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(G) A basic difference in performance between GS and MGS is that once GS

loses orthogonality, it produces almost identical vectors thereafter. The maximum

inner product is usually .999 etc. (and this is to be expected from the error analysis

of 3). On the other hand, MGS continues to generate distinct, if not orthogonal,

vectors. Thus the inner products obtained (after orthogonality is lost) normally

range between 0.1 and 0.9. This is no doubt due to the fact that vk is always or-

thogonal to î)i_! within machine accuracy. This is suggested by the error analysis

and confirmed by experiment.

I wish to acknowledge the able assistance of Rex Wolf in preparing the programs

for these experiments.
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A Matrix Reduction Problem

By J. W. Moon and L. Moser

1. Introduction. Let An denote an n by n matrix of 0's and l's that is non-

singular over the field of residues modulo 2. Fine and Niven [1] have shown that

these are c„2n such matrices where

—ÛO-00-
Let fiAn) denote the minimum number of operations needed to transform An into

the identity matrix /„ . (It may be necessary, of course, to interchange certain

rows but we do not count this as an operation.) The object in this note is to give

bounds for fiAn) which at least determine its order of magnitude for almost all

matrices An ■ These may be of some interest in connection with the question of the

minimal number of operations required to invert a matrix. Indeed our methods and

results apply with only minor modifications to the case of matrices with real ele-

ments provided that in performing arithmetic operations only a fixed number of

significant digits is retained.

Theorem. There exist positive constants Ci and c2 such that

*2l   < fiAn)    <  J5ÏL
log n log n

for almost all matrices An ; i.e. for all but a fraction which tends to zero as n tends to

infinity.

2. A Lower Bound for fiAn). We will show that

fiAn)   >   X   =   ii^2
log2n

for almost all matrices An where e is an arbitrary positive constant.
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If An can be transformed into I„ in t operations, then clearly /„ can also be trans-

formed into An in t operations. Hence, the number of matrices An such that/(A„) ^

X certainly does not exceed

«ÍÍÍ-
-CDsince after choosing a pair of rows in one of [ _ 1 ways there are 3 alternatives ; we

may add either of the rows to the other or we may leave them unchanged. The n!

takes into account the number of ways of permuting the rows. But,

(3(»))\, < (t)V*.

The quotient of the last expression divided by c„2n , the total number of matrices

An , tends to zero. This suffices to complete the proof of the lower bound îor fiAn).

3. An Upper Bound for fiAn). We will now show that if the matrix An can be

transformed into 7„ in a finite number of operations then it can be so transformed

in at most (4 + e)n2/log2 n operations if n > nie).

Let k be a positive integer less than n. We may suppose that the first row of An

does not begin with k O's. Add the first row to every other row that begins with

the same k entries. Now consider the second row of the matrix that does not begin

with k O's; add this row to every other row that begins with the same k entries.

Repeat this process as long as possible. We may then rearrange the rows to obtain a

matrix in which no two of the first t rows have the same first k entries and the last

n — t rows all begin with k O's, where t is some integer not exceeding 2* — 1. This

has been accomplished with at most n — t operations. It must be that fc ^ t for

otherwise it would be impossible to transform An into In . At most kit — 1) more

operations are needed to change the first fc columns to upper triangular form with

l's on the main diagonal. At the end of this stage at most (n — t) + kit — 1) á

n — 3fc -f- fc2* operations have been employed.

We now repeat this process to the entries in the next fc columns and bottom

n — fc rows. With at most n — 3fc 4- fc2* more operations we obtain a matrix which

has l's on the main diagonal and O's below the main diagonal in the first 2fc rows.

(We ignore the effect of these operations on the entries above the main diagonal for

the time being. ) By repeating this process at most n/k 4- 1 times we will obtain an

upper triangular matrix with ones down the main diagonal. It is clear that the opera-

tions performed at each stage do not affect the properties established at the pre-

ceding stage.

To obtain O's above the main diagonal also, we now repeat this process, starting

at the lower right corner and working up the main diagonal. Therefore, the number

of operations necessary to transform An into I„ , if it can be so transformed, does not

exceed

2 k 4- l) in - 3fc 4- ¿2*) = 2 in (| 4- 2k\ + fc(2* - 3) - 2n\ .

If we now let fc = [log2 n — log2 log2 n], then an upper bound for the resulting ex-
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pression is 4n2/ (log2 n — log2 log2 n — 1 ). The result stated at the beginning of this

section now follows immediately.

4. Generalizations. The corresponding problem may be considered for n by n

matrices whose entries are taken from the integers 0, 1, • • • , fc — 1. If an operation

on such a matrix consists of adding a multiple of some row to some other row modulo

fc, then it can be shown that the foregoing theorem remains valid in this more general

situation for any fixed value of fc. In fact, the bounds in Sections 2 and 3 will still

hold if log2 n is replaced by logt n.
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Evaluation of Lib) = %rl [ i-^j cos ibx) dx and of

Similar Integrals

By Rory Thompson

Medhurst and Roberts [1] suggest the problem of evaluating /„(&) for non-

integral values of b. There will be developed in this note an effective recursion scheme

for such a calculation. In particular, it can be used to evaluate I„(0) for moderate

values of n.

Following a suggestion by Hamming [2, p. 164], we differentiate /„(&) with

respect to the parameter b, which is permissible by virtue of uniform convergence

of the resulting integral for n > 2 and continuity of the corresponding integrand

with respect to both x and b.

Thus we obtain

/°°  /   * \n—1
(- 1     sin x sin ibx) dx

-oo   /   • \ n—1

= iT1 I    (-)      [cos ib -+- l)x — cos Q> — l)x] dx

=   \ [in-lib   4-   1)   -  In-lib   -   1)     .

If the first expression for /„ (£>) is integrated by parts there results the relation

In'ib) = in- Db'1 2*~l jf (~Y cos ibx) dx

— nh~l 2if~l I    (-J      cos x cos ibx) dx

Inib)    -   2W6 [in-lib   +   1)    +   In-lib   -    1)].
n - 1
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