
Zeros of Sections of the Zeta Function. I

By Robert Spira

1. Introduction. The sections of the title are the Dirichlet polynomials:

(1) U(s) = ¿n"5
n = l

We write s = a -f- it, and take M ^ 3. Turan [1], [2] showed that the Riemann hy-

pothesis would be true provided the zeros of ¿"«(s) all had real parts ^1 +fc/ M1/2,

for some positive k. The author verified that these real parts were ¿ 1 for M í=

100 and | t | ^ 1000. Apóstol [3] generalized some of Turán's results to L-series.

The present author's work also raises interest in these zeros in relation to the Rie-

niann hypothesis for the functions

(2) guis) = fv(s) + x(s)U(l - s)

where x(s) is the functional equation multiplier for the f-function, i.e.,

f(s) = x(s)f(l - s).
In this paper, theorems on zero-free regions of fji/(s) are derived, the methods

used for calculating the zeros are given, and the locations of the zeros are described.

The numerical values (to QD) of the zeros may be found in Spira [7]. The zeros

calculated are:

(a) M: 3(1)12,0 < i ^ 100,
(b) M = 10*, k: 2(1)5, -1 S a, 0 < i ^ 100,
(c) M = 1010, a string of zeros, 0 < i g 100,

(d) Sequences of zeros sM , where s.v+i is obtained by applying Newton's method

to tM+iis) with initial approximatif sM • The following sequences were calculated:

M = 4(1)50, Sa = lowest zero; Ü7 = 10(1)35, Sio = next to lowest zero;

M = 10(1)40, sio = .35 4- 14.50z; M = 11(1)50, sn = .54 + 37.65¿; six sequences,
M = 11(1)25, su = .60 + 25.0O¿, .60 + 30.43t, .57 + 32.86¿, .57 + 40.86¿,
.53 4- 43.25¿, .54 4- 48.10z'.

Figures 1, 2, and 3 give the zeros (a). Two sequences (d) are also given in Figure

3. Figure 4 gives the zeros (b) and (c). Papers by Langer [4] and Wilder [5] estimate

the number of zeros of ¿"«(s) to be within M of T(logilf)/2ir. Table I gives the

number of zeros found and the values of 100(log M)/2t for comparison.

2. Zero-Free Regions.

Theorem 1. If o ^ 1.85, f,w(s) ^ 0.

Proof.

(m(s) I ^ 1

-   M -1 pM

£ n—    è 1 - 2~° -        x"
_n-2 J J2

dx

^ 1 - [2"" + 2W/U - 1)] = 1 - 2-'(<r + 1)/U - 1).
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Table I

547

M

3
4
5
6
7
8
9

10
11
12

102
103
104
105
10'»

Number of
zeros < 100

17
22
26
29
31
33
35
157

38
40

73
110
146
183
366

100 (Log M)/2tt

17.485
22.064
25.615
28.517
30.970
33.095
34.970
36.647
38.164
39.549

73.294
109.940
146.587
183.234
366.468

Left limit of zeros

-1.
-1.73050
-2.42601
-3.11889
-3.81199
-4.50517
-5.19834
-5.89151
-6.58468
-7.27784

73579
27644
57337
945S5
30392
67486
57183
12961
42797

The last five entries for number of zeros means the number found for a §
It is probable that there are no others for i g 100.

Since 2 " and (a 4- l)/(a — 1) are decreasing functions, we need only seek the root

of 1 = 2"'io -f- l)/(cr — 1), which is easily seen to lie to the left of 1.85.

Theorem 2. If a ^ 1 - M, fM(s) ?¿ 0.

Proof.

Çvis) I è M"
|_ n=l

> m~ [l 4- 2- 4- f" ' x- dx]

è M~' - [1 4- 2" + (M - 1)1_7(1 - a)}

^ M~° - [1 4- 2" + (M - I)—],

since Af - 1 á 1 - «r. Thus f„(s) ^ 0, provided M~° > 1 4- 2'" 4- iM - l)-'.

Dividing this last by i M — Vf, and noting that the resulting right hand side is

^2.25 for M ^ 3, our theorem will be true provided [M/iM - l)]^"1 ^ 2.25.

Putting m = M — 1, we know by the binomial theorem that (14- l/m)m is an in-

creasing function, so that [M/iM — 1)]M_1 is always 2:2.25 as it is so for M = 3.

One can obtain closer bounds in particular cases.

Proposition. If M " > ^"=ï n " and ai < a, then M "l >  /Z*M—l     -a,
i n

Proof. Let a = ai + k,k> 0. Then AT AT™ = M~"Mk > M"^2%=}n- =

Y^n=i Mkn^^ En-i'nV = = T.n=ln-'1, Q.E.D. Thus, the root of AT* =
~ZYZn=i n~° gives a right hand bound for a zero-free half plane of tM(s). Column 4 of

Table I gives this root, rounded to ten places, for 3 ^ M ^ 12.

A crude upper bound for this root is — M1/2, for M ^  18. To show this, let

a = M112, then

(3) n   > ÍJo

xa dx + (M - l)a
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and

¡.M-2

\       xa dx = (AT - 2)a+1/ia 4- 1) = (a-l)((Af - 2)/(Af - l))(Af - 2)"
Jo

> UM - 2)112 - 1)(6/7)(Ai - 2)a = (6/7)(Af - 2)a+m - (6/7)(Af - 2)a.

We can drop the second term as it is overpowered by the second term of (3), so we

need only show f(Af - 2)a+m > AT. After dividing by (A/ - 2)a and setting

m = M - 2, this transforms to fm1/2 > (1 + 2/m)(m+2> . Now (m + 2)1'2 < m/2

for m 2: 6, so the right hand side of the last inequality is bounded by e, which the

left hand side will surely exceed if m ^ 16, or Af ^ 18.

As shown in Turan [2], the 1.85 bound of Theorem 1 can be reduced to 1 for

M g 5. For M = 3, one can do slightly better. If f3(s) = 0, then

2" cos it log 2) + 3"" cos (i log 3) = -1,
(4)

2~* sin (i log 2) 4- 3"" sin (i log 3) = 0.

Squaring and adding, we obtain

(5) cos (ilogf) = {6' - [(*)' 4- (#)•)}/2 = gia)

and

(6) g'ia) = (6>g6 -f- (logf)(9- - 4T')]\/2.

For a Ú 0, 9"° ^ -T", so g'ia) > 0, and for a > 0, log 6 > 4"'logf, so

g'ia) > 0 for all a and gia) is strictly increasing. From (5), | gia)\ ^ 1, and a de-

tailed calculation gives — 1 and .78788 49110 • ■ • as the limits on a.

A curious consequence of the above analysis is the following :

Proposition. If o j¿ \, f3(s) and f3(l — s) cannot both be zero.

Proof. Let f3(s) = 0. We can take t ^ 0. From the second equation of (4), it

follows that sin ( i log 2 ) and sin ( i log 3 ) are both zero or both nonzero. If they both

vanished, we would have i log 2 = kw, t log 3 = jV, k and j nonnegative integers.

If i 5¿ 0, (and hence k, j ^ 0), we can divide these last two equations, obtaining

log 2/log 3 = k/j, or 3* = 21, which is impossible for k, j > 0. If i = 0, we could de-

duce from the first equation of (4) that 2"° + 3~" = — 1, which is impossible. Hence

sin (i log 2) and sin (i log 3) are nonzero and we can write

(t)' = -(sin(ilog3))/(sin(ilog2)).

Thus, a is determined as a function of i, so that two distinct values of a are impossible

for a given t.

This shows that if gzis) is zero off a = 5, it cannot happen for the reason

his) = f3(l — s) = 0. In Spira [6], it was shown that for i sufficiently large, (7i(s)

and g2is) satisfy the Riemann hypothesis. In Spira [10], the calculations are de-

scribed indicating zeros off the critical line of gMis) for M =ï 3.

3. Method of Calculation. The zeros for M ^ 1010 were found by locating a zero

within a square, searching the square by absolute value tests for small functional

values with the four possibilities of signs for the real and imaginary parts, closing in

with linear interpolation, and then a final tightening with a high precision Newton's
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method. For the zeros with M S 12, it was possible to search the entire strip within

which the zeros were known to be located. For larger M ?¿ 1010, only the region to

the right of a = — 1 was searched. From the general appearance of the zeros, and

the fact that the numbers of zeros found are so close to 100(log M)/2w, it seems

likely that all the zeros for 0 á i á 100 have been found for the M considered. An

integration was performed over the boundaries of regions searched, verifying the

number of zeros obtained.

The zeros for M — 1010 were calculated in a sequence using Newton's method,

with initial approximants :

so = 1 4- 27Tz71og 1010,

si = 1 4- 4«/log 1010,

Sm+1   ==   Sm  -p   v. Sm Sm—1 / .

For large M, the direct use of series ( 1 ) would involve an impractical amount of

time. Thus, it was necessary to use the asymptotic expansion derived from the

Euler-McLaurin formula :

, .       ?T    -.,  N~'       N1-   .  AT*  .   M1''
iitis) = 2-, n    +—- 4- —- 4- -,-

n=l 2 1 — s 2 1 — s

I2v— 2m       n /2r—2 \

to        r> /2v—2\

A- error.

One also needs, for Newton's method, a similar asymptotic expansion for tM' is).

The programs for these were obtained as modifications of programs for f(s) and

f (s), available as a separate report [8]. Note that the term Af1-S/(1 — s) is very

large near a = 0, and also changes argument very rapidly as i varies. The direct and

asymptotic series were checked against each other for M = 100, as were most of the

other programs. The set of zeros finally obtained was differenced and also resubsti-

tuted to verify that they were good approximations to the true zeros. The compu-

tations were carried out at the University Computing Center, University of Ten-

nessee (NSF-G13581).

4. The Zeros. For Af g 12, the zeros appear to have a pattern which has two

parts. One part is a line of Af — 1 zeros stretching upward in the left half plane with

a negative slope which increases negatively with M. The other part consists of zeros

which at first form a line near a = \, the zeros of fM(s) lying quite close to the zeros

of f(s), and then this line disappearing in a general scattering or blossoming. For

M = 3, this scattering appears almost immediately, while for increasing M, the

start of scattering moves progressively upward, being around 70 or 80 units up at

M = 12. Since

m        p /2v—1 \

fis) = U-i(s) + M-/2 + M'-'/is - l) 4- Z —( II (s +j) lAf1—2" + R
v=i i¿v) ! \ ,--o /
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we can expect a reasonable proximity of the zeros of f (s) and ¿"m-i(s) whenever the

remaining terms are small. For fixed s, the B2v terms become small when M exceeds

í/2tt (Lehmer [9]). Near a = \, M1_"/(s - 1) ~ A/1/2/i which will certainly not be

small when Af <~ i2. Turning the argument about, we can see that t(s) is roughly

approximated by fj/(s) near the critical line for i < 27TÜ7, but i also large enough so

that Af1/2/i is small.

In Figure 3, one can observe the zeros of ¿"aí(s), for successive Ü7, circling first in

one direction and then in the other around the zero s0 = .5 A- 37.586z of t(s) (de-

noted by a small square). This circling can be explained by setting sM to be such a

zero, then f.tf+i(s.w) = (Af 4- 1) , and sM can be moved slightly to s.« so that the

vectors MsM' have overcome the disturbance (Af 4-1) 'M. The disturbance for

each M will be approximately M~s", and as this rotates depending on M, the zeros

Sm will be rotating one way or another depending on the quadrant of M"H.

The successive lowest zeros, also on Figure 3, appear to have imaginary part

slightly less than 2ir/log Af. Thus, the vectors n _s have consecutive arguments

spread between 0 and 2ir — e, for this lowest zero. This appears to be true for every

AÍ. The real parts appear to be strictly increasing with upper limit 1.

As noted in Turan [2], every point on the line a = 1 is an accumulation point of

the zeros of CmÍs), but to see the approach one must proceed to very large Af, as in

Figure 4. For such large Af, the zeros lie on a line which sags to the left between i

locations of zeros of f (s), and at such i locations there is a forcing to the right as well

as a shortening of the intervals between zeros.

Thus, we have described the empirical behavior of the zeros of ¿"«(s). In Turan

[2] there is given a proof by Jessen that fif(s) 5¿ 0 for M ^ 5, by showing that

Re f.w(s) > 0 for f^l, The present author was able to extend this result to Af = 6

and M = 8. However, one cannot show Re his) > 0 for a ^ 1, but it appears that a

different method can settle this case. These matters require extensive calculation,

and further study, and will be taken up in part II of this paper.
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