
Convective Difference Schemes

By K. V. Roberts and N. O. Weiss

1. Introduction. In this paper general methods are developed for numerical

solution of the partial differential equations for the convection of a scalar (e.g.

density) or a vector (e.g. magnetic field). The difference schemes are correctly

centred in both space and time so that the modulus of the amplification factor is

exactly unity. They are also conservative and have fourth order accuracy. The

methods are applicable in two or three space dimensions and on curvilinear as well

as Cartesian meshes. They can be used for either linear or nonlinear problems.

We consider finite difference schemes for the numerical solution of the hyper-

bolic partial differential equations

(1.1) §=-divF
at

and

(1.2) — = -curl E.
dt

The dependent variables can be represented on a fixed Eulerian net with charac-

teristic spacing Ar and we aim to establish explicit methods that are accurate in

three space dimensions. In general, the total machine time required for a problem

then varies as (Ar)- ; it is therefore important to devise a method of solution that

is both efficient and precise. The numerical techniques have been developed for

solving magnetohydrodynamic problems in three dimensions and examples are

taken from this context. However, the methods may be generally applied. Their

development is facilitated by adopting a physical approach.

More specifically, we consider the Eulerian equations

(1.3) J = -V-(pu- 171 Vp)
at

and

(1.4) ? = vA(uAB-^vAB)
at

for the convection of scalar and vector quantities (density and magnetic field) by

a velocity field u with magnitude U in a region of dimension L, where the diffusion

coefficients 171 and n2 are both small (i.e. the Péclet number, UL/ni, and the mag-

netic Reynolds number, UL/v2, are both large). The vector equation (1.4) must

be solved subject to the condition

(1.5) divB = 0

and in many problems the flow can be regarded as incompressible, so that

(1.6) divu = 0.

Received March 11, 1965.
1 We assume that diffusion is weak compared with convection, so that the equations are

essentially hyperbolic. If they were parabolic, the total computing time would vary as Ar-5

and it would be advisable to use implicit methods.
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We insist that magnetic flux must be conserved exactly throughout the finite

difference process. Where (1.6) is applicable, its difference analogue has similarly

to be satisfied.

The difference schemes are first illustrated by considering Equation (1.3) in one

dimension, when (1.6) implies that u is constant. The problem is then linear and

its treatment is consequently simple. Stability and accuracy are discussed in §§2-4

where we emphasize the importance of choosing schemes that are correctly centred

in both space and time. §§5 and 6 contain a detailed discussion of methods for

solving (1.3) and (1.4) in two dimensions and, finally, we indicate in §8 how three

dimensional problems might be tackled. The methods described are suitable for

solving nonlinear problems (in which u also is a dependent variable) but solution

of the equation of motion must depend on details of the particular physical sys-

tem and this will not be discussed here.

Equations such as (1.1) and (1.2) are described as conservation laws [1, 2].

The continuity equation states that the increase of the mass within a given volume

is equal to the total flux of matter into that volume, while Faraday's law equates

the rate of change of magnetic flux across a surface to the integral of the electric

field along a line bounding that surface. For finite difference approximations the

integral formulations

(1.7) A f pdr = -Jjv-dSdt

and

(1.8) A f B-dS = -f&Edldt

of the conservation laws are more convenient than the differential equations (1.1)

and (1.2). We therefore regard these equations as integrated over elements of

volume or area defined by mesh points: thus the value of p corresponding to a

given point on the mesh represents the average density of matter within a box

surrounding that point. Each component of B likewise represents the magnetic

flux across an area normal to that component and centred on the point. Similarly,

F or E must be defined as double averages, over elements of surfaces or along

lines respectively, as well as over a time interval Ai. The finite difference scheme

must then itself be conservative: that is, Equations (1.7) and (1.8) must apply

exactly to all regions that can be built up from the basic elements mentioned above.

Only such schemes are acceptable and we furthermore require methods that have

fourth order accuracy.

Errors in finite difference processes are mainly caused by the presence of Fourier

modes with wave lengths of only a few mesh intervals. Moreover, in a practical

computation it is cheaper to reduce At than it is to shorten Ar. We therefore devise

schemes in which the error is of fourth order in Ar but only of second order in At.

But the accuracy is not impaired so long as

C£)'«>
and it is sufficient to have iUAt/Ar) <l/4.
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The integral formulation of the equations simplifies the development of these

schemes. In addition, it gives a precise meaning to conservation. When the velocity

u is constant, integral and differential formulations lead to the same difference

formulae. If u is a function of position, the two approaches diverge for a scalar and

differ entirely for the vector field B.

The treatment of diffusion when r¡i and r¡2 are small is discussed in §7. To a close

approximation the density and magnetic field are then convected with the fluid.

Numerical errors inherent in the treatment of the convective operator (u-V)

could be avoided by adopting a moving Lagrangian mesh. In one dimension, this

is nearly always the best approach. For coupled magnetohydrodynamic equations

in several dimensions, the mesh distortion is so severe that Eulerian schemes may

be preferable. Conservation can be applied to either type of mesh, for example,

Faraday's law (1.8) may be expressed either in fixed or in moving co-ordinates.

The general discussion is presented in terms of Cartesian coordinate systems.

The transition to polar co-ordinates is straightforward and is considered in the

penultimate section. Our emphasis throughout is on the relationship of the physics to

the numerical procedures and on the choice of practical meshes and difference

schemes. We hope that the methods described will prove useful in tackling real

problems. The notation demands many suffixes but we have endeavoured to keep it

consistent.

2. Centred Difference Schemes in One Dimension. The prime requirement of a

difference scheme is that it should be stable; we develop schemes that are also

conservative and free of numerical dissipation and whose truncation errors are of

fourth order in the mesh interval. These distinctions are best illustrated by consider-

ing the one dimensional convective equation

(2.1) £--« =
dt dx

with u constant, whose trivial solution is

(2.2) p(x, T + t) = p(x - ut, T).

(This problem merely serves as a model for multidimensional Eulerian calculations;

in practice, (2.1) should be integrated along characteristics, i.e. using a Lagrangian

mesh.) In this section we discuss stability and numerical damping and demonstrate

the advantages of difference schemes that are correctly centred in both space and

time.

Let p be defined by values py" at mesh points in the x — t plane with co-ordinates

(xy, tn) = ijAx, nAt) where j, n are integers. The values of py"+1 are calculated

from p," by some difference scheme which approximates to (2.1). The error is

(2.3) tf = Pjn - piJAx,nAt).

Usually, Ai and Ax are of the same order and the difference scheme is said to be

accurate of order p if after a single time step

(2.4) | «/| ^0(Atp+1).

2 When Ax J5> uAt it is more appropriate to express the error in terms of the mesh interval

(see §4).
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It is evident from (2.2) that the evaluation of pyn+1 can be regarded as an

interpolation problem. Linear interpolation between p"-i and p"+i yields the most

obvious Eulerian approximation to (2.1). The derivatives are replaced by first

differences and dp/dx is estimated at the initial time t":

(2.5) pyn+1 = py" — |m(py+i — p"-l)

where

(2.6) ,-!*
Ax

This scheme has first order accuracy but is well known to be unstable; to first

order, it is in fact an approximation to

/•ot\ dp dp       1   !.. äp
(2.7) —- =  -u^- - ñUAt —

dt dx      2 dx1

whose solutions grow exponentially with time. This is because dp/dx has been

estimated at tn instead of being centred, like the time difference, at tn+112.

The simplest expedient for preventing instability is to interpolate between two

adjacent points at the original time level. This leads to the "one-sided" difference

scheme, originally suggested by Lelevier [3], in which (2.1) is represented by

(2.8) py"       =   Pj-i —  p (pj-i  —   p"-i_i)

where I is chosen so that I ^ p < I + 1 and a' = p — I. In this form, the scheme is

unconditionally stable and has first order accuracy; for | p | ^ 1 it approximates to

the differential equation

<2-w ï--s+èi.M«i-w>â.
The instability associated with (2.7) is now masked by a "numerical diffusion"

whose effects are easily demonstrated by making a Fourier transform of (2.8)

and taking the component p(k) with wave number fc. (The range of fc is ir/JAx ^

fc ^ ir/Ax, where/ is the total number of mesh intervals in the x-direction.) We

define the amplification factor X(fc) by

(2.10) p"+1(fc) = X(fc)p"(fc)

and the von Neumann condition for stability [3] is that

(2.11) | X-l £ I +0(At).

For the one-sided difference scheme,

(2.12) | X |* - 1 - 4/(1 - ii) sin2 (JfcAx)

and this stability criterion is satisfied. Now the true solution of (2.1) has

(2.13) X = exp i-ipkAx)

with | X | = 1 and the numerical error, which produces anomalous damping, is

apparent from Table 1. (Error in the argument of X leads to dispersion, which will

be discussed in §3.) The approximation improves as | p | and fcAx tend to zero but
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Table 1

Damping in First and Second Order Schemes

fcAx

18°
30°
45°
60°
90°

120°
180°

0.05

.9977

.9936

.9860

.9760

.9513

.9260

.9000

One-sided

a

0.25

.9908

.9746

.9435

.9014

.7906

.6614

.5000

0.5

.9877

.9659

.9239

.8660

.7071

.5000
0

Three-point

0.05

1.0000
1.0000

.9999

.9997

.9988

.9972

.9950

p-
0.25

.9999

.9995

.9975

.9926

.9703

.9318

.8750

0.5

.9998

.9983

.9919

.9763

.9014

.7603

.5000

the finite differences are naturally inadequate for wave lengths close to the limit

2Ax. The major weakness of this difference scheme lies, of course, in the strong

numerical damping. Since the scheme is accurate only to first order, dissipation

remains important even in the limit At —-> 0; the number of steps per unit time, N,

becomes infinite and the total amplification factor

(2.14) exp
'2wsin2(§fcAx)\

Ax
■

The strength of this damping is clear from Figure 1, which shows the total amplifica-

tion factor after a mode has been transported through a distance Ax, plotted on a

polar diagram as a function of fcAx. Actual damping of a humped profile is illus-

trated in Figure 2(a). Thus first order schemes are inadequate if accuracy is re-

quired.3

Three point interpolation allows second order accuracy. The simplest such

scheme is

(2.15)

for which

(2.16)

n+l
Pi Pi" — 2P[(1 — pOp?+i + 2ppjn —  (1 + m)p"-i]

= 1 4m2(1 p2) sin4 (§fcAx).

This is stable for | p | ^ 1 ; numerical damping is still present, as is shown in Table 1

and Figure 2(b), but this becomes insignificant as p —> 0, when

(2.17) [i - oip.2)r -> i.

This scheme is equivalent to using equation (2.1) itself to provide an approxima-

tion to the time-centred spatial derivative by writing

<*» (ir^)"+HâH^-Hi)"-
* Nevertheless, the one-sided scheme preserves the sign of positive definite quantities, as

do Lagrangian methods also; this property is not shared by space-centred Eulerian schemes.
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Figure 1. One-sided derivatives: numerical damping as Ai —» 0. The modulus of the total

amplification factor after a time Ax/u (so that each mode should have been transported through

one mesh interval) is plotted on a polar diagram as a function of the angle kAx.

00 0.2 0.4 0.6 0.8 1.0

(x-t)

0.0 0.2 0.4 0.6 0.8 1.0

(x-t)

Figure 2. Numerical damping in first and second order schemes. The convection of a

Gaussian profile with unit velocity on a mesh with Ax = 1/20, fi = 0.125, subject to periodic

boundary conditions. Curves a, b, c, d show profiles at t = 0.0, 1.0, 2.0, 3.0 respectively, (a)

One-sided derivatives, (b) Three-point method.
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This method was introduced by Lax and Wendroff [4], [5] and has been exten-

sively used and developed. Numerical damping is still present but this is sometimes

advantageous in eliminating unwanted high wave number modes. On the other

hand, the method can become very complicated with equations less simple than

(2.1).4 Moreover, the physical significance and the magnitude of the diffusion may

be difficult to assess. We prefer to exclude dissipation from the convective equation

altogether, by making | X | identically unity, and to include a separate diffusion

term explicitly when this proves necessary (see §7). A similar approach has been

adopted by Kreiss [7].

Schemes with [ X | = 1 are readily devised. It is sufficient that all differences

should be correctly centred in space and time about the point (xy, in+1/2). Such a

scheme can be built up on two time levels by combining terms to form a difference

equation

(2.19) E«!(ph-«+i) = 0
i

with real coefficients a¡. The amplification factor then satisfies

(2.20) X£ a,e-i,e - £ a,eiU = 0

where

(2.21) B = fcAx.

This has the form

(2.22) A\ - A* = 0

(where A denotes the complex conjugate of A) so that | X | = 1 for all values of

p and B. The conditions under which it is necessary to adopt a scheme of the form

(2.19) will be discussed elsewhere.

3. Nondissipative Difference Schemes with Second and Fourth Order Accuracy.

We have shown that it is possible to devise difference schemes that are correctly

centred in both space and time and for which | X | is identically equal to unity.

Moreover, these schemes can be expressed in conservative form (see §4). We

give two explicit second order methods in this section. Their solutions converge to

that of the differential equation as Ax —» 0. But this limit cannot be attained in

practice. In three space dimensions the total computing time varies inversely as

the fourth power of the mesh spacing Ar. The minimum possible space interval,

Ar0, thus varies inversely only as the fourth root of the available machine time (or

the programming efficiency or computer speed). These latter would have to be

increased by a factor 104 merely to reduce Ar0 by 10. For practical purposes, there-

fore, we have to regard Ar0 as a fixed quantity and to devise methods which then

achieve the maximum accuracy. We therefore describe two schemes with fourth

order accuracy. These schemes are stable provided that the Courant-Friedrichs-

Lewy criterion is satisfied, i.e. so long as the domain of dependence of the difference

equation includes that of the differential equation itself.

4 The Lax-Wendroff method is easier to apply if it is split into two steps [6] but the same

accuracy cannot be obtained without halving the mesh interval in each dimension.
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Angled derivative scheme. Suppose the integration sweeps in the direction of

increasing x for each value of t. When we are about to calculate py"+1 the values of

p" (1 £s fc á j) and pk"+1 (1 á & á j — 1) are available. Thus we can use the

"angled derivative" centred on (xy, i"+1/2) to produce a difference scheme with

second order accuracy [8]. This can be written (see Figure 3(a))

/ o 1 \ n"H n yin n+1 \
(3.1) Py       =  py   — |(py+i— Py-i )

where

(3.2) i -      *M1 + ÍM

Only the latest value of p available at each point appears in (3.1).5 The value of

the amplification factor depends on the sign of p and it is generally necessary to

alternate the direction of integration with each time step so that the resultant

value of X is the geometric mean of A (p.) and X(— p).

The domain of dependence of (3.1) includes all the points from xx to Xy at time

r+1 but only x3- and Xy+i at the original time level. Thus the proof that | X | = 1 for

all p in §2 appears to contradict the Courant-Friedrichs-Lewy criterion when p < — 1.

This paradox can be resolved: for (3.1) must in general be regarded as implicit

if the boundary conditions are to be satisfied. Even so, any error either in setting

the boundary value or in calculating an interior point will be magnified as the

sweep proceeds if | £ | > 1. In order to avoid the spatial amplification of rounding

errors it is necessary that the influence of a point should diminish as the distance

from it increases. For the angled derivative scheme this imposes the condition

(3.3) -l^p<2

which has been verified by numerical tests.

Staggered mesh. An alternative approach, originally suggested by von Neumann,

uses a staggered mesh [11] (see Figure 3(b)). If py is defined at t", tn+1, then its

neighbours py±i are defined at the intermediate level ¿n+1/2. Any space difference on

this level is automatically centred in time. The derivative dp/dx can be represented

by an arbitrary combination of differences at integral and half-integral time levels.

The modulus of the amplification factor will be exactly unity if all the differences

are correctly centred in both space and time: this means that the difference equa-

tion takes the form

(3.4) >_,aiip"-2\ — p"+2¡) + ^,bi(pj-hli — pj+2\-x) = 0.
i i

For X then satisfies

(3.5) A\ + 2iB\112 - A* = 0

where

(3.6) A = J2aie~2m   and   B = £ b, sin (21 - 1)8.

Then

(3.7) X1'2 =
[iB ± (AA* - B2)112]

6 A similar method was suggested by Saul'ev for solving the diffusion equation [9], [10].
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a)

Ln + I

tn

b)

,n + l

Xj_2    Xj_| xj+2

Figure 3. Conservative difference schemes with second order accuracy, (a) Angled deriva-

tives. We know values of p at the points denoted by crosses in the x — t plane and, implicitly,

at (xj , in+1). These values provide estimates of p at the points marked by asterisks, which in

turn give a difference which is properly centred in both x and t. (b) Staggered mesh. Here p is

calculated at the points where its value is required, leading to a mesh staggered in space and

time.

and | X | = 1 provided that

(3.8) B2 ^ AA*.

Three-level schemes (unlike the two-level ones discussed in   §2) are only condi-

tionally stable.

The simplest scheme is

(3.9) Pi
n j    /    n-t-1/2 n-t-l/2\=   Pi     —   2M(P;+1       —   Pj-1     )•

This has second order accuracy and | X | = 1 for | p | i£ 2.

After one time step, the phase of a Fourier component should change by an

amount

(3.10) 00  =   — -r—   'fcAx  =   — ad.
Ax

The corresponding phase shift for the angled derivative method is

.       . .    i   p sin 8 [1 + \p(l - cos B)\
\o.\l) <pi = — sin-—¡—j—^r--—-

1 + \ p?(l — cos 8)

while that for the staggered scheme is

(3.12) <P2 = ±2 sin-1 (y sin 8).

There are two solutions to (3.9), one of which represents a disturbance travelling

in the wrong direction which is only eliminated if the initial values are correctly

set on both time levels [12]. As p —»• 0, the ratios <b\/<t>o and <p2/<Po both tend to sin 8/8,



CONVECTIVE  DIFFERENCE   SCHEMES 281

Table 2

Velocity Dispersion

kAX
Second order

<fa/<t>o

Fourth order

i>3/4> 4>i/(bo

18°
30°
45°
60°
90°

120°
180°

.9836

.9549

.9003

.8270

.6366

.4135
0

.9992

.9947

.9753

.9304

.7427

.4652
0

.9997

.9976

.9883

.9648

.8489

.6203
0

Figure 4. Velocity dispersion in the limit n —» 0 for second and fourth order schemes.

The ratios <h/<tn(a) and <£4/<i>o(&) are plotted on a polar diagram as functions of the angle kAx.

which is listed in the first column of Table 2 and displayed in Figure 4. The shortest

wave length components (8 = ir) do not move at all and even the wave length

4Ax has only two-thirds of its proper speed, although the longest wave lengths

move with nearly the correct velocity. This dispersion at high wave numbers is the

most serious error remaining in the difference schemes and its effects are illustrated

in Figure 5(a). To diminish them, it is necessary to develop approximations that

possess fourth order accuracy.

Fourth order scheme on staggered mesh. The simplest fourth order scheme uses

four values of p at ¿"+1/2 to estimate the spatial derivative:

n+l n i    r/    n+1/2 n+l/2s
Pi     = Pi   — 2P[(py+i    — Pi-i   )

I       1/1 1    2w    n+1/2
+ A(l   -   4M  )(PiS

(3.13)
n    n+1/2     .     o   n+1/2 n+1/2 \i
opy-i     ■+■ opy+i     —  py+3    )\.

This has | X | = 1 for ß ^ 2 and the phase shift is

(3.14) <p3 = ±2 sin-1 [iß sin 0{6 + (1 ip)sin2o]].
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The limiting values of <p3/4>o as p. —» 0 are displayed in the second column of Table

2 : the dispersion is noticeably less than for second order schemes.

Combined fourth order scheme. A slightly more accurate formula can be devised

by combining the two second order schemes described above. Then

(3.15) py"+1 = py"  - \ [il + 2M)(pyíi1/2 - py"-+i1/2) - M(p?+2 - p&)\
1  —  %pM

where

(3.16) M =   (1  " *m)

6(1 + fc»)
Once again, | X | = 1 for ß ^ 2, while the phase shift is given by

where

P = 1 - ßM sin2 8,       Q = Wl + 2M) sin fl,
(3.18) .   „.

Ä = ißMsin28, S = ±[1 - i/i{i/»(l + 4M) + 4M) sin2 of2.

As ß —» 0, the ratio #4/00 tends to

(3 19) m sin 0(4 - cos 8)

38

which is listed in Table 2. The improved accuracy is evident in Figure 4.

4. Integral Formulation and Conservative Difference Schemes. The difference

schemes discussed in the last section can all be expressed in conservative form. In

order to do so, it is convenient to express the differential equation in terms of the

integral formulatin of (1.7). This approach facilitates the expression of finite differ-

ences in more than one dimension and on curvilinear meshes. For the remainder of

this paper we shall adhere to this integral formulation in order to express the con-

servation laws more clearly : the fundamental quantities py and u¡ will be regarded as

appropriate averages rather than values of p and u at the point xy. In one dimension,

Pja represents the average value6 of p over a distance 2Ax at the time i":

(4.1) «r-¿£W>*-

The velocity u may also vary with position (so the flow will no longer be regarded as

incompressible). Following (1.7), we can express the increment in py in terms of

fluxes across the boundaries at xy±i :

(4.2) (py"+1 - py") -2Ax =  - iFx+1 - FU) -At.

Here Fkx-At represents the total mass flow (in the positive x-direction) across the

interface at xk during the time interval (£", i"+1). Thus the fluxes Fkx are time aver-

s This definition is chosen for use on a staggered mesh. For two-level schemes it implies

that p is defined only at each alternate mesh point.
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ages at precise points in space, whereas the densities py" are space averages at a

precise time.

We can regard (4.2) as expressing the change in mass of a "box" centred at xy

in terms of the fluxes of matter across its boundaries. These boxes can be combined

to build up volumes; then conservation demands that the increase in mass of any

such volume should equal the flow of matter into it. In one dimension, exact conser-

vation merely requires that the flux out of the box centred on xy , across the inter-

face at xy+1, be equal to the flux across that interface and into the box about xy+2.

Now the equation (4.2) is exact: in a difference formulation we represent the

fluxes in terms of the values p3" etc. and thereby introduce truncation errors. For

(4.3) Fjx = UjP]x

where p/ (like F*) is a spot value at Xj but a time average over (tn, tn+1) :

(4.4) px - ¿ /       pixj, t) dt.
¡Al Jn

These quantities are "contracted" in the x-direction relative to the averages py" etc.

from which they must be estimated. A Taylor expansion in space and time gives

x 1       ,     n+1/2 1   /   n i        n+l\
Pi   =ö   4W        — ô (pj+1 "■" p,_1 '

(4.5)

or

(4.6) Pi
1   rio      n+1/2 1   /   n+1/2     .        n+l/2\i 1     .,j3p     i/Va~4-\

— [13 py — - (py+2     + py-2   )J — 2^ Ai — + ü(Ax ).

Second and fourth order conservative difference schemes can be derived from these

expressions.

Second order schemes. The scheme (2.5) is conservative but unstable and the one-

sided scheme (2.8), though stable, is not conservative. However, schemes that are

properly centred can always be expressed in conservative form. The angled deriva-

tive scheme (3.1) can be reformulated in these terms if we put

(4.7) Ff = iuj(p£l + pl+i)

which (see Figure 3(a)) is clearly a first order approximation to (4.3). Similarly, the

staggered mesh formula (3.9) can be rewritten with

(4.8) Fx = UjPjn+112

to achieve the same order of accuracy. Conservation then applies separately to the

two sets of boxes centred on xy, Xy±2 • • • and on xy±i, Xy±3 • • • .

Fourth order schemes. In a two dimensional calculation, halving the time step

doubles the computation time, while halving the mesh interval increases it eight-

fold. Thus it is more practicable to diminish the ratio At/Ar than it is to decrease the

interval Ar itself. The time step must in any case be chosen to keep p. within the limit

for stability; we shall impose the further restriction that Ai be small enough to make
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ß  « 1. When ß —» 0 the error ey" defined by (2.3) depends only on Ar; we call a

difference scheme accurate to order p in the mesh interval Ar if after one time step

(4.9) 0(At AxP)    as
A£

Ax
0.

The difference schemes we shall describe are accurate to fourth order in Ax but only

to second order in Ai. The significance of this will be discussed below.

From Equation (4.6) we can express the flux as

(4.10) Fjx = &u, [i3py"+1/2 - è(P;++21/2 + P;_+21/2)].

This leads to a difference scheme which (when u¡ is constant) has | X | = 1 for

| ß | ^ 7/12 and corresponds to (3.13) when p,2 « 1. The dispersion has already

been shown in Table 2.

The scheme based on (4.5) is more satisfactory. This gives

(4.11) F,'  =   M4py"+1/2 -  è(p"+l + ffô)].

In order to eliminate the error term of order AiAx, the direction of integration must

reverse with each time step, i.e. (4.11) should alternate with

(4.12) Fjx = W4py"+1/2 - Kpyíi1 + P?-i)].

If u is constant, [ X | = 1 for —2 ^ p. ̂  6/5 and (4.11) is equivalent to (3.15) with

M = 1/6. In Table 3 the dispersion obtained with this fourth order scheme is tabu-

lated as a function of p, and 8; it is apparent that the accuracy is not substantially

impaired even if p, = 1/2. The computation illustrated in Figure 5(b) shows the

improvement produced by adopting this fourth order scheme.

There are two reasons for demanding greater accuracy in Ax than in Ai. The higher

time derivatives could be estimated by substituting from the differential equation

(in which case (4.11) and (4.12) would lead to (3.13) and (3.15) respectively);

however, this procedure becomes indecently complicated in more than one dimen-

sion. Secondly, the error caused by terms of order Ai2 in (4.5) and (4.6) is insignifi-

cant even for moderately large values of p (as can be seen from Table 3). The ratio

of the term of order Ai to that of order Ax in the error is 5/2 (ß/8)2. The error caused

by setting p. = 1/4, for instance, is negligible unless 8 < 20° ; but the whole difference

Table 3

Velocity Dispersion for Combined Fourth Order Scheme

kAX

18°
30°
45°
60°
90°

120°
180°

0.05

1.000
.998
.989
.965
.849
.620

0

0.25

1.001
1.002

.996

.975

.854

.616
0

0.50

1.007
1.016
1.021
1.005

.872

.618
0

0.75

1.016
1.039
1.064
1.062

.907

.616
0

1.00

1.029
1.073
1.131
1.156

.978

.618
0
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Figure 5. The effects of dispersion. The convection of a Gaussian profile with unit velocity

on a mesh with Ax = 1/20, p = 0.25. Curves a and 6 show profiles at t = 0.0 and t = 4.0 re-

spectively, (a) Second order scheme, (b) Fourth order scheme.

scheme is bound to be sufficiently accurate for such long wave lengths. It is only in

dealing with short wave lengths (ö ^ 60°) that the method becomes inadequate

and there the effects of a finite time step are wholly unimportant.

5. Convection of a Scalar in Two Dimensions. The one dimensional problem

discussed so far has been physically trivial, although it served as an adequate

vehicle for introducing numerical techniques. In two dimensions, interesting

problems can be posed even when div u = 0. The Eulerian difference schemes re-

quired are straightforward but careful extensions of those described already. (The

advantage of using Eulerian schemes is that they can be extended to equations

such as (1.3) which do not have a simple Lagrangian solution.)

Once again, we express the differential equation

(5.1) ^=-V(pu)
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in integral form as

(5.2) A   j pds\= - ¡(f) pün dl dt

where Un is the component of velocity normal to the line element dl bounding the

area S. Let us, for the present, adopt a uniform rectangular mesh with intervals

Ax, Ay, so that mesh points have coordinates (xy, yk) = (jAx, kAy). Then we define

the stored quantity p",* as the average value of p over a box with sides 2Ax, 2Ay

centred on (xy, yk), at the instant i":

, pk+l    pj+l

(5.3) plk = -r—— p(x, y, f) dx dy.
4AxAy Jk-i  Ji-i

If the velocity u = (u, v) is steady, we define the stored components Uj,k and »>,* as

the average flows across line elements of length 2Ay, 2Ax respectively, centred at

the point (xy, yk) :

1    fk+1 1    fi+1
(5.4) Uj.k =  =-r~ /       w(xy , y) dy; vj¡k = kit I      v(x> V^ dx-

¿L\y Jk—i ¿Ax Jj—i

Then the condition div u = 0 for incompressible flow, expressed as

(5.5) S Un dl = 0

2AtAy
(5.8)

in two dimensions, has the exact finite difference analogue

(5.6) 2Ay(uj+i,k — «y-i,*) + 2Ax(t>y,*+i - Vj,k-i) = 0,

i.e. the net flow out of each mesh box is zero.

The fundamental difference formula, corresponding to (4.2) is

(P**1 - p",*)-4AxAt/

= -[(Í?+M - FU*)-2Ay + iFlk+i - Flk-i)-2Ax]-At

where
■. pn+1    pk+l

F*i'k = ÖT77- /        /      p(xí , y, t)uixj , y, t) dy dt,
2 At Ay Jn      Jk-i

i p n+l    pi+1

Fyi,k = 2MÄx J       J -   P^X' Vk ' ^V^X' Vk ' ^ ^ dL

Now (5.8) expresses the fluxes as the average values of products. We can re-express

them as the products of averages :

Fh = pluUj.k + iAy'^^ + OiAy4),
(5.9) 3y dV

fl.k = Plk Vj.k + J Ax2 ̂ J + 0(Ax4).
âx dx

Here py,4 and py,* represent one-dimensional averages, contracted relative to p",*12'

in the x and y directions respectively :

^ pn+l    pk+l

«•* = ôïcnr /     /    p(xí » y> fi dy dt<
2AtAy Jn      4-1

PV'-k = ^xnr /       /      p(x> Vk,t) dx dt.
¿L\tlAX Jn Jj-1
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These quantities must be so estimated in terms of the stored values of p as to

produce a stable, conservative and accurate process. The first necessity is to deter-

mine the optimum space-time mesh. It is essential that a value of p be available at

the centre of each side of the box about a point. This restriction rules out the most

obvious staggered mesh, in which the points at i"+1/2 would lie at the vertices of the

boxes surrounding points at time i". For the first estimates of py,* and py,A would

then be the means of values at adjacent vertices, e.g. py,* = |(Pj>+i2 + plt-i) and

the amplitude of a Fourier mode with wave number kv would be multiplied by

cos iky Ay), which would lead to serious inaccuracies even for moderately large

wave lengths. Averaging may only be carried out along the direction in which a

quantity has been contracted.

The optimum mesh is illustrated in Figure 6; it may be derived as follows. Sup-

pose that (5.7) is being used to calculate p/jt1 from p",*. All the requisite values of

u, v and p at f+112 (in particular, p?±i¿ and p¡¿±i) must be available. Then conserva-

tion will apply over the net of points including p¡¡k and labelled A in Figure 4. The

calculation requires the sets C and D of points at in+1/2; in order to advance their

values to tn+312 the set of points B will be required at tn+l. Conservation applies

separately to these but they are only coupled to mesh A through the sets C and D

at the intermediate time level. There is thus a rectangular grid, with alternate points

at different time levels; but this grid is made up of four independent subsidiary

meshes, each with spacing 2Ax, 2Ay, on which the mass is separately conserved.

Correspondingly, the solution of (5.6) represents four separate flows. A slight

diffusion is desirable to keep these meshes all in step (see §7).

Second order schemes can be obtained as before. The angled derivative method

gives

x i /    n+1       i        n \
Pi.k   —   2\Pi-l.k  +   Pi+l,k),

(5.11) .,
V 1 /    n+l       i n        \

Pi.k   —   2\Pi.k-l   T   Pi,k+l)

K + 2      O-

K + l      X-

— O-)

I
A I       C-X--(

I

-O-

I
-O-

I

B.

-X-

I

Si-
I

Al
k   O-X-O-X-

-D¿-

Al

--X-
I

D I—X-O-

■O

I
-X

k-l   X- 2¿.

Al I
O-X-o

°¿.

I       Al        C
k-2   O-X-O-

I
I

-O-

j-2     j-l

A'        C '       A
— X-O-X-O

I
■o-
j

I
-X-o—
j+l       j+2

Figure 6. Staggered mesh in two dimensions. Points marked with crosses represent the

meshes A and B at integral times l"; points denoted by circles are on meshes C and D at
times tn+m.
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and has | X | = 1. Similarly, we have (corresponding to (4.8)) the staggered mesh

scheme with

/ rr  in\ * V n+1/2
(5.12) Py,* =  Py,* =  py.*     .

This has | X | = 1 provided that

(5.13)
mAí

Ax
+

vAt

Ay
< 2

which is just the Courant-Friedrichs-Lewy criterion.

Once again, these methods can be combined to give a scheme that is accurate to

fourth order in Ax and Ay. The one-dimensional averages py,* and py,* can be ex-

pressed in terms of the stored mean values by

x lro   n+l/2 /   n+1      i       n        \i
Pi.k   =   6l°Pi.k        —   (.Pj-1,* +  Pi+l.k)\,

(5.14)
y lro   n+l/2 /    n+1       i        n        \i

Pi.k   —    6\PPi.k —   KPi.k-1  -r   Pi.k+1)\-

These have the same form as in one dimension; once again, the direction of integra-

tion should be alternated with each time step. Simpler approximations are ade-

quate for the first derivatives in (5.9) ; we therefore write

Fj.k = ![«y,*{8p",*      — (py-i,* + Pj+i,*)}

+ -g-(Pj,*+2   — py,*-2 )(Uj,k+2 — Uj,k-2)\

etc. and substitute into (5.7). The complete scheme is given in the appendix.

If u is independent of position, | X | = 1 provided that

(5.16) -Já^ + J!á|.
Ax       Ay

The effects of dispersion in two dimensions are illustrated in Figure 7, which shows

the distortion of a circular hump as it is convected. The improvement effected by

the fourth order scheme is very striking.

Figure 8 shows the results of a run in which the density distribution was dis-

torted by a sheared velocity field. The higher order method is clearly more accurate

in describing variations over only a few mesh intervals.

We have so far discussed only the linear problem where u is a known function of

position but the treatment can equally be applied to nonlinear problems where u is

a function of time which is computed from additional equations. The evaluation of

the fluxes depends on how the stored values of u and v are defined and this will vary

from problem to problem. For example, a two dimensional equation of motion

solved in conservative form would lead to two dimensional momentum averages

which would have to be contracted to yield the quantities required in (5.9).

Boundary conditions. These have not so far been mentioned. Faulty treatment

of the boundaries may vitiate the computation but the proper approach is generally

straightforward to establish. The simple problem of incompressible flow in a

rectangular region with rigid boundaries illustrates this point.

The boundary condition is that the normal component of the velocity must

vanish or, in integral form, that there is no flux across the boundary. Although div u

vanishes if the fluid is regarded as a continuum, the finite difference analogue will



Figure 7. Dispersion in two dimensions: convection of a scalar by a constant velocity

u = (1, 1) on a mesh with Ax = Ay = 1/20, Ai = 1/80. The diagrams show contours of the

scalar p at values of 0.85, 0.65, 0.45, 0.25, 0.05, and —0.05, numbered from 1 to 6 respectively.

(a) The original distribution; a Gaussian hump, which should be maintained as the motion is

followed, (b) The distribution at t = 1.5 (when the hump has been transported a distance

3\/2) calculated with a second-order scheme on a staggered mesh. The hump is distorted, its

height has been diminished by 30% and negative values of p have appeared in the shaded

regions, (c) The same but calculated by the fourth order scheme. The height is diminished by

about 10%.
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Figure 8. Convection of a scalar by a sheared velocity in two dimensions. The velocity

corresponds to a stream function — 1/tt sin irx sin vy. Initially, there was a Gaussian hump

at the point (3/4, 3/4) which has been drawn out by the shear in the velocity. Notation as in

Figure 7. (a) Distribution of p at t = 3.0 (calculated by fourth order scheme with Ax - Ay =

1/100, Ai = 1/200 to give accurate results), (b) The same, calculated by a second order scheme

on a staggered mesh with Ax = Ay = 1/50, Ai = 1/100. The maximum value is reduced by 25%

and negative values appear in the shaded regions, (c) As (b) but calculated by the fourth

order method. The maximum value has been reduced by less than 20%.
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x=o

k+ I

k-l

j = l

Figure 9. Treatment of the boundary.

not necessarily hold. Consider the box surrounding a point (x!, yk) on the boundary,

where Mi,* = 0 (see Figure 9). Then the total flux into this box is

(5.17) F = Ax\[pv]i,k-i — [pt>]i,*+i| — 2Ay{[pu]2,k}.

If the flux in the «/-direction were multiplied by 2Ax instead, then the analogue of

divu = 0 would not hold and mass would accumulate in (or disappear from) the

box because of this numerical error. In practice, it is easier to program the computa-

tion by introducing fictitious points (xo, 2/*) outside the boundary, setting w0,* to

zero and halving the stored values of vi,k : then points on the boundary can be

processed as interior points. Values of pi,* must be regarded as averages over boxes

of area 2AxAy centred on (x3/2,2/*)- Boundaries parallel to the x-axis can be treated

similarly. Analogous precautions must be taken when there is a discontinuity in the

velocity within the region.

6. Convection of a Vector in Two Dimensions. In this section we consider the

differential equation

dB
(6.1)

dt
= - curl E = curl (u A B)

governing a magnetic field in a perfectly conducting fluid. In two dimensions, B is

described by a stream function (2-component of the vector potential) ^ such that

B
\dy '      dx)'

Then

(6.2)
a*
dt

-u-v*,
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which can be solved by the techniques of §5. Moreover, lines of force are simply

contours of * and can easily be plotted. Nevertheless, it is profitable to consider

methods for integrating (6.1) directly in two dimensions, since these can be ex-

tended to three dimensional computations (where use of the vector potential does

not simplify the problem). We have compared fields computed to the same order of

accuracy from (6.1) and (6.2) and found them to agree.

We write (6.1) in integral form as

(6.3) A j BdS = -j(f) E-dldt.

The numerical treatment of the curl in (6.1) is precisely analogous to that of the

divergence in (5.1): as the divergence was expressed in terms of fluxes across

surfaces, so the curl is given by circulations around the boundaries of an element of

area. Then it is only necessary to estimate the relevant quantities appropriately and

to ensure that over a closed surface

(6.4) /
BdS = 0

at all times, in a finite difference form analogous to (5.6).

Let

(6.5) B - (G,H).

The stored values of G and H are defined as average fluxes across the surfaces of

boxes assumed to extend for unit distance in the z-direction :

(6.6) Glk = ¿¡- /      Gixj , y, f ) dy   and   H?,k = — /      H(x, yk , tn) dx.
¿Ay Jk-i ¿Ax Jj-i

In order to express (6.3) in finite difference form, we need to estimate 2?y,*, the

average value over a time step of the z-component of E at the point (xy, j/*). Then

(6.7) (CyT - Glk) -2Ay = - (£*,*+, - Üw) -Ai,

(6.8) iWÏ1 - Hlk)-2Ax = iEUi.k - #y-i,*)-Ai.

The electric fields 2?y,* represent spot values of the z-component of — (u A B) and

can be written

(6.9) Elk = iulkHlk - vlkGl,k).

As in (5.10), the superscript letter indicates the direction in which an average has

been contracted; thus the quantities on the right-hand side of (6.9) are spot values

at the point (xy, yk) and, in the case of the magnetic field, averages over one time

step:

■j       pn+l -j       i»n+l

(6.10) Glk = -=- /      G(xy ,yk,t) dt   and   Hx-,k = -±- H(xj ,y„,t) dt.
¿At Jn ¿At •* n

(The velocity is assumed to be steady and independent of time.) The field compo-

nents in (6.9) must be estimated in terms of the stored averages (?",* and //",* .

Only one of (6.7) and (6.8) need be solved; the other component can then be
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obtained from (6.4). If we consider the flux out of the box centred at (xy, yk) then

H^X+i could be evaluated from (6.8) and G*+i\* from

(6.11) (#?£, - H?£i) -2Ax + iG7ti.k - G£lk)-2Ay = 0.

This procedure automatically ensures that the finite difference analogue of div B = 0

is satisfied.

Second order schemes. Consider the box centred on (xy, yk) in Figure 6. For a two

level scheme, G must be defined at the points of mesh C and H at those of mesh D.

For the angled derivative method we set

(6.12) Gy+i,*+i = §(Cy+i,* + G"+i,*+2),       -Hy+i,*+i = l(fl?,*+i + Hl+i.k+i)

etc. Suppose that the sweep proceeds over increasing values of y for each value of

x and that we integrate H but set G from (6.11). Then we know all the quantities

required for calculating i?",*+i except (ry+i1,* • But this value is known implicitly from

(6.11) and we can thus simultaneously calculate G*+i¿ and /z7.*+i.

On a staggered mesh, we simply take

fiX 19"l ri"      -.   /T>+l/2. Tjx       _    rrn+l/2
(.0.13) Cry,*  =  try,*     ; iiy,*  —  .ay,*     .

The mesh is basically the same as that used for the scalar equation but the disposi-

tion of quantities over the points is more complicated. There are in fact four separate

meshes : A and B at integral time levels and C and D at intermediate levels. In

each of these, G, H, u and v are defined at points of the meshes in Figure 4, as sum-

marized in Table 4. All quantities u, v, G and H are defined at each alternate point

in space on a given time level. However, conservation of flux in the form (6.11)

applies only to the individual meshes A , B , C and D . Moreover, the two meshes

at a given time level are only related indirectly, via those at the intermediate level.

Fourth order scheme. The same staggered mesh can be used and the procedure

follows that outlined for the angled derivative method. Thus, if we sweep over y for

each value of x, new values of H may be found by integration while those of G are

calculated from the flux conservation law (6.11). In (6.9) we set

Cry,* —  sLoCry,*       —   (try,*-i -+- tjj,k+l)\,

Hj.k = i[8H",k     — iHJ-i.k + -ffj+i,*)],

and substitute into (6.8). Before we can evaluate Hj,k+i (and, from it, (r"+i,* as well)

it proves necessary to express t?"-i,wi and G"+i** in terms of values of G and H that

are currently available, by using (6.11). The full difference formula appears in the

appendix. Once again, the directions of integration should be reversed after each

time step.

Integral formulation is more important for the vector than for the scalar equa-

tion : it leads naturally and unambiguously to two equivalent expressions with fourth

order accuracy in Ax and Ay, in which only four spot values of the velocity com-

ponents appear. Moreover, flux is exactly conserved. By contrast, a fourth order

treatment of (6.1) in the differential forms

dl=  -± (UH - vG)
dt dx

7 We could have chosen to integrate 6? and to set H from div B = 0.
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Table 4

Defining Quantities on a Staggered Mesh in Two Dimensions

Mesh G H Time level

A'
B'
C
D'

A
B
C
D

B
A
D
C

B
A
D
C

A
B
C
D

f

¿n+l/2

¿n+l/2

or

(6.15)
dH

dt
= B-Vv - u-VH - 7/V-u

would have involved more values of the velocity components without ensuring exact

conservation of flux. Simplifying the expressions for p <SC 1 would also have proved

tricky.

In discussing these schemes, it has been supposed that values of My,* and vx,k are

already known. This will be so if they are independent of time but in a nonlinear

problem spot values of the velocity components must be evaluated from the aver-

ages that are available. If density and magnetic field are being evaluated then the

velocity components cannot simultaneously be appropriately defined for both of

them.

The simplest boundary condition is that the normal components of both u and

B should vanish at the walls (which must then be rigid and perfectly conducting).

Then the electric field likewise vanishes and boundary points can be treated as

interior points if an extra row is inserted as in Figure 9.

7. The Introduction of a Slight Diffusion. The schemes outlined above are prone

to two different numerical errors, which can be remedied by including a small

diffusive coefficient. First, it is quite possible for values of quantities on each of the

four independent meshes to differ by constant amounts; indeed, such differences

will be produced on a staggered mesh by inexact initial values. Secondly, any

numerical method, subtle though it may be, is bound to fail for variations on the

scale of a few mesh intervals. Yet the velocity field will usually generate such fine-

scale effects, whose computed behaviour will then be peculiar. This can be masked

by inserting diffusion into the equations so that the fine-scale variations are

obliterated [6].

The differential equations describe a nonlinear coupling between Fourier modes,

by which energy is continually fed into higher and higher modes. A similar coupling

is described by the difference equations, except that energy which ought to be fed

into very high modes may appear in lower ones instead, since modes with wave

numbers (fc^, ky) and (fc* + 2lir/Ax, fc„ + 2mir/Ay), where I and m are integers,

cannot be distinguished. Any difference scheme will therefore couple the wrong

modes for large fc even if energy is conserved by the numerical process. Unless energy

is removed by diffusion as it reaches these high wave numbers, physical errors will

arise.

In fact, the difference schemes were developed to study the equation

(7.1) — = curl (u A B - r, curl B) = curl (u A B) + t;V2B
dt
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under conditions when the magnetic Reynolds number Rm = UL/n was very large

and the time variation of B was slight. (Here U is a characteristic speed and L a

length characteristic of the system; the resistivity is assumed to be uniform.) Then

the curl of (u A B) almost vanishes and the residue is balanced by a small diffusive

term. So it is more practical to accept the presence of the resistive term8 and then

to ask : how large a value of Rm can be described adequately by the numerical process

on a given mesh? A reasonable requirement is that diffusion should dominate con-

vection for modes with a dispersion error of more than 5%. On a grid of 50 X 50

points with a smooth velocity field, a second order scheme can treat Rm S 200 and a

fourth order scheme Rm á 1000 with sufficient accuracy. This is confirmed in

practice and the maximum value of Rm varies as the square of the number of mesh

intervals J. An effective lower limit to Rm is set by assuming that the choice of Ai is

not affected by the resistivity : then Rm ^ J.

For constant n, the resistive terms in (1.3) and (1.4) can be approximated to by

the Dufort-Frankel method [1]. To the scalar equation we add terms of the form

(7.2)

AÍ   r/   n+l/2     ,        n+l/2\ /   n       ,        n+l\i
V 7—5 IKPi+l.k    -r Pi-l.k )   —   \Pi,k -\- Pi.k   )\

Ax2

, ¿«    ri   n+l/2     ,        n+l/2\ /   n       .        n+l\i
+ 11—, W.Pi.k+i   + Pj.*-i ) — (.Pi.k + py,* )J.

This method is unconditionally stable and sufficiently accurate for our purpose so

long as n is small. These resistive terms are incorporated in the formulae in the

Appendix. If n is a function of position, the second differences can simply be altered

to include this variation. Resistive diffusion causes the four meshes A , B'', C', and

D' to relax exponentially to the same values with a time constant iAx2/2v). Since

all the meshes are connected through the diffusive terms, one might expect con-

servation on each mesh (and over the system as a whole) to be affected, but it can

be shown that magnetic flux continues to be conserved.

8. Extension to Three Dimensions. The higher order methods introduced in

§4 extend the class of problems that can be tackled on a given mesh in two di-

mensions. In three dimensions, schemes with this accuracy are essential. The

necessary staggered mesh is illustrated in Figure 10: it can be thought of as the

crystal lattice of NaCl with, say, sodium atoms representing points at integral times

and chlorine atoms those at half-integral time levels. Thus there are two interpene-

trating face-centred cubic lattices. Values of all three components of both u and B,

and also that of p, have to be stored at each point on the mesh.

The necessary difference schemes, though complicated, can be constructed on

exactly the same principles as those of §5 and §6. We put

(pîxi - p?.k,i)-8AxAyAz = -[(Fx+Uk.i - íy-i.t.i) -4Aî/Az

+ (*?.*+!,, - Flk-i.d-áAzAx + iFlk.i+i - Flk,l-l)-4AxAy]-At
(8.1)

and

(8.2)
«?"jtî - (??,*,,)-4A2/AZ

- -[iElk+1,1 - EZj,k-ui)-2Az - iElk.1+1 - Elk,i-i)-2Ay]-At

8 If the actual resistivity were negligible, an artificial fourth order diffusion term, —r;V4B,

might be inserted: this would cut off the smallest modes much more steeply and tidy the calcu-

lation, provided that it left the physics unaffected.
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Figure 10. Staggered mesh in three dimensions. Circles indicate points at integral time i"

and crosses denote those at intermediate times tn+in.

etc. The fluxes Fx, F", F* and the electric field components Ex, E" and E* have then

to be estimated. It should be noted that the averaging processes differ for the various

components of (pu) and (u A B). The components of u and B themselves will be

defined over surfaces while the "spot values" of (8.2) now correspond to averages

along lines through these surfaces. Thus the combination taken will depend on the

line that is chosen : for the normal field at the centre of a face of the cube in Figure

11, the numerical scheme merely estimates ^*(u A B ) • dl taken around the perimeter

of that face. The final expressions resemble those obtained for two dimensions and

will not be given here.

The averaging process depends on how u has been calculated from the equation

of motion. In some cases, the velocity may be a function of the field B and of p and

calculable from them [13]. In others it must be found from the equation of motion,

which can itself be expressed in the conservative form

(8.3) ",(pu) = -VP
at

(where P is a pressure tensor) analogous to (1.1) and (1.2). In that case the funda-

mental quantities are p"*,¡ and

(8.4) (pu)"*,¡ = Ag JJJ p(x, y, z, i")u(x, y, z, f) dx dy dz

and u must be evaluated from them.

9. The Treatment of Polar Meshes. All that has been said so far applies equally

to polar meshes. It need only be remembered that the dimensions of the opposite

sides of a box are no longer identical. Fluxes and circulations must therefore be

weighted accordingly. Consider, for example, polar co-ordinates (r, 8) in two di-

mensions. We define quantities at the points (r,- ,8k) on a mesh with spacing Ar, A0

and have to bear in mind that the arc lengths (ry_iAÖ) and (ri+iA0) are unequal.

Thus, for example, (5.7) becomes

p?,*)-4ryArA0

= -Hrj+iFj+Lk - rj-XFrj-i,k)-2AB + (I*iMi - F°,k-i)-2Ar]-At.

The equations for a magnetic field require similar alterations.

(9.1)

/    n+1
( Pi,k
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In three dimensions, the scalar equation expressed in cylindrical polar coordi-

nates (r, 8, z) resembles (9.1) but the expressions for the magnetic field are more

involved. For the z-component, K, of B we have

(9 2)     (*&*-*?*.'>•*>**«

= -[iri+lE*i+i*,i - rj-^j-i.k.i)-2A8 - iErj,k+i.i - £y,*-i,i) -2Ar]-Ai.

The corresponding equations is spherical polar coordinates are more complicated.

10. Summary. We have throughout preferred to integrate the differential equa-

tions over elements of space-time defined by mesh points. The values of variables

in the differential equations are then replaced by averages, whose definition must

be borne in mind when formulating the difference schemes. This approach has

enabled us to devise schemes with a high order of accuracy, in a consistent manner.

For example, the value of density stored at a point is defined as the average

over a box surrounding that point, at a given time. After a time step the increment

in the density is obtained by evaluating the total flux of matter into the box during

that interval. Similarly, a component of magnetic field is defined as the average

through an element of area at a given time. The increment in the field is then the

integral of the e.m.f. around a line enclosing the element, taken over one time step.

Thus we can distinguish between fundamental quantities, which are stored, and

the fluxes which change their values. The former are defined as averages over

volumes or surfaces (in three dimensions) while the latter are averages over surfaces

or lines and over time. Simple boundary conditions then imply that the fluxes

vanish at the walls. Our problem has been to compute the fluxes from the funda-

mental quantities in such a way that mass and magnetic flux are exactly conserved

and a sufficiently accurate solution is produced. Adequate accuracy is obtained

by estimating fluxes with schemes that are correctly centred in time. This favours

the adoption of a staggered mesh, where fundamental quantities are defined at the

points where they are required. Making a Taylor expansion in the space coordinates

enables us to choose schemes that minimize the coefficients of fourth order terms

in the mesh spacing. The latest values of fundamental quantities available at each

mesh point can conveniently be incorporated into partially implicit methods.
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Appendix.

Fourth order difference schemes on a rectangular mesh in two dimensions. The

sweep proceeds over increasing values of j and fc. We set

Ai Ai

X~Ï2Kx L-VÄx~*

Ai ,, Ai
M = n

12Ay Ay2

and write
5     n+l/2           ii    n+l/2 n+l/2-.
OxPi.k         —   ï\Pi+î,k    — Pi-2,k )
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etc. as an estimate of the first derivative. Then

»+i     Bplk + C + D + E
Pi*   =-1-

where

A = 1 - iXuj+i,k + Yvj,k+i) + (L + M)

B - 1 - (Xwy-x,* + Yvj,k-i) - iL + M)

C = X[wy_i,*(8p"-i,*   — Pj-2,k) — My+i,*(8p"+i,*   — py+2,*)

+ 2(0¡,p"-i,*  -ÔyUj-i^k  —  8yPj+l,k •&yUj+i,k)]

D — F[i>y,*_i(8p"*-i   — plk-2) — ^y,*+i(8p",*+i   — pyVw)

+ 2(SIp"*-i '3xV,-,*-i — SxPyVn -ôxVj^+i)]

p T /    n+l/2    1        n+l/2-,     .      -,,/    n+l/2    ,        n+l/2-,
Ü,   =   L(pj+i,k    +  py-i,* )   + AZ(py,*+i    +  pj,k-l ).

We integrate

and set

„B+1      B'Hlk + C +D' + E'
Bj.k-j7-

Ön+l /-fn+1       ,    ***   / rrn+1 rjn+1        \
3,*      =   try-2,*  -+- -j—  (üy_i,fc_i   —  tlj-\,k+l)

Ay

from div B = 0.

A' = 1 - (I«?+u + Yvlk+i) + (L + M)

B' = 1 - (XuU.k + Yvlk-i) -iL + M)

C   = — X[uj+i,ki8Hj+i,k — Hj+2ik) — Uj-i,ki8Hj-i,k — i?"-2,*)

<¿t„x        /-¡n+l/2 x -n,n+l/2\
— O(0y+i,*try+i,*    — fy-l,*lry-i,* )

+ ivx+i,k - vXj-i.k)iG£lk-i + G"+i,*+i)]

D  = —Y[vj+i,kHj,k-2 — Vj-i,kHj,k+2]

E' = L(H$tf + Hïll2) + MiHÏÏVi2 + Htk-Í2).
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