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Abstract. In this paper a fifth order starting method is given for Volterra equa-

tions of the form y it) = fit) + Jx0 kit, s, y is)) ds. Computational examples are

given for the method as a starting method for the Gregory-Newton method.

1. Introduction. In this paper we shall consider an 0(/i5) starting method for the

numerical solution of the nonlinear Volterra integral equation

(1) yit) = fit) 4- f  kit,s,yis)) ds.

After stating our algorithm we shall discuss its deriviation and consider some com-

putational examples. In our computational examples we shall consider our method

as a starting method for the Gregory-Newton method. The Gregory-Newton method

in this context has been discussed by Fox and Goodwin [2], Noble [8], and Todd [11].

2. The Algorithm. The self-starting method described here advances the solution

from .T0 to xo 4- h, Xo -\- h to xo 4- 2h, • • ■ , xo -\- 5h to xo -\- Cm. To advance from

xo to xo 4- h we compute

(2)

(3)

(4)

(5)

(6)

ym

2/1/3

2/2/3

2/1/2

= /( xo + §) + g /c (x° + 3»x* > y°) >

= / ( xo 4- g j 4- g   fcí xo 4- g , xo, i/o j + fc Í xo 4- g , xo 4- g, ym )  ,

./ 2h\   .   2/i,/       ,2/i h        \
= f \Xo + y I -r y k I Xo   4" y , Xo 4- g , 2/l/3 ) ,

= /Í xo + 2J 4- g   kl xo 4- g , xo , 2/0J 4- 3/cf xo 4- g> ̂ o + g > Vm)

(7)

2/1 = fixo 4- h) 4-

2/1 = /(zo 4- Ä) 4-

fc(x0 4- h, Xo , ?/o) 4- 3fc I xo + h,x0 +
(■

2Ä
,  2/2/3j      ,

fc(x0 4- h, xo , 2/0)

4- 4fc Í xo 4- fe, xo 4- g > 2/1/2 J 4- fc(x0 4- h, x0 + h, yx)   .

To advance from x0 + h to x0 4- 2h we compute

2/3/!

(S)
-'Hr) + "K>,3a ,  h

h y , Xo 4- 2 , 2/1/2 j

co 4- y, xo 4- h,yi)
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(9)

(10)
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2/3/2   = / V      1/     16   Mïo4y,x0,2/0 ) 4- 3/c I xo 4- y , xo 4- ̂ , Vm\

■('h 3/C ̂  Xo 4- y, Xo 4- «, 2/1 ) 4" K 1 Xo 4" y , Xo 4- y, 2/3/2■)]■

2/2 = fixo + 2h) + y Tfc (x0 4- 2A, xo +1,2V1/2) • 2

— kixo + 2h, xo 4- h, 7/1 ) -f 2fc (x0 4- 2ft, x0 4- y ,2/3/2)

2/2 = /Uo 4- 2ft) 4- g [fc(x0 4- 2ft, xo, 2/0) 4- 4fc(x0 4- ft2, xi/2, ym)

4- 2fc(x2, xi, 2/1) 4- 4fc(x2, X3/2,7/3/2) 4- kix2 ,xt ,2)2)].

To advance from xo 4- 2ft to x0 4- 3ft we compute

2/6/2 = f\xo 4- yj 4- — I lift (i

(12) 4- fcixo4-y ,x0 4- ft, 2/ij 4- A; f xo4-y ,xo 4- y>2/3/2)

. 5ft ,   ft   „   \
xo4-y,x0 4- 2,ym)

4- lift

2/5/2

(13)

( Xo 4- y , Xo 4- 2ft, 2/2 J

4- 75fc ( xo 4- y , X1/2,2/1/2 J 4- 50fc ( x0 4- y , xi, 7/1J

4- 50fc Í xo 4- y , X3/2,2/3/2 J 4- 75/c(x5/2, x2,7/2) 4- 19fc(x5/2, x5/2, ^5/2)    ,

Olj

2/3 = fixo 4- 3ft) 4- ~ñ [Ukixî, xiit, $m) — 14/c(x3, xx, 2/1)
(14) zu

4- 26fc(x3, x3/2 , ynt) — 14/c(x3, x2,2/2) 4- llfc(x3, x6/2,2/5/2)],

2/3 = fixa 4- 3ft) 4- x [fc(x3, Xo, 2/0) 4- 4fc(x3, Xi/2, 2/1/2) 4- 2fc(x3, Xi, 2/1)
(15) 6

4- 4fc(x3, X3/2,2/3/2) 4- 2fc(x3, x2,2/2) 4- 4fc(x3, x6/2,2/5/2) 4- fc(x3, x3,7/3)].

To advance from x0 4" 3ft to x0 + 4ft we compute

4ft
(16) 2/4 = f(xo 4- 4ft) 4- y [2fc(x4 , xi, 2/1) — kixi , x2 ,2/2) 4- 2/c(x4 , x3, 2/3)],

4ft
2/4 = fixo 4- 4ft) 4- ^ [7/c(xo 4- 4ft, x0,2/0) 4- 32/c(x0 4- 4ft, x0 4- ft, 2/i)

(17) 90

4- 12fc(x0 4- 4ft, xt, 2/2) 4- 32/c(x4, x3,2/3) 4- 7fc(x4, x4,2/4)].
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To advance from x0 4- 4ft to x0 4- 5ft we compute

5ft
2/5 = fixo 4- 5ft) -f j— [llkixi, xi, 2/1) 4- fc(x6, x2,2/2) + kix¡,, x3, y¡)

(18) 24

4- llfc(x6, x4, y4)],

5ft
2/5 = fixo + 5ft) -f ¡^ [19fc(xo 4- 5ft, xo, 2/0) 4- 75fc(x0 4- 5ft, x0 4- ft, 2/1)

(19) z°°

4- 50fc(x6, X2,2/2) 4- 50fc(x6, x3,2/3) 4- 75kixs, x4,2/4) 4- 19/c(x6, x6, y6)].

To advance from x0 4- 5ft to x0 4- 6ft we compute

m = f(xo 4- 6ft) 4- ™ [Ukixo, xi, 2/1) - 14fc(x6, x2,2/2)
(20) 20

4- 26/c(x6, x3,7/s) — 14/c(x6, x4,2/4) 4- ll/c(x6, x6,2/6)]r

2/6 = /(x0 4- 6ft) -f —r [fc(x6, xo, 2/0) 4- 5fc(x6, xi, 2/1) 4- fc(x6, X2,2/2)
(21) 10

4- 6fc(x6, x3,7/3) 4- fc(x6, x4,2/4) 4- 5/c(x6, x6,2/5) 4- fc(x6, x6, yo)].

3. Derivation of Algorithm. We shall sketch the derivation of the algorithm.

Many of the ideas for the algorithm will be found in a paper due to Kuntzmann [5].

If we approximate the integral in   (1)  by Simpson's rule on the interval

[xo, xo 4- ft] we obtain

2/(xo 4- ft) = /(xo 4- ft) 4- g   fc(x0 4- ft, xo, 2/0)

(22) + 4k (xo + ft, x0 + ¿, y(xo+^\]

4- A;(xo 4- ft, xo 4- ft, yixo + ft) )
ft      ,IV

2880
rv(xo4-ft,£,2/(£))-

where x0 < ? < x0 4- ft- Here t/(x0 4- ft/2) and t/(x0 4~ ft) are not known in the

right side of (22). If we are to use (22) wë must obtain accurate approximate values

for 2/(xo 4- ft/2) and 2/(xo 4- ft)- We do this in the following manner. First we note

that

2/(xo 4- ft) = /(xo 4- ft) + j\ kixo 4- ft, xo, 2/0)

+ 3fc(x0 + ft,xo4-y,2/(x„4-y))   +0(ft4

is an O (ft ) approximation to 2/(xo 4- ft). (This is the Radau two-point rule.) How-

ever, here we do not know y (x0 4- 2ft/3), but if we could obtain it to O (ft3) then we

could use (23). Thus, we attempt to attain an O (A3) approximation to y (x0 4- 2A/3).

This is done by using the midpoint rule

24)    7/(xo + f)=/(x„ + f)4-|fc(xo + |,xo+^2/(,o + ^)) + 0(ft3).



182 J.  T.   DAY

However here we do not know yix0 + ft/3) to 0(ft2). We obtain it to 0(ft3) by us-

ing the trapezoidal rule and Taylor's series

(25)

(26)

2/ I xo

y(xo

+ kixo + ^,Xo +-,y{xo + ^j)   + Oih3

öj = f\Xo + 3) + J \klxo + ^,xo, 2/0 j 4- Oih)   ds

= f\Xo + ö) + ök\Xo + ö'Xl>' yo) + Oih2).

Summarizing the above procedure, we have that formula (23 ) is used to predict

avalué for 2/1 (Eq. (6)) wdiich is then corrected with (25) (Eq. (7)). Formula

(26) is used to predict a value for 2/1/3 (Eq. (2)) which is corrected with (25) (Eq.

(3))-
The value of 2/1/2 is obtained by approximating the integral in

y\XoJr2/ = f\Xo + 2~) + J Ht, s, yis)) ds,       t = x0 4- ^ >

by the Radau two-point rule, disregarding the truncation error and substituting

2/1/3 in for 7/(x0 4- ft/3).

In advancing from Xo 4- ft to x0 4" 2ft, we first let x equal to Xo 4~ 2ft in (1 ) to

obtain
rxa+1h

(27) yixo + 2ft) = fixo + 2ft) + /e(x0 4- 2ft, s, yis)) ds.

This integral could be evaluated by Simpson's rule if we knew accurate approxi-

mate values for 7/3/2 and 2/2 • We obtain approximate values for 2/3/2 by first using the

open Newton-Cotes formula

h

(28)
)

Oih3)

y\Xa + -2)=f\Xo+^) + ^l k{x°+~2

4- k lxo + -^,xo + ft, 2/1)

and substituting this value into Simpson's three-eighths' rule on [x0, x0 -f- 3ft/2]

2/ ( Xo + y j = / ( Xo 4- y j 4- y [fc(x3/2 , x0 , 2/o) 4" 3/c(x3/2 , X1/2 , 7/1/2)

4- 3fc(x3/2, xi, 2/1) -f kixz/t, x3/2,7/3/2)] 4- 0(ft4).

An accurate value for 2/(xo 4- 2A) is obtained by using the Newton-Cotes open for-

mula

2ft
2/(xo + 2ft) = fix» + 2ft) [2fc(.x2, X1/2,2/1/2) — k(xo 4- 2ft, xi, 2/1)

+ 2fc(x2, X3/2,2/3/2)] 4- Oih").
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+ Oih")

and substituting this result into Simpson's rule

yixo + 2ft) = fixo + 2h) + - [kixt, x0,2/0) 4- 4/c(xs, Xi/2,2/1/2) 4- 2fc(x2, xi, 2/1)

4- 4fc(x2, x3/2,2/3/2) 4- Hx2, x2,7/2)] 4- 0(ft6).

To advance from x0 4- 2ft to x0 4- 3ft we could again use Simpson's rule if we

knew accurate approximate values for yw and 2/3 • We proceed as follows. Use the

open Newton-Cotes formula

J      ,  5ft\   ,   5ftrin7 /      ,  5ft \1,/      ,  5ft \
2/5/2 = / ( xo 4- y ) 4- ^g I Hfc ( xo 4- y, xiit, 7/1/2 ) 4- k I Xo 4- y, xi, 2/1 I

4- k I xo 4- y, £3/2,2/3/2 J 4- Hfc(z5/2, X2,2/2)

along with the closed Newton-Cotes formula

2/5/2 = / ( xo 4- y ) 4- gyg [19fc(x6/2, xo, 2/0) -f 75/c(x6/2, xi/2,2/1/2)

4- 50fc(x6/2, xi, 2/1) 4- 50fc(x5/2, X3/2,2/3/2)

4- 75/c(x6/2, x2,2/2) + 19/c(x6/2, X5/2,2/5/2)] + 0(ft5).

To obtain an approximate value for y at x3 we use the open Newton-Cotes for-

mula

01,

2/3 = /(xo 4- 3ft) 4- 2^ [Hfc(xo 4- 3ft, Xi/2,2/1/2) — 14/c(x3, Xi, 2/1)

-f 26/c(x3, x3/2,2/3/2) - 14fc(x3, x2,2/2) 4- llkix3, x6/2,2/5/2)] 4- Oih6)

together with Simpson's rule

2/(xo 4- 3ft) = fixo 4- 3ft) -f- g [kix0 + 3ft, x0, y0) + 4fc(x3, xV2, ym)

4- 2/c(x3, xi, 2/1) 4- 4fc(x3, x3/2,2/3/2) 4- 2/c(x3, x2, y2)

+ 4fc(x3, X6/2,2/5/2) 4- fc(x3, x3,7/3)] -f Oih").

It should be noted that the predictor is of higher order than the corrector here.

To advance from x0 4- 3ft to x0 4- 4ft we approximate the integral in

/X0+4Í1
fc(xo 4- 4ft, s, yis)) ds

by the Newton-Cotes formula

4ft
yixo 4- 4ft) = fixo 4- 4ft) -f ^ [7fc(x4, x0, y0) + 32/c(x4, xi, 7/1) 4- 12/c(x4, x2, 2/2)

-f 32fc(x4, x3,7/3) 4- Ikixi, x4,2/4)] 4- Oih7).
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Here 2/4 is obtained from the open Newton-Cotes formula

Ah
yixo 4- 4ft) = fixo 4- 4ft) 4- y [2fc(x4, xi, 2/1) - /c(x4, x2,2/2)

+ 2fc(x4, X3,2/3)] + 0(ft6).

An approximate value of y at x0 4- 5ft is obtained by the open Newton-Cotes

formula

5ft
yixo + 5ft) = fixo 4- 5ft) 4- 2^ [llfc(x6, Xi, 2/1) 4- /c(x5, x2,2/2)

4- fc(x6, X3,2/3) 4- llfc(x6, x4,2/4)] 4- Oih")

combined with the closed Newton-Cotes formulae

5ft
yixo 4- 5ft) = fixo + 5ft) + os« t19^6 > xo, 2/o) 4- 75fc(x6, Xi, 2/1)

-f- 50fc(x6, X2,7/2) 4- 50fc(x6, x3,2/3)

4- 75fc(x6, x4,2/4) 4- 19/c(x5, X5,2/5)] 4- 0(ft6).

To advance from xo 4~ 5ft to x0 4- 6ft we use the open Newton-Cotes formula

2/6 = fixo 4- 6ft) 4- 2^: [llfc(x0 4- 6ft, xi, 2/1) — 14/c(x6, x2, 2/2)

4- 26fc(x6, x3,2/3) - 14fc(x6, x4,2/4) 4- ll/e(x6, x6,2/6)] 4- 0(ft7)

together with Weddle's rule

2/6 = /(zo 4- 6ft) 4- T^¡ [fc(x6, xo, 2/0) 4- 5fc(x6, xi, 2/1) 4- A;(x6, x2,2/2)

4- 6fc(x6, x3,2/3) 4- fc(x6, x4,2/4) 4- 5fc(x6, x6,2/5) 4- fc(x6, x6,2/e)] 4- 0(ft7).

The Newton-Cotes open and closed formulae and Weddle's rule are given in

Milne [7]. For the other integration rules used here, see Hildebrand [3]. It should

be noted that we have assumed that the eighth partial derivative of k with respect

to s and yis) exist and is bounded in order to apply our method.

The method under consideration can be applied to systems of integral equations.

4. Use of Gregory-Newton Formulae. The Gregory-Newton Formulae (see

Todd [11], Hildebrand [3])

£0+""/(p) dp   =  ft|^ + fiXi)   +   ■■■   + fiXn-l)   + ^fn)

+ ^  U/U)   - f(Xo)]   -   IfiXn)   - /(x„-i)]}

- y± {[/(xi) " 2f{xi) + /(xo)] + [fiXn) - 2f(x"-^ +/(*»-*)]!
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+ ^ {[fix») - 3/(x2) + 3/(xi) - fixo)] - [fixn) - 3/(xn-i)

4- 3/(x„-2) - /(xn_3)]}

^ ilfixt) - 4/(x3) 4- 6/(x2) - 4/(xi) +/(xo)]

+ [fixn) - 4/(x„-i) + 6/(x„_2) - 4/(xn-3) +fixn-A)]}

h [A"fixo) - V"fixn)} +
60480

was used by Fox and Goodwin [2] in their treatment of linear Volterra integral

equations. In this paper we use the Gregory-Newton formulae through fourth

differences to advance the solution from x = x0 -f 6ft to any x = xo 4- Aft.

Since the integral equation is nonlinear, there is a need for a "predictor" to cor-

respond to the role of the Gregory-Newton formula as "corrector." In our work we

have used the following scheme. If we are to advance from x0 4- (2A — l)ft to

x0 4- 2Aft use Simpson's rule with step size ft, from x0 through x0 4- 2Aft — 4ft,

then use the open Newton-Cotes formulae

iXi 4ft
/    ydx=^ [22/1 - 2/2 4- 2yd -f- Oih")

on the interval [x0 4- 2Aft — 4ft, x0 + 2Nh]. In case x = x0 4- (2A — l)ft we first

integrate from x0 to x0 4- 3ft with Simpson's "three-eighths" rule followed by Simp-

son's rule until we come to x0 4- (2A — l)ft — 4A. Then apply the open Cotes

formula used above. This predictor has enabled us to use the Gregory-Newton

formula with only two iterations. Before using this, an 0(ft2) predictor was used.

However seven iterations were necessary in this case. Here the iterations were

stopped after a certain number of decimal places of accuracy were achieved.

5. Computational Examples. The following computational examples were com-

puted in Fortran (single precision) on the CDC 1604. By error we mean

error = | true — approximate value |.

Example 1. The integral equation

2/(0 = 1 - t + f itexU~M + e-2**)-iyix))2dx
Jo

has the solution 2/(x) = ex . It has been considered by Laudet and Oules [6]. We

find the following errors.

Example 2. The integral equation

2/(0 =Ç+ f iyix))112 dx
O Jo

was obtained by integrating the differential equation y = x1 " 4- y1'2, y(0) — 0.

This differential equation (see Todd [11], Noble [9]) does not possess a Taylor • ■
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pansion about the origin. Its solution about the origin can be written in the series

Vix) = I x3'2 + | (2/3)1,2xw -f- i x2 + ¿ (2/3) 1/2   9/4 2 5/2     .X     -1715*     +

we obtain the following values for x at .1, .2, 1.0 with step sizes .1, .05, .025.

These values compare quite favorably with those obtained by Noble using the

Runge-Kutta method (see Noble [9] ).

Example 3. The integral equation

2/(0  =  /   max (x, y) dx
Jo

was obtained from the differential equation y  = max (x, y), 7/(0) = 0 (see Burkill

[1]). The solution of this differential equation is

2/(x) = x2/2    for   x g 2,       2/(x) = 2e(z~2)    for   x > 2.

Thus there is a discontinuity in y" at x = 2.

In this example somewhat better results in the region x S: 2 were obtained by

using the Runge-Kutta method.

Example 4. The integral equation

2/(0 = 2Í + 3 -f [   - yix)i2it - x) + 3) dx
Jo

discussed by Todd [11]. The equation has the exact solution 2/(0 = 4e~2i — e~\

In addition to the above examples the writer has computed examples given by

Jones [4], Pouzet [10], Fox and Goodwin [2] and others. These numerical examples

are available from the writer in an MRC report.

Table 1

.05

.1

.2

.25

.3

.5
1.00
2.00
2.50

ft = .05

2.91 X 10"11
0
0

2.91 X 10-11
2.91 X 10-11

0
2.33 X 10"10
1.80 X 10-6
1.15 X 10"4

ft = .1

2.91 X 10-"
2.65 X 10-9

3.84 X 10~9
2.35 X lO"8
2.40 X 10-8
9.07 X 10-5
5.79 X 10-3

ft = .2

4.94 X 10-8

7.65 X 10-5
3.51 X 10"3

Table 2

x =  .1
x =  .2
x = 1

ft = .1

.030711

.093425
1.290677

ft = .05

.030838

.093541
1.291174

ft = .025

.030860

.093621
1.291354



A   STARTING  METHOD   FOR  VOLTERRA  EQUATIONS 187

Table 3

.1
.2
.3
.4
.5

1.0
1.4
1.6
1.8
2.0
2.1
2.2
2.5
3.0

ft = .05

1.14 X 10-13
1.36 X 10-12
9.09 X 10-31
3.64 X 10-12
0 (Machine)
0 (Machine)
2.91 X 10-»
8.73 X IO"11
5.82 X lO"11
0 (Machine)
8.19 X 10~6
2.58 X 10-"
3.43 X 10-"

A = .1

1.14 X 10-13
4.55 X 10-13
0 (Machine)
5.46 X 10-12
0 (Machine)
0 (Machine)
1.46 X 10-"
5.82 X 10-»
5.82 X 10-11
0 (Machine)
1.76 X 10-3
4.70 X 10-4
1.36 X 10-3
2.26 X 10"3

ft = .2

4.55 X 10-13

1.82 X IO-12

0 (Machine)
1.46 X 10-11
5.82 X lO"»
8.73 X 10-11
1.04 X 10-9

7.27 X 10-3

8.99 X 10-3

Table 4

.1

.2

.3

.4

.5
1.0
1.4
1.6
1.8
2.0
2.5
3.0
4.0
5.0

ft = .05

2.41
2.48
1.38
1.22
2.98
8.57
1.49
6.43
9.70
1.25
1.35

X 10"6
X io-6
X io-7
X io-7
X IO"8
X IO"9
x io-9
X io-9
X io-9
X io-8
X 10"8

.1

2.44
6.83
4.17
1.33
1.87
1.65
4.62
2.37
1.14
4.69
8.57
1.20
3.70
8.94

X io-8
x io-5
x io-5
x io-4
x io-4
x io-5
x io-6
x io-6
X io-6
x io-7
x io-8
x io-7
x io-8
x io-8

ft = .2

7.36 X IG"4

1.68 X 10-3

6.66 X IO-3
8.83 X IO-4
3.34 X
4.63 X
1.35 X

io-3
io-4
IO"3

3.45 X IO"4
4.65 X IO"6
4.43 X IO-5
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