Mathematics of

 Computation

 Computation}

Volume 20, Number 96

October, 1966

Published by the American Mathematical Society

Providence, Rhode Island

Editorial Committee

Eugene Isaacson, Chairman, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
Avron Dovglis, Department of Mathematics, University of Maryland, College Park, Maryland 20740
Alan Fletcher, Department of Mathematics, University of Liverpool, Liverpool 3, England
Walter Gautschi, Computer Sciences Department, Purdue University, Lafayette, Indiana 47907
Alan J. Hoffman, IBM Research Center, Yorktown Heights, New York 10598
A. S. Householder, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Peter D. Lax, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
Y. L. Luke, Midwest Research Institute, Kansas City, Missouri 64110

Philip M. Morse, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Harry Polachek, Research Division, U. S. Atomic Energy Commission, Washington, D. C. 20545
Daniel Shanks, Applied Mathematics Laboratory, David Taylor Model Basin, Washington, D. C. 20007
R. S. Varga, Case Institute of Technology, Cleveland, Ohio 44106
J. W. Wrench, Jr., Applied Mathematics Laboratory, David Taylor Model Basin, Washington, D. C. 20007

Information for Subscribers

The journal is published quarterly in one volume per year, with issues numbered serially since Volume 1, Number 1. The subscription price is $\$ 16.00$. All back volumes are available. For Volumes 1-19 (1943-1965), prices are $\$ 20.00$ per volume and $\$ 6.00$ per issue.

Unpublished Mathematical Tables

The editorial office of the journal maintains a repository of Unpublished Mathematical Tables (UMT). When a table is deposited in the UMT repository a brief summary of its contents is published in the section Reviews and Descriptions of Tables and Books. Upon request, the chairman of the editorial committee will supply copies of any table for a nominal cost.

Microcard Edition

Volumes 1-10 (1943-1956), Nos. 1-56 are now available on Microcards and may be purchased from the Microcard Foundation, Box 2145, Madison, Wisconsin 53705.

Subscriptions, address changes, business communications and payments should be sent to:

American Mathematical Society
P. O. Box 6248

Providence, Rhode Island 02904

Mathematics of Computation

A Quarterly Journal Edited by EUGENE ISAACSON, Chairman

AVRON DOUGLIS	ALAN FLETCHER	WALTER GAUTSCHI
ALAN J. HOFFMAN	A. S. HOUSEHOLDER	PETER D. LAX
Y. L. LUKE	PHILIP M. MORSE	HARRY POLACHEK
DANIEL SHANKS	R. S. VARGA	J. W. WRENCH, JR.

XX
NOS. 93-96

TABLE OF CONTENTS TO VOLUME 20

Pages
Borosh, I. and Fraenkel, A. S. Exact Solutions of Linear Equations with Rational Coefficients by Congruence Techniques 107-112
Brandt, Achi. Estimates for Difference Quotients of Solutions of Poisson Type Difference Equations. 473-499
Butcher, J. C. On the Convergence of Numerical Solutions to Ordinary Differential Equations 1-10
Carlson, B. C. and Nellis, W. J. Reduction and Evaluation of Elliptic Integrals. 223-231
de Balbine, Guy and Franklin, J. N. The Calculation of Fourier Integrals. 570-589
Delves, L. M. Exponential Differences 246-256
Denman, H. H. Minimax polynomial approximation 257-265
Döring, Boro. Complex zeros of Cylinder Functions 215-222
Duris, C. S. A Simplex Sufficiency Condition for Quadrature Formulas 68-78
Fraenkel, A. S. and Borosh, I. Exact Solutions of Linear Equations with Rational Coefficients by Congruence Techniques 107-112
Franklin, J. N. and de Balbine, Guy. The Calculation of Fourier Integrals 570-589
Fyfe, D. J. Economical Evaluation of Runge-Kutta Formulae 392-398
Gautschi, Walter. Computation of Successive Derivatives of $f(z) / z$ 209-214
Godart, M. An Iterative Method for the Solution of Eigenvalue Problems 399-406
Haber, Seymour. A Modified Monte-Carlo Quadrature 361-368
Hubbard, Bert. Some locally One-Dimensional Difference Schemes for Parabolic Equations in an Arbitrary Region 53-59
Jagerman, D. Investigation of a Modified Mid-Point Quadrature Formula. 79-89
Kaniel, Shmuel. Estimates for Some Computational Techniques in Linear Algebra. 369-378
King, Richard. Runge-Kutta Methods with Constrained Minimum Error Bounds. 386-391
Lambert, J. D. and Shaw, B. A Method for the Numerical Solution of $y^{\prime}=f(x, y)$ Based on a Self-Adjusting Non-Polynomial Interpolant 11-20
Leavitt, J. A. Methods and Applications of Power Series 46-52
Lehman, R. S. Separation of Zeros of the Riemann Zeta-Function 523-541
Less, Milton. A Linear Three-Level Difference Scheme for Quasilinear Parabolic Equations 516-522
Lether, F. G. The Use of Richardson Extrapolation in One-Step Methods with Variable Step Size. 379-385
Mangad, Moshe. Bounds for the Two-Dimensional Discrete Harmonic Green's Function 60-67
Mechel, Fr. Calculation of the Modified Bessel Functions of the Second Kind with Complex Argument 407-412
Mitchell, W. C. The Number of Lattice Points in a k-dimensional Hypersphere. 300-310
Moore, D. H. A Division Algebra for Sequences Defined on All the Integers. 311-317
Nellis, W. J. and Carlson, B. C. Reduction and Evaluation of Elliptic Integrals. 223-231
Roberts, K. V. and Weiss, N. O. Convective Difference Schemes 272-299
Sato, Chikara. Correction of Stability Curves in Hill-Meissner's Equation. 98-106
Schmid, L. P. and Shanks, Daniel. Variations on a Theorem of Landau. Part I 551-569
Shanks, Daniel and Schmid, L. P. Variations on a Theorem of Landau. Part I 551-569
Shanks, E. B. Solutions of Differential Equations by Evaluations of Functions 21-38
Shaw, B. and Lambert, J. D. A Method for the Numerical Solutions of $y^{\prime}=(x, y)$ Based on a Self-Adjusting Non-Polynomial Interpolant $11-20$
Shisha, O. The Chebyshev Polynomial of Best Approximation to a Given Function on an Interval 266-271
Solomon, Alan. Some Remarks on the Stefan Problem 347-360
Spira, Robert. Zeros of Sections of the Zeta Function. I 542-550
Stroud, A. H. Some Fifth Degree Integration Formulas for Symmetric Regions. 90-97
Pages
Traub, J. F. A Class of Globally Convergent Iteration Functions for the Solution of Polynomial Equations 113-138
Treanor, C. E. A Method for the Numerical Integration of Coupled First-Order Differential Equations with Greatly Different Time Constants 39-45
van de Vooren, A. I. and van Linde, H. J. Numerical Calculation of Integrals with Strongly Oscillating Integrand 232-245
van Linde and van de Vooren, A. I. Numerical Calculation of Integrals with Strongly Oscillating Integrand 232-245
Verma, Arun. A Note on an Expansion of Hypergeometric Functions of Two Vari- ables. 413-417
-_, Expansions Involving Hypergeometric Functions of Two Variables 590-596
Weiss, N. O. and Roberts, K. V. Convective Difference Schemes 272-299
Widlund, O. B. On the Rate of Convergence of an Alternating Direction Implicit Method in a Noncommutative Case 500-515
TECHNICAL NOTES AND SHORT PAPERS
Barrodale, Ian. A Note on Equal Sums of Like Powers 318-322
Ben-Israel, Adi. A Note on an Iterative Method for Generalized Inversion of Matrices 439-440
Berger, B. S. Inversion of the N-Dimensional Laplace Transform 418-421
Blundon, W. J. and Lal, M. Solutions of the Diophantine Equation $x^{2}+y^{2}=l^{2}$,$y^{2}+z^{2}=m^{2}, z^{2}+x^{2}=n^{2}$144-147
Blundon, W. J., Lal, M. and Jones, M. F. Numerical Solutions of the Diophantine Equation $y^{3}-x^{2}=k$ 322-325
Burrows, J. W. Maximization of a Second-Degree Polynomial on the Unit Sphere. 441-444
Day, J. T. A Note on Best Approximation in E^{n} 599-600
Decell, H. P., Jr., Guseman, L. F. and Lea, R. N. Concerning the Numerical Solution of Differential Equations 431-434
Edelblute, D. J. Matrix Inversion by Rank Annihilation 149-151
Fair, Wyman and Luke, Y. L. Rational Approximations to the Solution of the Second Order Riccati Equation 602-606
Glasser, M. L. Evaluation of Some Integrals Involving the ψ-Function 332-333
Glasser, M. L., Wood, V. E. and Kenan, R. P. Doppler Broadening Integrals. 610-611
Guseman, L. F., Decell, H. P., Jr. and Lea, R. N. Concerning the Numerical Solu- tion of Differential Equations 431-434
Hart, R. G. A Close Approximation Related to the Error Function 600-602
Jarratt, P. Some Fourth Order Multipoint Iterative Methods for Solving Equations. 434-437
Jones, M. F., Lal, M. and Blundon, W. J. Numerical Solutions of the Diophantine Equation $y^{3}-x^{2}=k$ 322-325
Kenan, R. P., Wood, V. E. and Glasser, M. L. Doppler Broadening Integrals. 610-611
Kravitz, Sidney. Distributions of Mersenne Divisors 448-449
Lal, M. and Blundon, W. J. Solutions of the Diophantine Equations $x^{2}+y^{2}=l^{2}$, $y^{2}+z^{2}=m^{2}, z^{2}+x^{2}=n^{2}$ 144-147
Lal, M., Jones, M. F. and Blundon, W. J. Numerical Solutions of the Diophantine Equation $y^{3}-x^{2}=k$ 322-325
Lander, L. J. and Parkin, T. R. Equal Sums of Biquadrates 450-451
Lea, R. N., Decell, H. P., Jr. and Guseman, L. F. Concerning the Numerical Solu- tion of Differential Equations 431-434
Low, R. D. On the First Positive Zero of $P_{\nu-1 / 2}^{(-m)}(\cos \theta)$ Considered as a Function of ν. 421-424
Luke, Y. L. and Fair, Wyman. Rational Approximations to the Solution of the Second Order Riccati Equation 602-606
Moon, J. W. and Moser, L. A Matrix Reduction Problem. 328-330
Moser, L. and Moon, J. W. A Matrix Reduction Problem 328-330
Muskat, J. B. On Divisors of Odd Perfect Numbers 141-144
Pages
Newbery, A. C. R. Interpolation by Algebraic and Trigonometric Polynomials.... 597-599
Parkin, T. R. and Lander, L. J. Equal Sums of Biquadrates. 450-451
Parlett, Beresford. Singular and Invariant Matrices Under the $Q R$ Transforma- tion.Rice, J. R. Experiments on Gram-Schmidt Orthogonalization.325-328
Rudnick, Philip. Note on the Calculation of Fourier Series. 429-430
Shanks, Daniel and Wrench, J. W., Jr. Questions Concerning Khintehine's Con- stant and the Efficient Computation of Regular Continued Fractions. 444-448
Takenaga, Roy. On the Evaluation of the Incomplete Gamma Function 606-610
Thompson, Rory. Evaluation of $I_{n}(b)=2 \pi^{-1} \int_{0}^{\infty}((\sin x) / x)^{n} \cos (b x) d x$ and ofSimilar Integrals.330-332
Tung, Shif-Hsiung. Boundedness of Difference Kernels of Bessel and Fourier Series 157-163
Uchiyama, Saburô. A Note on a Theorem of J. N. Franklin. 139-140
Varah, J. M. Certifications of Parlett's ALGOL Eigenvalue Procedure Eig 3 437-438
Verma, Arun. Certain Expansions of the Basic Hypergeometric Functions. 151-157
Voigt, R. G. On a Numerical Solution of an Integral Equation with Singularities. 163-166
Wood, V. E. Some Integrals of Ramanujan and Related Contour Integrals. 424-429
Wood, V. E., Kenan, R. P. and Glasser, M. L. Doppler Broadening Integrals. 610-611
Wrench, J. W., Jr. and Shanks, Daniel. Questions Concerning Khintchine's Con- stant and the Efficient Computation of Regular Continued Fractions 444-448
Yang, C. H. Some Designs for Maximal ($+1,-1$)-Determinant of Order $n \equiv 2$ $(\bmod 4)$ 147-148

REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

Abramowitz \& Stegun, 1. Alder, Fernbach \& Rotenberg, 37. Arsac, Lentin, Nivat \& Nolin, 114. Attwood, 4, 5, 6, 7, 8. Barnett, 19. Barrière, 2. Bary, 38. Bishop, Gladwell \& Michaelson, 32. Becker, 39. Beeger, 68, 69. Beneš, 57. Bennett \& Horst, 92. Billingsley, 73. Blanch \& Clemm, 23. Blundon, Lal \& Jones, 89. Brooks \& Iverson, 60. Bruyevich, 44. Burrows, 62. Caslin \& Fettis, $99,100,101$. Chervonenkis, Yanpol'skii \& Lyusternik, 64. Chisholm \& Morris, 35. Christenson, 75. Clemm \& Blanch, 23. 4-ème Congrès de Calcul et de Traitement de l'Information, 59. Copson, 27. Courant \& John, 109. Davis, Martin, 45. Davis, P. J., 15, 18. Deleeuw \& Southworth, 74. Ditkin, 94. Eckhaus, 108. Emersleben, 102. Fernbach, Rotenberg \& Alder, 37. Fettis \& Caslin, 99, 100, 101. Freeman, 20. Frisch-Fay, 55. Fry, 21. Gardiner \& Wright, 66. Gauss, 86. Germain, 82. Gladwell, Bishop \& Michaelson, 32. Golden, 83. Gradshteyn \& Ryshik, 85. Hamashita, Kilpatrick, Katsura \& Inoue, 98. Hartman, 28. Henrici, 29. Hildebrand, 40. Hollingdale \& Tootill, 111. Horst \& Bennett, 92. Inoue, Hamashita, Kilpatrick \& Katsura, 98. Instituto Gulbenkian de Ciencia, 84. Iverson \& Brooks, 60. Jennings, 79. John \& Courant, 109. Jones, Blundon \& Lal, 89. Karpov, 91. Katsura, Inoue, Hamashita \& Kilpatrick, 98. Kaufman \& Roberts, 104. Kemeny, 63. Khabaza, 58. Khrenov, 67. Khintchine, 11, 12. Kilpatrick, Katsura, Inoue \& Hamashita, 98. Kleinrock, 22. Krishnan, 54. Kronrod, 30. Lal, Jones \& Blundon, 89. Lebedev, 26. Lecht, 113. Lefschetz, 105. Leondes, 33, 106. Lether, 78. Levitan, Nikiforov \& Uvarov, 47. Lind, Morris \& Shapiro, 88. Ling, 16. Lyusternik, 65. Lyusternik, Chervonenkis \& Yanpol'skii, 64. McCoy, 9. Marcus \& Minc, 52. Margulis, 17. Marshall, 72. Martin, D. G., 48, 49. Martin, James, 76. Mathews \& Walker, 36. Michaelson, Bishop \& Gladwell, 32. Michaud, 56. Miller \& Powell, 3. Mine \& Marcus, 52. Morris \& Chisholm, 35. Morris, Shapiro \& Lind, 88. Murnaghan \& Wrench, 71. Muskat, 10. Nadler, 34. Narasimha, 95. Nikiforov, Uvarov \& Levitan, 47. Nixon, 31. Norkin, 80. Osipova \& Tumarkin, 70. Pennington, 43. Plumb, 46. Pollack, 112. Powell \& Miller, 3. Rall, 41. Revue Française de Traitement de l'Information, 51. Richardson, 107. Roberts \& Kaufman, 104. Rotenberg, Alder \& Fernbach, 37. Ryshik \& Gradshteyn, 85. Saaty, 13, 14. Saleh, Zabransky \& Sibuya, 93. Saul'yev, 77. Shapiro, Lind \& Morris, 88. Sibuya, Saleh \& Zabransky, 93. Slater, 103. Souriau, 53. Southworth \& Deleeuw, 74. Spira, 24. Stamper, 81. Stegun \& Abramowitz, 1. Switzer, 50. Syret \& Wilson, 25.

Tootill \& Hollingdale, 111. Thompson, 97. Tumarkin \& Osipova, 70. Universal Encyclopedia of Mathematics, 42. Uvarov, Levitan \& Nikiforov, 47. Wai-Kwok Ng, 96. Walker \& Mathews, 36. Weiss, 61. Wilkinson, 90. Wilson \& Syret, 25. Wrench \& Murnaghan, 71. Wright \& Gardiner, 66. Wunderlich, 87. Yanpol'skii, Lyusternik \& Chervonenkis, 64. Zabransky, Sibuya \& Saleh, 93. Zonneveld, 110.

ERRATA

Abramowitz \& Stegun, 379, 388, 393, 399. Adams \& Hippisley, 391. Barakat, Houston \& Levin, 380. Byrd \& Friedman, 389, 397. Caslin \& Fettis, 398. Clark \& Hansen, 381. Epperson, Spenceley \& Spenceley, 396. Erdelyi, Magnus, Oberhettinger \& Tricomi, 400, 401. Fettis \& Caslin, 398. Friedman \& Byrd, 389, 397. Friedman, Sheldon \& Zondek, 394. Glover, 395. Gradstein \& Ryshik, 392. Hansen \& Clark, 381. Hippisley \& Adams, 391. Houston, Levin \& Barakat, 380. Humbert, Poli \& McLachlan, 383. Kaufman \& Roberts, 402. Lance, 382. Lehmer, 403, 404. Levin, Barakat \& Houston, 380. McLachlan, Humbert \& Poli, 383. Magnus, Oberhettinger, Tricomi \& Erdelyi, 400, 401. Natrella, 384. Oberhettinger, Tricomi, Erdelyi \& Magnus, 400, 401. Poli, McLachlan \& Humbert, 383. Ritchie \& Sakakura, 385. Roberts \& Kaufman, 402. Ryshik \& Gradstein, 392. Sakakura \& Ritchie, 385. Sheldon, Zondek \& Friedman, 394. Spenceley, Epperson \& Spenceley, 396. Spira, 390. Stegun \& Abramowitz, 379, 388, 393, 399. Tallqvist, 386. Tricomi, Erdelyi, Magnus \& Oberhettinger, 400, 401. Walther, 387. Zondek, Friedman \& Sheldon, 394.

CORRIGENDA

Alexandroff, 344. Armerding \& Gruenberger, 207. Burgoyne, 643. Cody, 207. Editor's Note, 643. Gruenberger \& Armerding, 207. Wrench, 643.

NOTES

Announcement	Delay Line Sieve, 645
New Journals	Cybernetics, 644 Computing: Archives for Electronic Computing, 644 Journal of Combinatorial Theory, 645 Journal of Computational Physics, 345
Journal of Computer and Systems Sciences, 644	
Special Interest Committee on Numerical Mathematics (SICNUM), 646	

Current and forthcoming titles in the Prentice-Hall AUTOMATIC COMPUTATION SERIES

Edited by Dr. George E. Forsythe, Professor of Mathematics and Computer Science at Stanford University and Executive Head of the Computer Science Dept.

> COMPUTATION: FINITE AND INFINITE MACHINES by Marvin Minsky, Massachusetts Institute of Technology
> An introduction to the theories of finite-state machines, programmed computers, Turing machines and formal languages (in the form of Post Systems). Topics range from basic principles to current research problems with extensive discussions of the meaning and motivation of the theory, its practical value and limitations. This book includes guidance for self-study and further reading and study. Solutions to problems are in the text. February 1967 , approx. 320 pp., $\$ 10.50$

NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS by F. Ceschino, Civil Engineer, Armament, France; J. Kuntzmann, Grenoble, France (Translated by D. Boyanovitch, Grumman Aircraft Engineering Co.)

Deals with the exposition of problems relative to numerical integration of initial value problems. Theory is based on approximate representation of the derivative and integral by discontinuous expressions. The principal tool used in the development of techniques presented here as Taylor's series. June 1966, approx. 352 pp., $\$ 10.50$
INTERVAL ANALYSIS by Ramon E.
Moore, University of Wisconsin
Presents a new set of techniques by which a computer can be programmed to provide solutions of guaranteed accuracy to a variety of types of mathematical problems. All the necessary analysis is carried out by the computer itself for each specific application of the resulting programs. For graduate level courses and as a reference book for professional computer programmer's, mathematicians, and numerical analysts. October 1966, approx. 192 pp., $\$ 9.00$
CHEBYSHEV METHODS IN NUMERICAL APPROXIMATION by Martin Avery Snyder, Courant Institute of Mathematical Sciences, New York University

Designed for numerical analysts and mathematical programmers-to show how the Chebyshev polynomials can be used in approximation to obtain nearly optimal or minimax approximations. This is the first time it has been brought together as a unified point of view. September 1966, approx. 144 pp ., $\$ 7.50$
(Prices shown are for student use.)
For approval copies, write: Box 903
PRENTICE-HALL ENGLEWOOD CLIFFS, NEW JERSEY 07632

University Press

Numerical Solution of Partial Differential Equations

G. D. Smith, Senior Lecturer in Mathematics, Brunel College of Advanced Technology, London

Designed as a textbook for students with no previous knowledge of numerical methods, this volume is also intended as a bridge to the increasing number of advanced treatises on the numerical solution of partial differential equations. The work assumes no prior training in finite-difference calculus and develops the subject clearly and in detail. Exercises and worked solutions included. Contents: Introduction and Finite-Difference Formulae; Parabolic Equations; Convergence, Stability, and Systematic Iterative Methods; Hyperbolic Equations and Characteristics; Elliptic Equations. References, index.

190 pp.
$\$ 5.00$

An Introduction to

 Numerical Linear Algebra With ExercisesL. Fox, Director, University Computing Laboratory, and Professor of Numerical Analysis, Oxford University
This introduction covers the practice of matrix algebra and manipulation, and the theory and practice of direct and iterative methods for solving simultaneous algebraic equations, inverting matrices, and determining the latent roots and vectors of matrices. "It seems to be an excellent book, particularly for teaching matrix algebra to students in the computer sciences."-Thomas P. Bogyo, Washington State University

1965
344 pp .
$\$ 8.50$

> Oxford University Press 200 Madison Ave.
> New York, N.Y. 10016

From Pergamon

ANNUAL REVIEW IN AUTOMATIC PROGRAMMING
Edited by Richard Goodman, Automatic Programming Information Center, Brighton College of Technology, England.
Here is a continuing review of the present state of knowledge in the field. Each volume contains papers written by experts on recent advances and $\begin{array}{lllllll}\text { problems yet to be solved. } & \text { Vol. } 1 & 1960 & \$ 12.00 & \text { Vol. } 3 & 1963 & \$ 12.00\end{array}$ Vol. $21961 \quad \$ 12.00 \quad$ Vol. $4 \quad 1964 \quad \$ 12.00$

U.S.S.R. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS

Translated from Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. Translation Editor: R. A. Buckingham, London.
This translation from the original Russian contains the collated works of leading Russians concerned with computational mathematics and other branches of applied mathematics.

Bi-monthly $\$ 140.00$

ADVANCES IN PROGRAMMING NON-NUMERICAL APPLICATIONS TO COMPUTING MACHINES

Edited by L. Fox, University of Oxford Computing Library, England. An effective collection of recent work with many illustrated examples.
$1966 \quad 230 \mathrm{pp} . \quad \$ 10.00$

NUMERICAL ANALYSIS

By I. M. Khabaza, Queen Mary College, University of London.
"An elementary approach to desk and computer calculation, yet it contains much advanced material. The basic approach, after a pair of chapters on digital computers and desk machines, is classical via many interpolation formulas derived by symbolic operator methods." - Mathematics of Computation $1965 \quad 264 \mathrm{pp}$. flexi-cover $\$ 5.00$

DIGITAL COMPUTERS IN ACTION
By A. D. Booth, University of Saskatchewan.
". . . one of the best introductions to digital computers and their uses that has been written. . . ." Engineering
The book provides a full technical exposition of recent developments.
$1965 \quad 160 \mathrm{pp}$. flexi-cover $\$ 1.95$
AN INTRODUCTION TO DIGITAL COMPUTING
By F. H. George, Teaching Programmes Ltd., England.
The construction and operation of digital computers is described.
Familiarity with elementary arithmetic is assumed.
1966248 pp . flexi-cover $\$ 4.50$

THE DIGITAL COMPUTER

By K. C. Parton, The General Electric Company Ltd., Birmingham, England.
A survey of the use and scope of a modern computer, describing how computers deal with a wide range of technical and commercial problems. The structure of computers, automatic coding and related organizational problems are discussed.
$1964 \quad 132 \mathrm{pp}$. flexi-cover $\$ 2.95$
Order from your bookstore or direct from:

PERGAMON PRESS

STATISTICAL ECONOMISTS

New responsibilities at Operations Research Incorporated involving the evaluation and analysis of governmental economic assistance programs have created unusually attractive career opportunities for economists with training and experience in mathematics and statistics.

The work is long-range and has three objectives: (1) development of effectiveness criteria for program evaluation, (2) analysis of program goals and purposes, and (3) development and comparison of alternative programs. You will find that ORI, a small,
profit-making company, offers an environment in which your efforts are quickly recognized and rewarded. Salaries are excellent, and ORI staff policies and benefits programs are geared to the needs of creative professionals. Location is at ORI's modern headquarters facility in subburban Washington, D. C.

For further information, please send your resume to: Mr. Carlton Robinson, Professional Staffing, ORI, 1400 Spring Street, Silver Spring, Maryland 20910 (suburb of Washington, D. C.)

OPERATIONS RESEARCH INCORPORATED
 Washington - Los Angeles - Boston
 An equal opportunity employer

LITTON SCIENTIFIC SUPPORT LABORATORY SEEKS
 SENIOR STATISTICIANS AND MATHEMATICIANS FOR POSITIONS IN MONTEREY, CALIFORNIA

Abstract

The Litton Scientific Support Laboratory of the Data Systems Division, Litton Industries, has been awarded a long-term contract by the United States Army to provide scientific support to its Combat Developments Command Experimentation Command.

The CDCEC is established to serve as a field laboratory in conjunction with the Combat Developments Command. The mission of CDC is to formulate and document current Army doctrine, and to determine the kinds and numbers of forces and materiel needed . . . how such forces and materiel should be employed in anticipation of the nature of land warfare in the future. CDC is responsible for answering such questions as: how should the Army be equipped? how should it be organized? and how should the Army fight? The Combat Developments Command Experimentation Command conducts field experiments at Fort Ord and the Hunter-Ligget Military Reservation to provide inputs to CDC. CDCEC engages a contractor to help plan, design, instrument and conduct its field experimentation program. The Litton Scientific Support Laboratory, headquartered at Fort Ord in the Monterey, California area, is the current contractor. As a project member, or in a support capacity, you will assist in the design of field experiments; participate in or monitor the experiments to assure collection of data in a meaningful format; analyze field generated data and prepare inputs into the project reports. Positions require a master's degree and several years' in one or more of the following fields: error analysis, simulation and modeling, estimation theory, hypothesis testing, analysis of variances and regression analysis. A bachelor's degree plus additional experience will be acceptable in lieu of the master's degree.

Contact Mr. M. C. Harrold, P. O. Box 7601, Van Nuys, Calif.

CLASSIFICATION OF REVIEWS

A. Arithmetical Tables, Mathematical Constants
B. Powers
C. Logarithms
D. Circular Functions
E. Hyperbolic and Exponential Functions
F. Theory of Numbers
G. Higher Algebra
H. Numerical Solution of Equations
I. Finite Differences, Interpolation
J. Summation of Series
K. Statistics
L. Higher Mathematical Functions
M. Integrals

N . Interest and Investment
O. Actuarial Science
P. Engineering
Q. Astronomy
R. Geodesy
S. Physics, Geophysics, Crystallography
T. Chemistry
U. Navigation
V. Aerodynamics, Hydrodynamics, Ballistics
W. Economics and Social Sciences
X. Numerical Analysis and Applied Mathematics
Z. Calculating Machines and Mechanical Computation

Information for Contributors

Manuscripts should be typewritten double-spaced in the format used by the journal. For journal abbreviations, see Mathematical Reviews, v. 28, Index. An author should submit the original and one copy of the manuscript and retain one copy. The author may suggest an appropriate editor for his paper. It is recommended that the author acquaint himself with the pertinent material contained in "Information for Contributors to Mathematics of Computation" and "Manual for Authors", both of which are available upon request from the American Mathematical Society. All contributions intended for publication and all books for review should be addressed to Eugene Isaacson, Chairman, Editorial Committee, Mathematics of Computation, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012. Beginning with the January, 1965 issue, institutions sponsoring research reported in the journal are assessed page charges.

Mathematics of Computation

TABLE OF CONTENTS

October 1966
Estimates for Difference Quotients of Solutions of Poisson Type Difference Equations Achi Brandt 473
On the Rate of Convergence of an Alternating Direction Implicit Method in a Noncommutative Case . Olof B. Widlund 500
A Linear Three-Level Difference Scheme for Quasilinear Parabolic Equations Milton Lees 516
Separation of Zeros of the Riemann Zeta-Function....R. Sherman Lehman 523
Zeros of Sections of the Zeta Function. I Robert Spira 542
Variations on a Theorem of Landau. Part I.
Daniel Shanks \& Larry P. Schmid 551
The Calculation of Fourier Integrals
Guy de Balbine \& Joel N. Franklin 570Expansions Involving Hypergeometric Functions of Two VariablesArun Verma590
Technical Notes and Short Papers
Interpolation by Algebraic and Trigonometric Polynomials
A. C. R. Newbery 597
A Note on Best Approximation in E^{n} 599
A Close Approximation Related to the Error Function. Roger G. Hart 600
Rational Approximations to the Solution of the Second Order Riccati Equation. Wyman Fair \& Yudell L. Luke 602
On the Evaluation of the Incomplete Gamma Function. . Roy Takenaga 606
Doppler Broadening Integrals
Van E. Wood, R. P. Kenan \& M. L. Glasser 610
Singular and Invariant Matrices Under the $Q R$ Transformation
Beresford Parlett 611
Reviews and Descriptions of Tables and Books. 616Gradshteyn \& Ryshik 85, Gauss 86, Wunderlich 87, Lind, Morris\& Shapiro 88, Lal, Jones \& Blundon 89, Wilkinson 90, Karpov91, Bennett \& Horst 92, Zabransky, Sibuya \& Saleh 93, Ditkin 94,Narasimha 95, Wai-Kwok Ng 96, Thompson 97, Katsura, Inoue,Hamashita \& Kilpatrick 98, Fettis \& Caslin 99, Fettis \& Caslin100, Fettis \& Caslin 101, Emersleben 102, Slater 103, Roberts\& Kaufman 104, Lefschetz 105, Leondes 106, Richardson 107 ,Eckhaus 108, Courant \& John 109, Zonneveld 110, Hollingdale\& Tootill 111, Pollack 112, Lecht 113, Arsac, Lentin, Nivat \&Nolin 114
Table Errata 639Byrd \& Friedman 397, Fettis \& Caslin 398, Abramowitz \& Stegun399, Erdélyi, Magnus, Oberhettinger \& Tricomi 400, Erdélyi,Magnus, Oberhettinger \& Tricomi 401, Roberts \& Kaufman 402,Lehmer 403, Lehmer 404
CorrigendaBurgoyne, Wrench, Editor's Note643
Notes
New Journals 644
Announcement 645
Newsletter. 646
Indices to Volume XX
Index of Papers and Technical Notes by Authors 647
Index of Reviews by Author of Work Reviewed 649
Index of Reviews by Subject of Work Reviewed 652
Index of Table Errata 660
Index of Corrigenda 661
Index of Notes 661

