p-n}/\nu!$ 

little consequence for the following.) Denote by  $n_0$  the integer n>0 for which  $p_n$  is near to  $p_0$  "for the second time" (see Figure 1), hence  $|z|^n/n!$  near 1. Then, (3.4) is implied by  $p_0 \le \epsilon$ , if  $N \le n_0$ , and by  $p_N \le \epsilon$  if  $N > n_0$ . We may replace (3.4) therefore by

$$\frac{|z|^{\nu}}{\nu!} \leq \epsilon \qquad (N \leq n_0), \qquad \frac{N!}{\nu!} |z|^{\nu-N} \leq \epsilon \qquad (N > n_0).$$

Using Stirling's formula, these conditions are adequately approximated by

$$\left(\frac{e\mid z\mid}{\nu}\right)^{\nu} \leq \epsilon \qquad (N \leq n_0), \qquad \left(\frac{e\mid z\mid}{\nu}\right)^{\nu} \left(\frac{N}{e\mid z\mid}\right)^{N} \leq \epsilon \qquad (N > n_0).$$

We note, incidentally, that again by Stirling's formula,

$$n_0 \approx [e \mid z \mid], \qquad e = 2.71828 \cdots$$

The first inequality, upon taking logarithms, can be written in the form

$$(3.5) \qquad \frac{\nu}{e \mid z \mid} \ln \left( \frac{\nu}{e \mid z \mid} \right) \ge \frac{8}{e \mid z \mid},$$

where

$$s = S \ln 10 + \ln 2.$$

Similarly, the second inequality amounts to

$$\nu \ln \left(\frac{\nu}{e \mid z \mid}\right) - N \ln \left(\frac{N}{e \mid z \mid}\right) \ge s,$$

which can be written in the form

(3.6) 
$$\left(\frac{\nu}{N} - 1\right) \ln \left(\frac{N}{e \mid z \mid}\right) + \frac{\nu}{N} \ln \frac{\nu}{N} \ge \frac{8}{N}.$$

Since certainly  $\nu > N$ , and moreover  $N \ge e \mid z \mid (N \text{ now being larger than } n_0$ , and  $n_0 \approx e \mid z \mid)$ , the first term on the left is  $\ge 0$ . Hence, (3.6) will be satisfied if we require

$$\frac{\nu}{N} \ln \frac{\nu}{N} \ge \frac{8}{N}.$$

Both conditions (3.5), (3.7) now have the form  $t \ln t \ge c$ . Denoting by t(y) the inverse function of  $y = t \ln t$  ( $t \ge 1$ ), we obtain our final estimate of  $\nu$  in the form

$$(3.8) \quad \nu \geq e \mid z \mid t \left( \frac{s}{e \mid z \mid} \right) \qquad (N \leq n_0), \qquad \nu \geq Nt \left( \frac{s}{\overline{N}} \right) \qquad (N > n_0).$$

We note that in (3.8) the function t(y) need only be available to low accuracy. Formulas giving 1% accuracy, or better, may be found in [2].

The algorithm just described may still be unsatisfactory, numerically, if |z| is relatively large. The recursion (3.1) then is likely to suffer from loss of accuracy, due to cancellation of digits, particularly for n near 1. For such n, indeed, z/n in (3.1) will have large absolute value, yet  $d_{n-1}^{[\nu]}$  has normally the same order of magnitude as  $d_n^{[\nu]}$ . The difficulty may be resolved by applying (2.2) in forward direction as long as  $n \leq |z|$ , and using the backward recurrence algorithm described above for the remaining n with  $|z| < n \leq N$ .

**4. Examples.** Consider first  $f(z) = e^z$ , and let

$$d_n(z) = \frac{d^n}{dz^n} \left(\frac{e^z}{z}\right).$$

Then (2.2) gives immediately

(4.1) 
$$d_n(z) + \frac{n}{z} d_{n-1}(z) = \frac{e^z}{z} (n = 1, 2, 3, \cdots).$$

Our theory of Sections 2 and 3 clearly applies. Since f(0) = 1, it follows that (4.1) is numerically stable in the forward direction. We note, incidentally, that

$$d_n(z) = (-1)^n \frac{n!}{z^{n+1}} e^z e_n(-z),$$

where

(4.3) 
$$e_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$$

is the nth partial sum of the exponential series.

Likewise, if  $f(z) = \cos z$ , and

$$c_n(z) = \frac{d^n}{dz^n} \left( \frac{\cos z}{z} \right),\,$$

we obtain

(4.4) 
$$c_n(z) + \frac{n}{z} c_{n-1}(z) = \tau_n(z) \qquad (n = 1, 2, 3, \cdots),$$

where  $\{\tau_n(z)\}_{n=1}^{\infty} = \{-\sin z, -\cos z, \sin z, \cos z, \cdots\}$ . Like the previous recursion, (4.4) is numerically stable. On the other hand, if  $f(z) = \sin z$ , and

$$s_n(z) = \frac{d^n}{dz^n} \left( \frac{\sin z}{z} \right),$$

then

(4.5) 
$$s_n(z) + \frac{n}{z} s_{n-1}(z) = \sigma_n(z) \qquad (n = 1, 2, 3, \dots),$$

 $\{\sigma_n(z)\}_{n=1}^{\infty} = \{\cos z, -\sin z, -\cos z, \sin z, \cdots\},\$ is numerically unstable, and the algorithm of Section 3 should be applied, including the device mentioned at the end of Section 3.

In terms of (4.3), we may also write

$$c_n(z) = \frac{(-1)^n n!}{2z^{n+1}} [e^{iz}e_n(-iz) + e^{-iz}e_n(iz)],$$
  
$$s_n(z) = \frac{(-1)^n n!}{2iz^{n+1}} [e^{iz}e_n(-iz) - e^{-iz}e_n(iz)],$$

as follows readily from (4.2) and Euler's formula.

The functions  $s_n(x)$  have found wide applications in diffraction theory, and are extensively tabulated (see [4]). The generation of  $d_n$ ,  $c_n$ , and  $s_n$ , may also be useful for the analytic continuation of the exponential-, cosine-, and sine-integrals, respectively. ALGOL procedures generating  $d_n(x)$ ,  $c_n(x)$ , and  $s_n(x)$  for real x may be found in [3].

Argonne National Laboratory Argonne, Illinois

1. W. Gautschi, "Recursive computation of certain integrals," J. Assoc. Comput. Mach.,

v. 8, 1961, pp. 21-40.

2. W. Gautschi, "Algorithm 236—Bessel functions of the first kind," Comm. Assoc. Comput. Mach., v. 7, 1964, pp. 479-480.

3. W. Gautschi, "Algorithm 282—derivatives of  $e^x/x$ ,  $\cos(x)/x$ , and  $\sin(x)/x$ ," Comm. Assoc. Comput. Mach. (v. 9, 1966.)

4. Tables of the Function ( $\sin \phi$ )/ $\phi$  and of its First Eleven Derivatives, The Annals of the Computation Laboratory of Harvard University, Harvard Univ. Press, Cambridge, Mass., 1949. MR 11, 692.