of order m_i , depends only on λ_i and, by (4.6), its (α, β) element is a function of $\alpha - \beta$. If we define $N_i = (e_2, \dots, e_{m_i}, 0)$, where $I = (e_1, \dots, e_{m_i})$, then

(4.8)
$$L^{ii} = \sum_{\nu=0}^{m_i-1} \frac{p_i^{(\nu)}(\lambda_i)}{\nu! \, p_i(\lambda_i)} \, N_i^{\nu},$$

and is a polynomial in N_i . Since J_i is also a polynomial in N_i it must commute with L^{ii} .

The above results were derived for $H \in UHM$. However, properties (ii) and (iii) generalize immediately to all Hessenberg matrices by the remarks at the beginning of Section 2.

University of California Berkeley, California

- 1. J. G. F. Francis, "The QR transformation. I, II," Comput. J., v. 4, 1961/1962, pp. 265-271, 332-345.
- 2. V. N. FADDEEVA, Computational Methods of Linear Algebra, Dover, New York, 1959, p. 20.
- 3. A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964. MR 30 *5475.
- 4. M. MARCUS & H. MINC, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, Mass., 1964. MR 29 *112.
 5. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
- 6. V. Zeipel, "On Determinates, hvars elementer aro Binomialkoefficenter," Lunds Univ.
- Asskr. II, 1865, pp. 1-68.
 7. B. Parlett, "Convergence theory for the QR algorithm on a Hessenberg matrix," Math. Comp. (To appear.)

An Elimination Method for Computing the Generalized Inverse*

By Leopold B. Willner

0. Notations. We denote by

Aan $m \times n$ complex matrix,

A* the conjugate transpose of A,

 $A_j, j = 1, \cdots, n$ the jth column of A,

the generalized inverse of A [7],

Hthe Hermite normal form of A, [6, pp. 34-36],

 Q^{-1} the nonsingular matrix satisfying

$$(1) H = Q^{-1}A,$$

 $e_i, i = 1, \cdots m$ the *i*th unit vector $e_i = (\delta_{ij})$, the rank of A (= rank H).

1. **Method.** The Hermite normal form of A is written as

(2)
$$H = \begin{bmatrix} B \\ 0 \end{bmatrix} \quad \text{where } B \text{ is } r \times n.$$

Received July 13, 1966.

^{*} Research supported by the National Science Foundation Grant GP-5230.

Combining (1) and (2) we have:

(3)
$$A = QH = [P,R] \qquad \begin{bmatrix} B \\ 0 \end{bmatrix} = PB,$$

where [P, R] is the corresponding partition of Q. Having displayed the $m \times n$ matrix A of rank r as a product of the $m \times r$ matrix P and the $r \times n$ matrix P, which are both of rank r, we have as in [4]

(4)
$$A^{+} = B^{+}P^{+} = B^{*}(BB^{*})^{-1}(P^{*}P)^{-1}P^{*}$$

therefore

$$A^{+} = B^{*}(P^{*}PBB^{*})^{-1}P^{*}$$

and by (3)

(6)
$$A^{+} = B^{*}(P^{*}AB^{*})^{-1}P^{*}.$$

The method can be summarized as follows:

Step 1. Given A obtain H by Gaussian elimination.

Step 2. From H determine P as follows:

The *i*th column of P, P_i , $i = 1, \dots, r$ is

(7)
$$P_i = A_j \quad \text{if} \quad H_j = e_i, \qquad j = 1, \dots, n.$$

Step 3. Calculate P^*AB^* .

Step 4. Invert P^*AB^* .

Step 5. Calculate A^+ using (6).

- 2. Remarks. (i) From (7) we conclude that in order to obtain P it is unnecessary to keep track of the elementary operations involved in finding H, e.g. [5].
- (ii) Representation (4), as a computational method, was suggested by Greville [4], Householder [5] and Frame [2]. The novelty of the present paper lies in equation (6) and Step 2 above.
- (iii) Like other elimination methods for computing A^+ , e.g. [1], the method proposed here depends critically on the correct determination of rank A, e.g. the discussion in [3].
- (iv) The advantage of method (6) over the elimination method of [1] is that here the matrix A^*A (or AA^*) is not computed. However, other matrix multiplications are involved in this method.
 - 3. Example. For

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}$$

we obtain by Gaussian elimination

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = H$$

since $H_2 = e_1$ we have $P_1 = A_2$, and since $H_3 = e_2$ we have $P_2 = A_3$. Hence for

A = PB we have

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix}$$

and

$$P^*AB^* = \begin{bmatrix} 12 & -3 \\ 5 & 0 \end{bmatrix}$$

from which

$$(P^*AB^*)^{-1} = \frac{1}{15} \begin{bmatrix} 0 & 3\\ -5 & 12 \end{bmatrix}$$

hence

$$A^{+} = B^{*}(P^{*}AB^{*})^{-1}P^{*} = \frac{1}{15} \begin{bmatrix} 0 & 0 & 0\\ 0 & 3 & 3\\ -5 & 7 & 2\\ 5 & -4 & 1\\ 5 & -4 & 1 \end{bmatrix}.$$

Northwestern University Evanston, Illinois 60201

1. A. Ben-Israel & S. Wersan, "An elimination method for computing the generalized inverse of an arbitrary complex matrix," J. Assoc. Comput. Mach., v. 10, 1963, pp. 532-537. MR **31 *** 5318.

2. J. Frame, "Matrix functions and applications. I: Matrix operations and generalized

2. J. Frame, "Matrix functions and applications. 1: Matrix operations and generalized inverses," IEEE Spectrum, v. 1, 1964, no. 3, pp. 209-220. MR 32 # 1195.

3. G. Golub & W. Kahan, "Calculating the singular values and pseudo-inverse of a matrix," J. SIAM Numer. Anal., v. 2, 1965, pp. 205-224.

4. T. N. E. Greville, "Some applications of the pseudo-inverse of a matrix," SIAM Rev., v. 2, 1960, pp. 15-22. MR 22 # 1067.

5. A. S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964, MR 20, #5475.

York, 1964. MR 30 \$5475.

6. M. MARGUS & H. MING, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, Mass., 1964. MR 29 \$112.

7. R. PENROSE, "A generalized inverse for matrices," Proc. Cambridge Philos. Soc., v. 51,

1955, pp. 406-413. MR 16, 1082.