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Conversion of Modular Numbers to their Mixed
Radix Representation by a Matrix Formula

By J. Schonheim

Introduction. Let m; > 1, z = 1, 2, - - -, ), be integers relatively prime in
pairs and denote m = mymg --- m, . If 2;,,0 Sz, < m;, (¢ = 1,2, .-+, s) are in-
tegers, the ordered set (z1, 2, - - - , Z,) is called a modular number, with respect to
the moduli m; (¢ = 1, 2, -- -, s) and it denotes a unique residue class mod m.

Modular arithmetic has been developed (1], [2], [5], and its use in computers has
been suggested [1], [5]. It has also been applied in the solution of various problems
(2], [6].

A central question is to determine the least nonnegative residue mod m of a given
residue class (21, 22, - -+ , Z,). Denote it by n. In order to work entirely in the given
modular system it was suggested (1], [3], [7] and [8] to obtain n in its mixed radix
representation with respect precisely to the radices m; (¢ = 1, 2, ---, s), thus in
the form

n = by + bomy + bsmume + -+ + bymamy -+ My

where 0 < b; < mi, (¢ = 1, +--, s). In these methods the modular number
(b1, b, ---,b,) is obtained from the modular number (2, , 2., - - - , z.) sequentially
or iteratively.

We propose here (see Theorem) a matrix method which consists in precalculating
(s — 1) matrices, 4;, (z = 1,2, --- , s — 1), which depend only on the moduli

m; (¢ = 1,2, ---,s) and in obtaining (b;, by, --- , b,) by postmultiplication of
(1,22, -+, x;) by A1, Ay, - -+, A,1 or more precisely, observing the nonassoci-
ativity of the used matrix product, computing:

(bl ) b2 ) b3 y T ba) = [' . ‘[[(271 y T2 ) T3, v ) xs)Al]Aﬂ‘ ° As-—2]As-—1 .

This method is simpler than Mann’s method [3] and concentrates the sequential
Svoboda-Lindamood-Shapiro method [1], [4] in a single matricial formula.

Definition 1. Let A = [a;j] and B = [b;;] be matrices of s columns with integer
elements, whose rows may be regarded as modular numbers with respect to the
moduli m; (¢ =1, .-+, s). Define, provided B has s rows, C = AB as C = [ej],
ci; = Z asb,; (modm;), 0 < ¢;; < mj.

This matrix multiplication is not associative in general, but two exceptions are
mentioned in the following lemma.

LemMA 1. Let E = Eu,) (fizedi,v = 1,2, --- [ h < s) bes X s matrices having
untts in the main diagonal, ¢, as vth element in the ith (v 5 ) row and zeroes elsewhere.
Let D be a diagonal matrix of the same size. Then if X 1s an arbitrary matriz with s
columns and A an arbitrary s X s matrix, we have:

(1) (XA)D = X(AD),
(2) (+((XE)Ez)---)Ey = X((---((E\E2)E3)---)En).

Proof. Properties (1) and (2) are immediate consequences of the definitions.
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Remark 1. The matrices E, (v = 1, - -+ , h) are generalized elementary matrices.

Notation. Denote x = (2, 22, - - -, x,) if z is an arbitrary number of the residue
class (21, 22, + -+, %,) mod m and denote n = (21, 22, - - -, ) if n is the least non-
negative residue of the class.

LemMA 2. If (21, 2, + -+ %) 18 @ modular number with respect to the moduli
mi(i=1,---,8)andn = (21,22, -+, 2,) while

o — X1 T3 — 1 Ty — 1
™ ) m ) ’ m

means a modular number with respect to the modult m; (¢ = 2,3, -+ , s) then

n—x1= Xo — 1 T3 — X1 Ts— 21
my my ’ m ’ ’ ma ’
Proof. n — z; is divisible by m; and since 0 < n < m, it follows that

n—nn m
< —.
my ma

0=

Definition 2. Let mi" = my (modm;), i < j < 5,0 < my < m; and put
ni = m; — mq; . Let I, be the identity matrix of rank k. Define, for1 <k = s — 1,
s X s matrices,

r ' A
I~ : 0
el
: 1 N k+1 N k2 N8
A = i 0 M k+1 0 0
, 1o 0 My k42 0
0o
Pl
) 0 0 cee Mis
L J

LemMA 3. If (y1, Y2, -+, Ys) t8 @ modular number with respect to the moduly
mi(t=1,---,8), then

Yertt — Y ys—yk>
K 2 .

(3) (Y1, 92, =5 ¥s) Ak:(?/l;y?y"'yyk» o proy

Proof. The matrix A is the product of the elementary matrices Ex i41(nk k41)
-+« Exs(ng,) multiplied by the diagonal matrix

r "

Ii

M k41

Mis
L J

By Lemma 1 associativity holds and the effect of postmultiplication by A is the
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same as the effect of successive postmultiplications by Ex xi1, Exiv2, « -, Eis and
D, which is precisely the right side of (3).

LemMA 4. Letn = (21,22, -+, &) and let qi ,7: (¢ = 1, - - -, 5) be the quotients and
the remainders in the successive divisions

n = mq + ",
(4) .

g = MipQinn + i (T=1,--+,5—1)
then

(' . '(((.1?1 y Lo, tt $3)A1)A2)' . ')Ak =(7“1 y Tey =0y Tk y Thaly Yito, Ykgs, *° 0, ys)
and
(Thst, Yea, ** 5 Ys) = Qi -
Proof. Proceed by induction on k. Let £ = 1. Then by Lemma 3
(o1, -, 2)As = <va — o u)
m

ma

hence r; = z; and by Lemma 2,

X9 — 1 Ts — X1\ _ — 21
y Ty = = q.
my ny my

3

Therefore

Xo — 1
my

=7 (mod ms) 0 =51 < me.

Suppose the assertion is true for 1 < £k < h < s — 1, thus
(3) (- (@1, @, 8 A )Aia = (P, 72, o Thy Ykt Yntr s 5 Ys),
and
(6) G = (Thy Y1, "+ 5 Ys)
with respect to the moduli m; (¢ = h, h + 1, - -+ | s). Then by Lemma 3 and (5)

((' o ((xla T2y, * "¢ 7x8)A1) N ")Ah—l)Ah =<7‘1;7‘2)' : ')Thyh-*.l — Th, : _.’y&‘ — Th)
mp mpy

and by (6) and Lemma 2

Yty — Th Ys — Th\ _ Qp—1 — Th __
y T = = Qqh.

mp mp mp
Therefore
Yut1r — Th |
=, 0 = 1k < Mptr.
mp

Hence the result is true for k = h.
THEOREM. If m;,m: > 1 (¢ = 1,2, - -+, s) are integers, relatively prime in pairs
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m = mi---ms, and if n s the least monnegative residue of the class
(x1,22, - ,2s) modmand by , be, - -+ , bs are the digits of the mized radix represen-
tation of m with respect to the radicesm; (1 = 1, - - - , 8) then with matrix multiplication
and matrices A; (1 = 1, --- | 8) as defined in Definitions 1 and 2

(b, bay-ovybs) = (- (21, 22y -0, ) Ar)Ag) - - ) Ay

Proof. The digits by , - - - , b, of the required representation are the remainders of
the successive divisions (4) and the theorem is a corollary of Lemma 4 withk = s — 1.

Remark 2. The above algorithm requires in general s — 1 matrix multiplications,
butifk < s —1and

(7) (“'(((xlyxZ) axS)A1>A2)"')Ak = (Tl yT2y oo 7Tk+1v0»0) 70)

then the right side of (7) is the result, and no further multiplications are needed.
Example. Let 2, 3, 5, 7 be the moduli m, , ms , m3, ms . Then the numbersm;; ,
i < j are given by

2 3 4
2 5
3
and therefore the numbers n;; are
1 2 3
3 2
4
The matrices 4, , A», 4; are
11 2 3 100 0 100 0
| 1
0200 01 3 2 010 0
A1= 5 A2=[ '; A3=| !
0030 ;0020! 1[0014{
! i
0 0 0 4 |L00051 {0 0 0 31

Let (0200) be a residue class mod 210. Let n be the least nonnegative residue of this
class. Then b, , bs, b3, by, the digits of the mixed radix representation of n, with
respect to the radices 2, 3, 5, 7 are given by

(bl,bz,ba,b4) = (((OZOO)Al)AQ)Ag = (0 1 34)

Indeed 0 4+ 1-2 4+ 3-2-3 + 4-2-3-5 = 140, 140 < 210 and 140 = 0 (mod 2),
2 (mod 3), 0 (mod 5) and 0 (mod 7).
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