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Abstract. It is shown that the error in setting up a class of finite difference

approximations is of two kinds: a quadrature error and an interpolation error. In

many applications the quadrature error is dominant, and it is possible to take steps

to reduce it. In the concluding section an attempt is made to answer the question

of how to find a finite difference formula which is best in the sense of minimising the

work which has to be done to obtain an answer to within a specified tolerance.

1. Introduction. This paper has two main aims:

(i) to provide general schemes for generating difference approximations which

make best use of available information in the sense of minimising truncation error,

and

(ii) to provide a criterion for comparing the utility of particular difference

approximations.

Consideration is restricted to finite difference approximations to ordinary linear

differential equations, and to difference approximations which require only values

of the coefficients in the differential equation for their construction. Difference

approximations are called classical if they are satisfied exactly whenever the solu-

tion to the differential equation is a polynomial of sufficiently low degree.

The first aim was motivated by the recent appearance of several papers in which

Gaussian-type quadrature formulae were used to reduce the truncation error in

finite difference approximations to special differential equations (see for example

[1]). The author has proposed [2] a scheme for generating classical finite difference

approximations, and the question whether Gaussian-type quadrature formulae

could be used naturally suggested itself. The answer is developed in Sections 2, 3

and 4. First, a slight generalisation of the author's scheme and a brief resume of the

error analysis are given. It is shown that the error falls into two parts called the

quadrature error and the interpolation error, and that the quadrature error is

dominant. In Section 3 the term quadrature error is justified by deriving an explicit

form for the appropriate quadrature. This turns out to be an integral containing a

positive weight function. This suggests Gaussian quadrature, and its use is exempli-

fied in Section 4.

An interesting feature of the author's scheme is that it has a natural generalisa-

tion which permits the construction of a range of nonclassical approximations.

Particular examples of these have been produced before by several authors—for

example, by Hersch [4] and Rose [5] who effectively rediscovers Hersch's work.

This generalisation is discussed in Section 5.

In the final section a basis for comparing the utility of particular difference

schemes is suggested. This is applied to discuss several of the difference equations
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134 M.   R.   OSBORNE

constructed in previous sections. The conclusion to be drawn would seem to be that

the law of diminishing returns applies to the search for difference approximations of

high accuracy, and that comparatively simple formulae are most useful.

A characteristic feature of the references quoted above is that they restrict

attention to difference approximations having the same order as the differential

equation to which they approximate. Such approximations have proved popular in

particular for the numerical solution of boundary-value problems. Here finite differ-

ence approximations of this type only are considered, but this should not be thought

of as implying any restriction on the methods used.

2. The Scheme for Difference Approximation. In this section an outline is given

of a technique for constructing finite-difference approximations to the differential

equation

(2.1) W=g + S^)Í=^-

A more detailed account can be found in [2]. The approximation is classical as it is

found by first fitting an interpolation polynomial to y, and then finding a difference

equation satisfied by the interpolation polynomial.

Let »Si be the set of points X\ ,x%, ■ ■ ■ , xn+i where xp < xq if p < q, and xn+1 —

Xi = nh. The quantity h defines the scale of the difference mesh. Also let St be the

set of points £i, & , •■-,£*, where Si and S2 need not be disjoint. Let z be the inter-

polation polynomial to y which satisfies the conditions

(i) A(l, 2, • • • , r + 1)2 = A(l, 2, ■■■ ,r + l)y, r = 0, 1, • • • , n - 1.

(Here A(l ,2, • • • , p) is the divided difference operator defined on the points

of Si whose suffices are indicated. When p = 1 the corresponding operator is the

identity.)

(ii) L(«)(fc) = /(fc),* = 1,2, •■• ,ns+ 1.
Provided only that h is small enough, z can be found by

(a) fitting a polynomial to z(n) (£¿), i = 1, 2, • • • , m (regarding them as formal

parameters) and integrating n times,

(b) finding the constants of integration using the conditions (i), and

(c) using the conditions (ii) to determine actual values for the formal param-

eters 2<n)(fi).

To carry out stage (c) note that for every p = 0,1, ••• ,n— 1, and i = 1,2,

• ■ • , m, zíp) (£¡) is expressible as a linear combination of the values of z on S\ and

21"1 on St. Let w(z) be the vector whose components are the values of z on Si ,

then the vector z whose components are the values of z p on S% permits a repre-

sentation having the form

(2.2) zip) = Bvw(z) + C^,z(",

where Bp has (?n) rows and (n + 1) columns, and Cp has (m) rows and (m) col-

umns, p = 0, 1, ■ ■ • , n — 1. Note that the components of Cp are obtained by

integrating the interpolation polynomial for 2(n) so that they are 0(h"~p) as h —> 0.

The conditions (ii) can be written in matrix form

(2.3) zu> = -Y.AtZ™ +f
t'-0
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where the A, are diagonal matrices. Combining Eqs. (2.2) and (2.3) gives

(2.4) (ï + g Ai C?J zin) = - (£ Ai B?j w(z) + f

and this equation determines z " provided h is small enough as the components of

the Ci tend to zero as h —» 0 (noted above).

The constants of integration appear in z only in terms of degree ■in — \. There-

fore

(2.5) A(l, 2, • • • , n + l)z =  £ Vi z{n) (fc) = vr z(»)

¿-i

where the v¡ depend only on the points of Si and Sz and satisfy   /.T-\ v, = 1/n!,

whence

A(l,2, ■■• ,n + l)z = -vT(l + T, Aic)j 7QC As 5<) w(z) -f(2.6)

Eq.   (2.6) is a difference equation which is satisfied exactly by the interpolation

polynomial z. It is the desired finite-difference approximation to Eq. (2.1).

To examine the error in Eq. (2.6) write y = t + R where t consists of the

first ns -\- n + 1 terms of the Taylor series for y, and R is the remainder. Making

use of the fact that t satisfies Eq. (2.5) it follows after some manipulation that

¿(1,2, ■■■,n + l)y+ v^J + E^C,) l(lY,AiBl)w(y) -f

(2.7) = A(l, 2, • • • , n + l)R - vrR(n) - vr (i + £ A< &)

E¿«(RW - Biv(R) - C,RW)

This equation shows that the error in using Eq. (2.6) as an approximate dif-

ference equation is a linear combination of the errors in the Eqs. (2.2) and (2.5).

The errors introduced by Eq. (2.2) are called the interpolation errors. In general

they will be 0(hm+n~3'), j = 0, 1, • • • , n - 1. The error introduced by Eq. (2.5)

is called the quadrature error. The significance of this term will be made clear in

the next section. It can be expected to be 0{hm) so that usually it will dominate

the interpolation errors.

It would appear that little can be done about reducing the interpolation errors,

but the actual contribution of these terms in any actual case depends on the non-

zero coefficients in Eq. (2.1). For example if a„_i is nonzero then the interpolation

error contains terms O (hm+1 ), but if only Oo is nonzero then the interpolation errors

are O (hm+n). A difference equation in wrhich the error has the same order of magni-

tude as the interpolation error will be called optimum.

There is little scope for optimisation in the general case, and specifications of

Si and *S2, such that the quadrature error is 0(/im+I) provided ns is even, are

given in [2]. In this case the quadrature and interpolation errors are of the same

order of magnitude so that these formulae are already optimum. To obtain difference
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formulae of substantially higher accuracy it is necessary to specialise the differential

equation.

3. The Quadrature Formula. In this section it is shown that the quadrature

error is identical with the error in the numerical evaluation of an integral representa-

tion of the divided difference defined on the points of Si. This integral representa-

tion has the form

(3.1) A(l,2, ••• ,n+ l)y =   f   TyM dx
J— oo

where T is defined by

(i) T = 0, x < xi and x > xn+i,

(ii) T, Tw, ■■■ , 7,l""2) continuous on Si,

(iii) T(n) = 0 except on Si, and

(iv ) an appropriate scaling condition.

Eq. (3.1) is readily verified. First the right-hand side obviously vanishes when

y is a polynomial of degree < n. Second, by Green's theorem,

f    TyM dt =   [   yTM dx = £ X,- y(«,)
J— 00 J— 00 i=l

as Tw vanishes except at the points xt where T has (possibly) discontinuous

(n — l)st derivative so that Tin) is expressible as a linear combination of 5 func-

tions with peaks on Si.

From the conditions (i)-(iii) specifying T it follows that (for certain con-

stants K, to be determined)

T = Ki(x - xi)n~\       xi á x < Xi,

= Ki(x — xi)""1 + K2(x — x2)"~\       Xi i x < Xi,

n+l

= E KA* - •-r.)"-1 = 0,       x S; xn+i.

If coefficients of powers of x are equated to zero in this last equation there results

n+l

(3.2) EK,i/ = 0,        r = 0, 1, ••• ,n - 1,
¿-i

which shows that the Ki are proportional to the coefficients in the divided-differ-

ence operator defined on the points of Si. Therefore

(3.3) Ki = y/  ft     (*< - x.)
t—l;tfti

where y is a scale factor to be determined.

To calculate y put y = xn in Eq. (3.1). Then

i(l, ■■■ ,n+ l)xn = n! /        T dx

L
x"+1 *.,,„_ Mi, •••,» + D*"

T dx
n\
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But, by direct calculation,

Í*n+1 n+l f*n+l
T dt = Z Ki (x - Xi)"'1 dx

~l t=l Jn

n+l   7V-

=   2_,    — (X„+1   —  XiT
í=i n

n+l

whence

(3.4)

n + l    / \

= - X) ( Un+i — a;¿)"/II (x* _ x*) )
n »=i \ tA /

= -A(l,2, ••• ,n+ l)(x„+i - x)n

= ?(-l)BA(l,2, ••• ,n+ l)xn

(-1)"
(n- 1)!

Example. In the case n = 2, xi = —h, x2 = 0, x3 = /),

-2 „A

(2)dx(3.5) A(l,2,3)2/ =^-«V0) =  Í   Ty
¿ J-h

where

T =  (h + x)/2h2,        -h £ x < 0,

=  (A - x)/2/i2,       0 i x < h.

If the interpolation polynomial z is inserted in Eq. (3.1) and the integrations

carried out, there is obtained the result

(3.6) A(l, 2, • • • ,n + l)z =  (   TzM dt = £ 17 z(n)(&).
J-oo y=i

The numbers y; are identical with those in Eq. (2.5). This follows at once be-

cause the z<n) (£,) can be chosen arbitrarily. Thus Eq. (2.5) can be interpreted as a

quadrature formula for the integral in Eq. (3.1).

The use of Gaussian quadrature with T as wreight function to improve the ac-

curacy of Eq. (2.5) now suggests itself. For this it is sufficient that T be positive,

and this will now be demonstrated. (I am indebted to the referee for this proof. )

Assume T < 0 for ¿i ^ x ¿ U..
Let K = max | T |, and y(n) = t/K, x\ g x < h, t2 < x ^ ¿n+i, = t/K +

r¡(x — h) (U — x), íi á x ;S ti > where e and n are > 0.

Note that y{n) > 0 and continuous in [xi, xn+i]- It can obviously be modified

to be arbitrarily many times differentiable as well. For this y~n) we have by the

standard properties of divided differences

¿(1,2, ■■■ ,n+l)y = yin\t)/nl

where £ is a mean value in [xi, x„+i\.
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(3.7) .-. 0 < yM(t)/n\ =  f"' TyM dt = h + I,

where A = {Jij + J^1! ^V"' * and 7, = JÍ* itf"3 di.
Now | Zi | < t, and 72 < 0. Further | 72 | can be made as large as desired by

choosing n large enough. Therefore the right-hand side of (3.7) can be made nega-

tive by suitable choice of e and n. This is a contradiction so that T ^ 0 in [xi,

Xn+l\.

The decision to use Gaussian quadrature fixes the points of S2 as the zeros of the

orthogonal polynomial of degree m with respect to T as weight function. The

corresponding quadrature formula will be exact for polynomials of degree 2m — 1

(i.e., whenever y is a polynomial of degree 2m + n — 1) so that the error in the

optimised form of\(2.5) will be 0(h2m) as T = 0(h~ ) and the range of integration

is 0(h). The error in the optimised quadrature formula is (for m > 1 ) smaller than

the interpolation error.

4. Some Examples. In all but very special cases the construction of difference

approximations rapidly becomes extremely tedious as the order of the differential

equations increases, and for this reason the examples considered in this section refer

to the equation

(4.1) d2y/dx2+f(x)y = g(x).

Let Si consist oí the points x\ =  — hi, x2 = 0, x3 = h2, then

T =  (x + hi)/hi(hi + h,),        -h g x < 0,
(4.2)

=  (Ä, - x)/ht(hi + A,),       0 i x < h2,

and

Í«2Tí
h.

»2 1 í r+1    i     /       ï \r,   r+1T**,- 1 fc^ + i-DV
(r + l)(r + 2) Ag + Ai

Even in the case s = 1, the problem of computing the quadrature points for

the weight function T requires the solution of three nonlinear equations in three

unknowns. This presents little difficulty on a computer, but does not make for ease

of presentation. However the most important special case (where Ai = A2 = A) is

readily soluble. The quadrature points will be the zeros of a cubic polynomial

P = x  + Ax  + Bx + C where P must satisfy the orthogonality conditions

i

h

TP dx = 0 = Ah2/Q + C,
h

Í
Í

h

TPx dx = 0 =A2/15 + 5/6,

TP.c dx = 0 = il Ay 15 + C/6,

so that

(4.4) A = C = 0,        ß =  -2A2/5    and    P = x(x2 - 2A2/5).
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Thus the points of S2 are £1 = — A(f)1/2, £2 = 0, £3 = A(f)"2. The quadrature weights

are vi = vs = 5/48, v2 = 7/24.

The difference equation can now be derived using the method of Section 2.

However, in this case, it is easy to write down an interpolation polynomial which

has an error O (A5) as the values of y& are given on Si by the differential equation.

Writing y(xi) = y i this interpolation polynomial is

(4.5) Q = y2 + xA"V> (y2 - f y^ + | y¿» + f h^uhy^ + ^ h~Yy2

giving the difference equation

¿(1,2, 3)i/ =  (hr2/2)S2y2

(4.6) = - l/48{5/(- (f )1/2A)Q(- (f)1/2A) + 14/(0)Q(0)

+ 5/((f)1/2A)Q((|)1/2A) - 5g(-(î)mh) - Ug(0) - 5g((i)'nh)\

where the second derivatives have been evaluated from

(4.7) ym(x) =  -/(x)Q(x) + g(x) + O (A5).

However, if Lobatto quadrature is used to reduce the quadrature error, then the

general case s = 1 is quite tractable. The resulting difference equation has an error

of O (A ) which is the same as that of the Numerov equation, and it may be useful

for problems in which graded meshes are necessary.

The use of Lobatto quadrature fixes £i = — Ai and £3 = A2, and leaves £2 free

to be adjusted to give maximum accuracy. By the usual argument, £2 is given by

the equation

(4.8) Í 2 T(x + Ai)(A2 - x)(x - fe) dx
J-h,

0

which has the solution

,     , _ A2 - Ai    2Ai2 + 5Ai A; -f 2A22

K     ' i2 5 Ai2 + 3Ai h + h2

The corresponding quadrature weights are

1       3Az4 + 6A/A1 + 9A2V + 6A2 Ai3 + Ai4
vi = tf;

(4.10)   v2 = -=-

12    (Ai + A2)(2A23 + 8A/A1 + 12A2 Ai2 + 3Ai3) '

(A22 + 3AiA2 + Ai2)3

^3  = TS ■

12    (3Aü3 + 12A22A! + 8A, A12 + 2Ai3)(2A23 + 8A22At + 12A2 At2 + 3Ai3) '

1        A24 + Qlhhi + 9AVV + 6A2 At3 + 3Ai4

12    (Ai + A2)(3A23 + 12A22Ai + 8A2 A12 + 2Ai3) '

When Ai = h¡ then ^2 = 0, and the quadrature weights reduce to those appro-

priate to the Numerov formula.

When m = 5 and the points of Si are equispaced, then Lobatto quadrature is

again tractable. In this case the error in the resulting quadrature formula is 0(A8),

while the interpolation error is O (A7), so that this formula is optimal.

Formulae for approximating to boundary  conditions  can be derived using
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similar techniques to those discussed above. Assume, for example, that Si consists

of the points — Ai, 77, and A2. Then (3.1) takes the form

2/1 + 7—r~m-n y(v) + 77-w¡—r~T\ V*
,      s     (h + v)(hi + A,) "      (v + hi)(v - *,) *w'      (A, - r,)(h + Ai)
(4.11)

where

T =  (x + Ai)/(Ai + 7,) (A, + A2),        -hi^x<v,

=  (A2 - x)/(A2 - ï,) (Ai + ht),       n á x < A2.

If this equation is differentiated with respect to 17 and then 1; set = 0, there results

<4-12)   dnsH»HV¿>°+i4-^í;K><!'*
where

— 1    x + AiV--d-l
dn v=o      h + ht     h2

1      A2 — x

-Ai ^ x < 0,

0 ^ x < A2
Ai 4- A2    A22    '

If Ai = ht = A, then fitting a quadratic to the values of ya) on Si and integrating

leads to the familiar formula

(4.13) y{l] = A-'pt«!/« - lhp.by¿2)

which is exact whenever y is a polynomial of degree 5Í 4. Again Gaussian quadra-

ture can be used to increase accuracy. Here V changes sign, but xV is positive and

can be used as a weight function provided x = 0 is a quadrature point. The re-

maining quadrature points in the case Ai = A2 have the form ±a where

¡■h

(4.14) Fx(x2 - a) dx = 0
J-h

r»

-h

giving ±a = ±(3/10)"2A. The corresponding quadrature weights are —l/(12a),

0, l/(12a). The formula that results when this quadrature is used to evaluate the

integral in Eq. (4.12) is exact whenever y is a polynomial of degree ^ 6.

5. Derivation of Some Nonclassical Formulae. The techniques described in

Sections 2 and 3 are based on a partitioning of the operator L of the form (writing

d/dx = D)

L  = Li + U ,

U = Dn,

Lt= Ia,(x)D''.
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The significant characteristics of the partitioning are

(i) the orders of L and Li are the same,

(ii) the equation Li(y) = 0 is readily soluble, and

(iii) a difference equation satisfied by all solutions of Li(y) = 0 is readily

determined.

Any other partitioning of L which has these three properties provides a possible

basis for generating finite difference approximations to Eq. (2.1). Actually, condi-

tion (iii) is a consequence of condition (ii) for let Vi, v2, • ■ -, vn be a fundamental

set of solutions to the equation Li(y) = 0, then the linear dependence of any

other solution of them over the points of Si gives

y(xi)

fi(a;i)

Vn(Xl)

which is written here as

(5.1) x(l,V-,n + l)y = 0.

Note that there is no scaling associated with the operator x in contrast to ¿ where

the scale is fixed by convention.

The program of Section 2 can be followed through in this case also. However,

some technique such as variation of parameters is needed to generate the inter-

polation to y from that to Li(y) so that it is perhaps best to go straight to the

formula which corresponds to (3.1). This has the form

(5.2) x(l,2, ••• ,n+ Dy =  Í " ' TLi(y) dx
•>Xl

where now T is characterised by the conditions

(i) T = 0, x < xi, x è xn+i,

(ii) T, Tm, ■■■, T(n~2) continuous on the points of Si,

(iii) Li(T) = 0 except at the points of Si.

Here Li is the differential operator adjoint to Li.

Example 1. Consider the self-ad joint differential equation

(5.3) (d/dx) (p dy/dx) + qy = /.

Let vi and v2 form a fundamental set of solutions, and assume that they satisfy the

conditions

?Jl(Xi) = vt(x3) = 0,        Vi(x2) = i'2(x2).

Then a possible choice for T is

T = vi(x),        Xi ^ x < Xt,

= v2(x),        x2 s; X < Xt .

Differentiating T in the first integration by parts gives

dT/dx = H(x — xi)H(x2 — x) dvi/dx + H(x — x2)7/(x3 — x) dvv/dx

y(xn+i)

Wi(x„+i)

î>n(x„+i)
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where H (x) is the Heaviside unit function. The second integration by parts brings

in the ô functions which give the difference equation

,    . dvi(xi)    ,    . ,    , (dvi(x2)      dv2(x2)\    .    .

pM ~fïx~ yiXl) - P{X2) K^Tx-dx~)yiX2)
(5.4)

-p(xi)d^y(xi) =   H Tfdx.
dx JXl

Example 2. Consider the special case p = 1, q > 0, and define Li = D2 + g2

where q2 = g(x2), then

,   .       sin (g2)1/2(x - xi)
VAX)   =-7-^77^7-c  ,

sm (g2)1/2(x2 — xi)

,  n _ sin (g2)1/2(x3 - x)

sm (g2)1/-(x3 — x2)

If Xi is specialised to x2 — A and x3 to x2 + A then (5.4) becomes

(5.5)       2/1 - 2 cos (h(q2)m)yt + y* = sin [^f^ P T(q2 - q)y dx.
(?2)1/2 JXl

This formula is given by Hersch in [4] and his derivation has been followed closely

here. An application of this equation to an eigenvalue problem has been given in

[3].
A range of difference equations can be obtained by substituting different inter-

polations for y on the right-hand side of Eq. (5.5). If, for example, the interpolation

polynomial given by Eq. (4.5) is used, and if the resulting integral can be evaluated

exactly, then the interpolation error in Eq. (5.5) will be 0(A8). However the left-

hand side of this equation tends to A Li(y) as A —> 0 so that the error is only 0(A6)

on a scale comparable with that used in Eq. (4.6). Gaussian quadrature with re-

spect to T as weight function can also be used. If a three-point Gaussian formula

is used then the quadrature error will be 0(h ), and the error on a scale comparable

with that used in Eq. (4.6) is again 0(h).

Example 3. Let Q be the quadratic interpolation polynomial fitted to q on the

points of Si . In this case define Li = D~ + Q. Explicit formulae for Vi and v2 do not

exist in general, but they can be generated to any degree of accuracy by Taylor

scries methods. Assuming that T is positive on Si, Gaussian quadrature can be

used to estimate ¡x\ T (Q — q) ydx. It is again most convenient to compute y from

(4.5), and in this case the error (again using the scale appropriate to (4.6)) is

0(A8) asQ - gisO(A3).

6. Assessing the Difference Equations. In the two previous sections several

formulae have been suggested which offer different compromises between accuracy

and ease of construction. In this section an attempt is made to provide a criterion

for selecting between them. The following assumptions are made.

A. That a realistic bound of the form KhT can be found for the error in the

solution to the difference equation. It is assumed that K = 0(1) as A —> 0, and

that r is the order of the error in the difference approximation measured in the scale

appropriate to Eq. (4.6).
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B. That the number of evaluations of the coefficients in the differential equation

is an adequate measure of the w'ork done in obtaining an approximate solution to

the differential equation.

This last is really two assumptions: (i) that the work done in setting up the

difference equation dominates the work done in solving it, and (ii) that the work

done in setting up the difference equation is effectively the work done in evaluating

the coefficients in the differential equation at the appropriate points.

Note that while B is a realistic assumption for our purposes it does not general-

ise. For example, in solving a Fredholm integral equation of the second kind by

finite differences 0(n2) function evaluations are required in setting up the linear

equations. The matrix of this set of equations is full, and its solution requires O (n )

multiplications. In this case it is likely that the work of solution would be dominant.

Thus assumption B takes account of the band structure of the matrices produced by

finite difference approximations to ordinary differential equations.

If E is the permitted tolerance for the error in the solution, then A must satisfy

(6.1) A i  (E/K)llr.

Also let J be the average number of new evaluations of coefficients required in

computing the difference equation at each mesh point (assuming that values at the

(i + l)st point are computed after those at the ith, and that common values are

reused). Then the work necessary to integrate the differential equation from x = a

to x = b is approximately

(6.2) W = J(b - a)(K/E),h:

To compare two methods (referred to by suffices 1 and 2) the ratio Wi/Wt is

appropriate. This contains the terms K\ ri and K2~"r2 which are difficult to specify

precisely as they are dependent on the error constants, on fairly high derivatives of

the solution, and on the conditioning of the original problem and that of the differ-

ence approximations. However, these terms tend to cancel one another out, and the

exponents 1/fi and l/r2 tend to reduce their influence strongly. Accepting this as an

argument for ignoring the terms in Tii and 7i2 largely on the basis of expediency, we

are led to define a relative efficiency index

(6.3) fl12 =JlE(i>r*-1,r0.
J 2

Example 1. Consider Eq. (5.3) with p — 1. Two possible finite difference ap-

proximations are

(i) 82yi + A2g,2/¿ = A2/¡ (standard), and

(ii) S'V, + A2(l + ^o2)(qiVi - fi) = 0 (Numerov).

In (i) the truncation error is

and in (ii) it is
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Thus ri = 2 and r2 = 4. Clearly Ji = Jt = 1 so that if Tí = 10 6 then ß12 = 101'5.

This indicates that method (i) would require about 30 times as many mesh points

as method  (ii) to give six correct decimal places.

It is interesting that in this case at least the error constants contribute little to

the ratio Wi/W, for (l/12)1/2/(l/240)1/4 » 1.1.

Example 2. Compare now the Numerov formula with the formula (4.6) and

the Gaussian type formulae suggested in Examples 2 and 3 of Section 5. Again we

take E = 10"6.

(i) Numerov compared with (4.6). Here J2 = 3, r2 = 5, 7?i2 = | 103'10 ~ .7.

(ii) Numerov compared with the Gaussian formula of Section 5, Example 2.

Here J2 = 3, r2 = 6. However, the quadrature points and weights must also be

evaluated (consider Eqs. (4.9) and (4.10)). Depending on the complexity of the

coefficients, an effective «72 may be expected to range between 3 and (say) 7.

For these extremes

J2 = 3,       Ra = i(10)1/2^ 1,

Jt = 7,       Äi2 = |(10)I/2 « .4.

(iii) Numerov compared wdth the Gaussian formula of Section 5, Example 3.

Here r2 = 8 giving Rn = lQ-n/J2.

In this case the number of coefficient evaluations (3) cannot be expected to be

a reasonable measure of the work involved in setting up the difference equation as

there are no closed formulae for the quadrature points and weights. However, 7¿i2

cannot be greater than the value obtained by taking J2 = 3. This value = 2.

From these figures it is clear that the Numerov formula is very attractive even

when compared with the very accurate formulae based on Gaussian quadrature.

An additional feature in its favour when solving eigenvalue problems is that the

eigenvalue parameter would appear linearly in it if it entered the original differen-

tial equation linearly. This is not true for any of the more accurate formulae con-

sidered.

However, note that Ri2 depends only on the two difference approximations and

not at all on the differential equation to be solved. Its use must therefore be tem-

pered by discretion. What it can do is provide a prior guide to a suitable difference

approximation by considering those features which always contribute to the work

of solution.

Of course, if an estimate is known for the magnitudes of the appropriate deriva-

tives of the solution of the differential equation then their contribution to the term

Ki n /A'2'""2 can be estimated. Note also that these terms depend on the choice of

scales for the independent and dependent variables, and that the use of Ri2 can only

be appropriate if "sensible" scales are adopted.
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