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The Generation of Minimal Triangle Graphs

By Robert Bowen

Let T be a finite set of triples (sets of three distinct elements). We define GiT)

to be the 1-skeleton of the 2-complex formed by T (i.e. the graph with elements of

triples of T as vertices and two vertices adjacent iff they are distinct and lie in a

common member of T). T is a minimal triangle set (MTS) of order n if (i) GiT) has

n vertices and is connected, and (ii) G(T — \t) ) satisfies (i) for no t in T. In such

a case G(T) is a minimal triangle graph (MTG) of order n. Our problem is to gener-

ate all (nonisomorphic) MTS's of a given order or equivalently (by Theorem 1) all

MTG's of that order.

Theorem 1. If G is an MTG, then G = GiT)fora unique MTS T.

Proof. Suppose T and T' are MTS's with G = G(T) = G(T') and t £ T,t $ ?.

Let t = \Pi,P2, Pi). Ast § T' and G = GiT'), the pairs {Pi, P2), {Pi, P3), and

{P2, P3} are in some triples {Pi, P2, P4], {Pi, P3, Pi), and \P2, P3, P6} of T'.

Then all of PiP4, PtP2, P2Pe, P<,P3, PzPf,, and P6Pi are all edges of G not lying

on triangle t. Hence PiPiP2PtP3P6Pi is a cycle in G(T - {<}) and GiT - \t)) is

connected and has the same vertices as GiT), contradicting T an MTS.

If P is a vertex of a graph G, we let GP denote the graph formed by removing P

and incident edges from G.

Lemma 1. If G is a connected graph, then Gp is connected for some vertex P of G.

Proof. A spanning tree of G is a tree subgraph of G containing all the vertices

of G. As G is connected, from [2] we know that G has a spanning tree K. Let P be

a vertex of K of valency one. Then KP is a spanning tree for GP ; hence GP is con-

nected.

Lemma 2. If GiT) is connected, then GiT — {t) ) is connected for some t in T.

Proof. Form the graph H(T) by taking members of T as vertices and letting a

pair of them be adjacent iff they are distinct and have an element in common. Then

H(T) is connected iff GiT) is, for there is a path between two vertices in G(T) iff

there is one in H(T) between elements of T containing the vertices. As G(T) is

connected, so is i?(T); and, by Lemma 1, so is H(T)t = H(T — \t)) for some t

in T. Then G(T - [t) ) is connected also.

We note that the same proof applies to any complex ; in any connected complex

T there is some simplex t such that the 1-skeleton of T — {t) is connected and hence

T — {t} is connected also. An alternate proof of Lemma 2 appears in [1].

Theorem 2. Let T be an MTS of order n ^ 4. Then there is an MTS T' of order

n - lorn -2 such that T' = T - {t) for some t <E T.

Proof. Lett Ç T as in Lemma 2 and set T' = T - {<}. As T is an MTS and

GiT') is connected, GiT') must have fewer vertices than GiT). As GiT) is con-

nected and T' s¿ 0, GiT') cannot have three fewer vertices than GiT). Hence

G (T') has n - 1 or n - 2 vertices. Finally suppose ( G T', T" = T' - {«'}, with

GiT") connected and having the same vertices as GiT'). Then G(T" u {f}) =

G(T — {t ) ) has the same vertices as G(T) and hence is not connected since T is an

MTS. Since GiT") is connected, this means that t has no vertex in common with
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GiT"). But G(T") has the same vertices as G(T"); hence three vertices of GiT)

are not in GiT ), a contradiction

Now suppose n ^ 4 and we have all MTS's of order n — 1 and n — 2. If we

add a triple to those of order n — 2 with exactly two new vertices in all possible

ways and add a triple with exactly one new vertex to those of order n — 1 in all

possible ways, then by Theorem 2 we shall obtain all MTS's of order n. We are left

with the problem of sorting out isomorphic MTS's. For this purpose a routine was

developed for testing two graphs for isomorphism (described in the next para-

graph ). As we generate an MTS T we compare G ( T ) against the graphs of the MTS's

already generated. If G(T) is isomorphic to GiT*) with T* already generated, then

Theorem 1 assures us that T and T* are isomorphic. Hence T is discarded in such a

case. If no such T* has been generated, then T is new, T is added to the list of MTS's

of order n, and G(T) is retained for future testing.

The isomorphism routine handles connected graphs with 35 or fewer vertices.

For P, Q vertices of a graph G let aiP, Q) = 1 if P and Q are adjacent and 0

otherwise. Set 60(P) = 1 and bk+iiP) = Xq«^. Q)bkiQ) for all P. Note that
6i(P) is just the valence of P. According to the numbers 6i, 62 and 63 the vertex

sets of each of the two graphs being tested are divided into classes and the classes

of the two graphs are matched if possible. If a vertex is the only member of its class,

it is matched with the corresponding vertex of the other graph. With a partial match-

ing of vertices a few simple tests search for a local contradiction or a "forced" local

extension. During these tests a desirable vertex is picked out for arbitrary matching

in case this is necessary. After this vertex is matched, the process is repeated. We

move up and down our "possibility tree" in the usual back-track method until a

final contradiction or an isomorphism is attained.

Computations were carried out on an IBM 7094. In the table below M in) is the

number of MTS's (or MTG's) of order n. We started from the single MTS of order

3, the triangle. We generated those of order thirteen and less in approximately

twenty minutes. In a test of the ismorphism routine, in four minutes isomorphisms

were constructed between 9600 pairs of isomorphic triangular graphs with 12 ver-

tices. Min) was checked by hand for n ^ 7.

4
5
6
7
8

Min)

1
2
4
9

19

9
10
1]
12
13

Min)

48
117
307
821

2277
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Generation of Triangulations of the Sphere

By Robert Bowen and Stephen Fisk

It is easily seen that there is only one triangulation of the sphere with four ver-

tices and one with five. This paper concerns an algorithm for finding all (noniso-

morphic) triangulations of the 2-sphere with JV vertices from those with JV — 1.

"Triangulation" shall always refer to a triangulation of the 2-sphere. First we de-

velop a method for generating all triangulations with JV vertices which may yield

several triangulations of the same isomorphism type, and then wre describe an iso-

morphism routine for eliminating these duplications.

Let T be a triangulation with JV ^ 5 vertices, E edges, and F faces. Let Xk

denote the number of vertices of T of valency k. Then 3P = 2E as each face is a

triangle and each edge is on two faces, and 2E = ^ kXk as each edge is incident

to two vertices. Hence QF — 62? = — 2E — — ̂  kXk and by Euler's formula we

have

(1) 12 = 6JV -f- QF - QE = 6JV - £ kXk = £ X*(6 - 7c).

Since X) Xk (6 — fc) is positive, T must have a vertex of valency less than six. Be-

cause every edge of T must lie on twro distinct triangular faces, each vertex must

have valency greater than two. Letting Q be a vertex of minimal valency, Q must

have valency three, four, or five.

Case 1. Suppose Q has valency three. Then, about Q, T has the form shown in

Fig. 1. Removing Q and the edges QPk, we obtain a triangulation T with JV — 1

vertices. Thus we obtain T if we add the point Q to the center of the face PiP2P3

and add the edges QPk (fc = 1, 2, 3).
Case 2. Suppose Q has valency four. Then, about Q, T has the form shown in

Fig. 2. By the Jordan curve theorem either Pi is not adjacent to P3 or P2 is not

adjacent to P4 ; say Pi is not adjacent to P3. Then, removing Q and edges QPk

(1 is fc ̂  4) and adding edge PiP3 inside the quadrilateral PiP2P3Pi, we obtain a

triangulation T with JV — 1 vertices. The slight complication here is needed to

insure that T' is a triangulation; for if Pi were adjacent to P3 in T, then T' would

have multiple edges and would not be a triangulation. We now obtain T from T'

by reversing the process.

Case 3. Assume Q has valency five. We claim some Pk is adjacent to no Pi

other than the two shown (Fig. 3). Otherwise Pi would be adjacent to P3 or P4,

say P3. Then by the Jordan curve Theorem, P2 could be adjacent to neither P4 nor
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