
The Number of Lattice Points in a
¿-dimensional Hypersphere*

By W. C. Mitchell

1. Introduction. One of the most interesting problems of analytic number theory

involves the difference between the number of lattice points in a fc-dimensional

hypersphere and the "volume" of the hypersphere. Define the set Lkix) as follows:

k

(1) Lkix) -<(JltJ,,-~,Jt) E/,2á
=i

where the «7< are integers. Let Akix) be the number of distinct points in Lkix).

Thus Akix) is the number of lattice points in a fc-dimensional hypersphere of radius

xw. Define Vkix) as the "volume" of a fc-dimensional hypersphere of radius x1/2.

(2) VÁX)  = r(H 1(1-0 -('-8
where [z] is the integer part of z.

The problem of primary interest is to find the Greatest Lower Bound 8k of the

set of values 0 for which

(3) P*(x) = Akix) - Vk(x) = Oix").

Walfisz [1] gives the following general results:

Pk(x) = Oix(k-1)l2),   P,(x) = O^2"1),

(4) P4(x) = 0(xlog2x) = 0(x1+e),        e > 0,

Pk(x) = Oix"'2-1),       k ^ 5.

Thus for fc ̂  4 8k = fc/2 - 1.
The value of fc which has received the greatest attention is fc = 2, the number

of lattice points in a circle. Wilton [2] gives an account of the early work in this

problem. Since that time several results have been published establishing new

values of 8 for which P2(x) = 0(xe). One of the most recent is Chen Jing-ren's

proof [3] that P2(x) = 0(x12/37). Hardy (see [2]) has shown that P2(x) = Q(x1/4).

It is a common conjecture that P2(x) = 0(x1/4+e), « > 0, or 02 = !•

There is less known for fc = 3. From (4) we have \ ;S 03 £* 1. Fraser and Gotlieb

[4] conjectured on the basis of numerical evidence that .5 ^ 0¡ ^ .7. More recently

Chen Jing-ren [5] has shown that | á fl> ̂  f.

With the advent of high speed computers it has become possible to evaluate
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Pfc(x) for "large" x in order to see if the calculated results are consistent with

theoretical results or if it is reasonable to make any new conjectures concerning 8k.

There have been at least three previous papers on this subject. Fraser and Gotlieb

[4] calculated isolated values of P2(x) and P3(x) for x1/2 < 2000 on an IBM 650.

However their conclusions differ with the present paper for 02. Harry Mitchell [6]

calculated P2(x) for x1/2 á 200,000 on an IBM 7090, but the results for x1/2 ̂  3000

are incorrect, as pointed out by Keller and Swenson [7]. Keller and Swenson deter-

mined P2(x) for many values of x1'2 < 260,000 on an IBM 7090 and their method

of interpretation leads them to suggest that 02 g .3. This seems unlikely from the

results of the present method of interpretation.

The problem of establishing that P*(x) = 0(x") is equivalent to finding a

sequence ((X,-, F,))"=i such that

(5) | Pkix) | -è. Yi + Oix")    for   x ^ Xi+i   and   lim sup ^ < «>.

Since Lk(x) is composed only of fc-tuples of integers, Ak(x) is piecewise con-

stant over [n, n + 1 ), where n is an integer. Thus for x 6 [n,n + 1)

(6) LimP*(ra + ß) g P*(x) ^ Pk(n).
0-1-

But

Lim Pkin + ß) = Ak(n) - V*(n + 1)
0*1-

(7) = Pkin) - (Vkin + 1) - Vkin))

= Pkin) + Oix"'2-1).

However, by (4), 0k ^ fc/2 — 1. Therefore the sequence of "extreme" points

iNi, | PkiNi) |), defined such that \ Pk(n) \ < \ PkiNi) | for n < 2V<+1, satisfies

the first requirement of (5) for all 0 of interest. This sequence is uniquely deter-

mined, given an initial element, and Ni+i is the first integer for which | Pjfc(A/1) | <

I PkiNi+1) |.
For x too large to calculate P*(x) conveniently for all integers, approximate

extreme points can be chosen in the same manner as the true extreme points but

from a more restricted set. These approximate extreme points are not necessarily

a subset of the true extreme points. This later method, used by both Fraser and

Gotlieb and Keller and Swenson (in a different context), is not so concise as the

former but allows one to consider a larger range of x.

The present calculations on an IBM 7094 include P*(x) for fc = 2, 3, 4, 5, 6 and

all integer x á 250,000 (x1/2 g 500) ; some 250 isolated values of P2(x) for x1/2 g

10,000,000; and about 20 values of P3(x) for x1/2 g 9000. The results of this work

show that the calculated values follow the theoretical limits quite closely. The

results for fc = 2 fail to indicate that 02 is less than Chen Jing-ren's bound of

12/37 = .324. For fc = 3 the most reasonable conclusion is .5 ^ 83 ̂  .6.

Efficient algorithms for various combinations of fc and x are presented in Sec-

tion 2. Section 3 is composed of computing methods and Section 4 contains con-

clusions.
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2. Counting Algorithms. The most efficient method of evaluating Ak(x) depends

on the range of fc and x and upon whether isolated values (for approximate extreme

points) or a large number óf consecutive values (for true extreme points) is desired.

The following formula is similar to one given by Walfisz [1].

Ai(0) = 1,
(8)

Ai(x) = Ai(x - 1) + 25(x)

where

Í1,       for x a perfect square,

\0,       otherwise,

[VjH
Ak(x) = A*_x(x) + 2Ü4m(i - i2)-

t=i

Formula (8) provides the basic method of calculating Ajt(x). For large values

of x, some terms of the above summation may be larger than the fixed-point single-

word capacity of the computer (236 — 1 on the IBM 7094). This difficulty can

often be remedied by defining ßt(x) as the number of points («A , «/2, • • • , Jk)

such that

(9) ¿J,2 = x.
<~i

It is evident that

ÍAjt(x) — Ak(x — 1),       x an integer,
i\,ky^t — >

(10)
1^0, otherwise,

Akix) = Eifc(t).

Also

Ai(0) = 1,

(11) ñi(x) = 2S(x),

[VS]
Rk(x) = ñw(i) + 2 Zä*-i(* - i')-

«=i

The similarities of (8) and (11) are noticeable. By changing initial values the same

procedure may be used for either Ak(x) or Rk(x).

The next formula makes use of the symmetries involved in the set Lkix) re-

sulting from permutations and negatives of ordered fc-tuples. Define

(12) Lk\x)  = {( Jx, J2, ■ ■ ■ , Jk) € Lk(x) 10 £ /i £ /» á    • • á /*}

and let M(«A , J2, • • ■ ,Jk) be the number of distinct permutations and negations

of J\, Ji, ■ ■ ■ , Jk ■ Then we have

2*-"(0)fc!

(13)
M(Ji, J, , • • •, /*) = j

n»(p)!
p-0
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where n(p) is the number of i for which J,- = p. Thus, if Ym = (Jx, J2, ■ ■ ■ Jm),

(14) Akix) =      E        1 =      Z    MiYk).
Yk6¿*(*) Yk£/.*'(*)

By rearranging (12) and (14) it follows that

IV*)
(15) Ak(x) = 1 +   E E .M(Yk_!, Jk).

Jk=l Y¡L-i<ÍLií_i(x-Jkí);Jk_1¿Jk

Now, if Jk-i < Jk, then M(Ji, J,, • • • , Jk) = 2fcM(/1, J2, • • • , /w), Simi-

larly, if Jk-i < Jk-i+i = • • • = Jk , then

M(Ji, J2, • • • , J,) =2*' 0) MGA , J2, • • • , Jk-i).

Thus we have

[yfx\    k /j\

(16) i.W^+IE? E M(Yk_¡).
•f*î=l   <-»        V/ Yk-¡6¿t_¿(x-¡J*,!);/t_¿</l

Now define

Sm(Z, J) = E M(Ym).
YmiLm'(Z);Jm<J

Thus
[V^l   *       /¡l\

(i7) Akix) = i + E Zvr.jSk-iix ~u2,j).
j=i   ¿-1       v /

SmiZ, J) can be defined recursively as follows:

/—1      m /     \

smiz,j) = i + E E2i(7)-s«-,-(z - ¿/m2,jra),
/„-i «=i   \ i /

(18)

It is convenient to note that

V Z<0.'

Skix, «) = A*(x),

(19)
&( »o, J) = (2J - 1)*.

Formula (18) used with (19) is the basic method for taking advantage of sym-

metries among the points of L4(x). By algebraic reduction the following general

formula can be established:

m—1     MIN; /     \

(20) SmiZ, J) = (2JV + l)m + E    E     2*   m) Sm-iiZ - U¿, Jm)

where N = [y/Z/m] and MIN< = min ([y/Z~J~í\, J — 1). For complete generality

Akix) must be defined as in (19). For fc = 2 this simplifies to

(21) A2(x) = 1 -f- 4[V3 + 4h/x72]2 + 8       E       [Vx - J1].

This formula was known to Gauss.
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Formula (20) is of course ideally suited to programming for an algorithmic com-

piler; however, it can easily and efficiently be programmed in a machine-oriented

language. Consequently it was coded in SCATRE for the 7094 and used for isolated

values of At(x) for large x.

One extension of (21) should be very valuable for computing isolated values

of A2(x). It is possible, for certain x, to compute A2(x) for all u subject to

| u | < 2\/2 x1/4 in nearly the same time necessary to compute A2(x + u) alone.

For x = 1014, the largest argument used in this work, this would have made available

over 17,000 results in about twice the time required for the single value. Needless

to say, this is a significant improvement. Unfortunately, this method was not

known when the computations were done for this paper, but the method has been

used for moderate x (x «á 10,000).

Define the following:

x  = r + 2r = (r + 1)   — 1,    r an integer,

U  á 2y/2~r,
(22) -U + 2 g« ^ U,

W = [y/x — J2],   where J is used in the context of (21).

The following theorem may be established by simple algebra:

¡W+l,       u è (W + l)2 - (x - J2),

(23) Wx + u - J2] =\W - Í,       u < W2 - (x - J2),

[W, otherwise.

Thus, if the remainder of the integer square root routine is available, it is easy to

evaluate [y/x + u — J2] in the process of applying (21 ).

The true value of this method lies in computing A2(x + u) for all suitable u

simultaneously.  Define

Q(0) = o,

qiu)   =0,    -U + 2 £u£U.

As J runs from [Vx/2] + 1 to [y/x] = r, as in (21), do the following:

Q(0) = g(0) + [y/x~^T2\ = Q(0) + W,

(24) qiv)  = qiv) + 1,    where    v =  iW + I)2 - (x - J2),

qiv)   = qiv) — 1,    where   v = W2 — (x — J2) — 1.

Then, for u > 0,

Qiu) = QiO) + E qiv) + [Vu - 1] -       E       [y/x + u- J2},

u [\/ï/2] _

Qi-u) - QiO) + E qi-v) + E Wx- u- J2\.
"=1 /-[V(*-u)/2]+l

And then, for all u,

(26) A2(x + «) = !+ 4[vT+^] + 4[\/(x + w)/2]2 + 8Q(u).
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3. Computer Methods and Numerical Results. The time-consuming part of

computing Akix) by any of the methods mentioned in this paper is evaluating

[\/x]. However, from the logical order of summation successive arguments often

happen to be close together. Furthermore, while most square root routines are

floating-point, exact fixed-point results are necessary for this work. Thus the effi-

ciency of the square root routine may be improved by using fixed-point operations

and by using the previous result as a first approximation for the current argument.

Using this and the identity

(TV ± l)2 = N2 ±2N + 1,

Akix) may be calculated on a binary machine with no multiplications and no

numbers larger than x1/2 except the sum. This procedure was developed inde-

pendently by Keller and Swenson [7] and the present author. It is particularly

useful for employing (26). Keller and Swenson present the necessary algorithm

and a basic derivation of the process.

For the current paper two methods were used for determining Aib(x). For cal-

culating isolated values, (20) and the above method were used. Special square root

routines were used throughout. The time to compute Akix) was on the order of

(*-l)/2

Tik,x)aX-w~.

When a large quantity of consecutive values was desired, (8) and (11) were

used. An IBM 1301 Disc File was available for additional storage. This Disc File

is particularly desirable in allowing the use of one portion of core-storage for com-

putation while data is moved between the Disc File and another portion of core.

For the present problem this effectively created a million words of core-storage.

The time required to compute Akix) for 2 iS fc ^ K and all integer x ^ X is

T(K, X)a(k - l)xw.

Using this method 3| hours were required for T(6, 250000). Formula (11) was used

with the assumption that Rkix) < 236. This assumption was violated near

fie (40,000).
Integer arithmetic was used exclusively for Akix) in all programs, and it is

expected that all values are correct. Complete agreement was noted for all values

published in [7]. Similar agreement existed with [4] except for A3(18002), the largest

argument published in that paper. This value was calculated twice for this paper,

each calculation requiring 3 minutes.

4. Conclusions. Table 1 gives the first fifty true extreme points for fc = 2, 3.

The number of extreme points for x ^ 250,000 (x1/2 ̂  500) is

fc number of
extreme points

2 76
(27)                                3 80

4 170
5 434
6 474 (x < 40,000).
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Table 1

First 50 extreme points for k = 2,3

A,(Xi)

5
9

21
37
69
69
89

137
177
421
481
657
749
885

1085
1305
1353
1489
1861
2617
2693
3125
5249
5761
7129
8109
9465
9465

10717
12401
12401
16237
16237
24833
30725
35237
46701
47441
47441
61493
67797
67805
67805
69605
89653
89653
99449
99449

119349
119349
119349

Pt(Xt)

2
3
5
6
6

-6

7
8

10
13
13
13
14

-17

17
17
18

-19

20
-22

23
27

-29
-29

29
-31
-32
-35

36
-37
-40
-43
-46
-48
-50
-53
-55
-57
-60
-60
-61
-63
-66
-66
-68
-71
-74
-77
-79
-82
-85

Xi

1
2
5
6

14
21
29
30
54
90

134
155
174
230
234
251
270
342
374
461
494
550
666
750
810
990

1890
2070
2486
2757
2966
3150
3566
3630
4554
4829
5670
5750
8154
8382
8774
8910

10350
10710
15734
15750
16302
17550
23310
23894
24174

AtÇXi)

7
19
57
81

251
437
691
739

1743
3695
6619
8217
9771

14771
15155
16831
18805
26745
30551
41755
46297
54339
72359
86407
96969

131059
344859
395231
519963
607141
677397
741509
893019
917217

1288415
1406811
1789599
1827927
3085785
3216051
3444439
3524869
4412643
4645127
8269399
8282167
8721339
9741669

14910309
15474065
15746999

PziXi)

3
7

10
19
32
34
37
51
81

119
122
134
157
160
161
174
221
252
254
294
305
309
364
371
405
580
682
734
756
763
776
959

1028
1105
1120
1170
1205
1550
1570
1576
1851
1930
2028
2404
2411
2565
2675
2895
2905
2940
3133
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This reflects the increasing values of 8k and perhaps more "regularity" for the

higher values of fc.

The problem of showing

Limsup!^<+oo

is equivalent to showing

Lim sup (log | PkiNi) | - 0 log Ni) < + oo.
¿-»■00

Graphically this corresponds to finding a straight line with slope 0 which

majorizes the points (logN¿, log | PkiN{) |). Figure 1 shows the sequence of ex-

treme points for x ^ 250,000. Only a sample of the points for fc = 5, 6 are shown.

Figure 1. Extreme points for x S 250,000 and ¡fc = 2, 3, 4, 5, 6.
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Table 2

x1'2

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000
5500000
6000000
6500000
7000000
7500000
8000000
8500000
9000000
9500000
9600000
9700000
9800000
9900000

10000000

A2(x)

3141592649625
7068583465945

12566370610285
19634954076697
28274333873841
38484509999277
50265482451357
63617251226505
78539816333093
95033177762429

113097335520185
132732289606241
153938040012805
176714586754401
201061929820913
226980069212125
254469004930845
283528736973257
289529178944573
295592452772029
301718558438929
307907495964805
314159265350589

P2(x)

-3965
-4632
-4074
-8239
-8467
-7198
-6080
-8688
-6652
-8662
-9048
-7928

-13095
-10025
-8834
-9738
-9928

-13222
-10262
-4235

-11835
-13531
-8390

x1'2

1000
1200
1400
1600
1800
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000

A3(x)

4188781437
7238202017

11494026189
17157266213
24428982249
33510290993
65449818205

113097275709
179594325465
268082474393
381703453381
523598707861
696909887157
904778525345

1150346427953
1436754948853
1767145772565
2144660422929
2572440705977
3053627854381

Pa(x)

-8768
-27457
-14133
-18466
-42225
-30645
-28745
-59820
-54565
-98713
-54030
-67737
-83164

-158889
-82036
-91389
-95079

-161922
-78537

-204908

The lines drawn represent the minimum slopes which appear to parallel the extreme

points. In addition, for fc = 2, 3, 4 the theoretical minima for 8k (see (4) ) are shown.

If 8k is estimated from these points, the results are

(28)

02 = .324 = 12/37,

03 = .60 - 3/5,

04 = 1.06,

06 = 1.52,

06 = 2.00.

The accuracy of visual estimation limits this method to a precision of at most

±.01. For instance in Figure 1, for fc = 2 a line with slope 12/37 would be indis-

tinguishable from one with slope 1/3. The way which the results for fc = 4, 5, 6

approach the known values suggests that this method is valuable for the range

of x used.
In addition to the true extreme points for x1/2 g 500 a number of approximate

extreme points were calculated from isolated values of P2(x) and P3(x). Some of

these are shown in Table 2. In Figure 2, the values of P2(x) for x1'2 ̂  10,000,000

are shown with the true extreme points for x1'2 ^ 500. If only the approximate

extreme points are considered, one is led to agree with Fraser and Gotlieb [4] that

"02 = J is not inconsistent with observed results." But when the distribution of

approximate extreme points is considered independently of sampling distribution,
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i I_L,_I_I_:_I_^_,__J__,_-J
2 4 6 8 10 12 14

LOG x

Figure 2. Distribution of true and approximate extreme points for k = 2.

there is no reason to believe that the true extreme points do not continue near

slope 12/37 for x1'2 > 500. Thus it is not reasonable to conjecture from these results

that 02 is appreciably less than Chen Jing-ren's bound of 12/37. A logical conjecture

based upon these results is 03 = .3.

The approximate extreme points for fc = 3 suggest that .5 ^ 03 = .6, but there

are too few points from which to extrapolate with assurance. For instance half of

the isolated values qualify as approximate extreme points. The time required to

calculate more values of P3(x) would be prohibitive.

An additional matter of interest is the sign of P*(x). Keller and Swenson reported

that, while most of the values of P2(x) for integer values of x1/2 S 260,000 were

negative, the sign distribution for noninteger x1/2 "was about uniform or perhaps

even slightly biased in favor of positive values." In this experiment all of the true

extreme values for 3400 < x £| 250,000 and all of the isolated values for integer

x1/2 = 10,000,000 were negative.

For fc = 3, 95% of the true extreme values were positive while the larger isolated

values were negative. The four negative extreme values were among the larger ex-

treme points.

For fc = 4, 5, 6 all of the true extreme values were positive.

Another question is whether or not noninteger values of x would provide different

extreme points than the integer values used thus far. From (6) we need only con-

sider Lim^i- Pkin + ß). This question is of little interest for fc = 2 because

P2(n + ß) = Piin) - v. However for fc = 3, for x < 1000, the P3(n + ß) values

were of the same magnitude as the P3(w) values. For the larger values of fc and

necessarily smaller x, in accordance with the greater density of extreme points as

in (27), there is an alternation of extreme points for small x and a random assort-

ment for larger x.
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