## Conversion of Modular Numbers to their Mixed Radix Representation by a Matrix Formula

## By J. Schönheim

**Introduction.** Let  $m_i > 1$ ,  $(i = 1, 2, \dots, s)$ , be integers relatively prime in pairs and denote  $m = m_1 m_2 \cdots m_s$ . If  $x_i$ ,  $0 \le x_i < m_i$ ,  $(i = 1, 2, \dots, s)$  are integers, the ordered set  $(x_1, x_2, \dots, x_s)$  is called a modular number, with respect to the moduli  $m_i$   $(i = 1, 2, \dots, s)$  and it denotes a unique residue class mod m.

Modular arithmetic has been developed [1], [2], [5], and its use in computers has been suggested [1], [5]. It has also been applied in the solution of various problems [2], [6].

A central question is to determine the least nonnegative residue mod m of a given residue class  $(x_1, x_2, \dots, x_s)$ . Denote it by n. In order to work entirely in the given modular system it was suggested [1], [3], [7] and [8] to obtain n in its mixed radix representation with respect precisely to the radices  $m_i$   $(i = 1, 2, \dots, s)$ , thus in the form

$$n = b_1 + b_2 m_1 + b_3 m_1 m_2 + \cdots + b_s m_1 m_2 \cdots m_{s-1}$$

where  $0 \le b_i < m_i$ ,  $(i = 1, \dots, s)$ . In these methods the modular number  $(b_1, b_2, \dots, b_s)$  is obtained from the modular number  $(x_1, x_2, \dots, x_n)$  sequentially or iteratively.

We propose here (see Theorem) a matrix method which consists in precalculating (s-1) matrices,  $A_i$ ,  $(i=1, 2, \dots, s-1)$ , which depend only on the moduli  $m_i$   $(i=1, 2, \dots, s)$  and in obtaining  $(b_1, b_2, \dots, b_s)$  by postmultiplication of  $(x_1, x_2, \dots, x_s)$  by  $A_1, A_2, \dots, A_{s-1}$  or more precisely, observing the nonassociativity of the used matrix product, computing:

$$(b_1, b_2, b_3, \dots, b_s) = [\dots [[(x_1, x_2, x_3, \dots, x_s)A_1]A_2] \dots A_{s-2}]A_{s-1}.$$

This method is simpler than Mann's method [3] and concentrates the sequential Svoboda-Lindamood-Shapiro method [1], [4] in a single matricial formula.

Definition 1. Let  $A = [a_{ij}]$  and  $B = [b_{ij}]$  be matrices of s columns with integer elements, whose rows may be regarded as modular numbers with respect to the moduli  $m_i$   $(i = 1, \dots, s)$ . Define, provided B has s rows, C = AB as  $C = [c_{ij}]$ ,  $c_{ij} = \sum a_{ij}b_{rj} \pmod{m_j}$ ,  $0 \le c_{ij} < m_j$ .

This matrix multiplication is not associative in general, but two exceptions are mentioned in the following lemma.

LEMMA 1. Let  $E = E_{i\nu(c_{\nu})}$  (fixed  $i, \nu = 1, 2, \dots, h < s$ ) be  $s \times s$  matrices having units in the main diagonal,  $c_{\nu}$  as  $\nu$ th element in the ith  $(\nu \neq i)$  row and zeroes elsewhere. Let D be a diagonal matrix of the same size. Then if X is an arbitrary matrix with s columns and A an arbitrary  $s \times s$  matrix, we have:

$$(1) (XA)D = X(AD),$$

$$(2) \qquad (\cdots((XE_1)E_2)\cdots)E_h = X((\cdots((E_1E_2)E_3)\cdots)E_h).$$

Proof. Properties (1) and (2) are immediate consequences of the definitions.

Received May 18, 1966.

Remark 1. The matrices  $E_{\nu}$  ( $\nu=1, \dots, h$ ) are generalized elementary matrices. Notation. Denote  $x=(x_1, x_2, \dots, x_s)$  if x is an arbitrary number of the residue class  $(x_1, x_2, \dots, x_s)$  mod m and denote  $n \equiv (x_1, x_2, \dots, x_s)$  if n is the least nonnegative residue of the class.

LEMMA 2. If  $(x_1, x_2, \dots, x_s)$  is a modular number with respect to the moduli  $m_i$   $(i = 1, \dots, s)$  and  $n \equiv (x_1, x_2, \dots, x_s)$  while

$$\left(\frac{x_2-x_1}{m_1},\frac{x_3-x_1}{m_1},\cdots,\frac{x_s-x_1}{m_1}\right)$$

means a modular number with respect to the moduli  $m_i$  ( $i=2,3,\cdots,s$ ) then

$$\frac{n-x_1}{m_1} \equiv \left(\frac{x_2-x_1}{m_1}, \frac{x_3-x_1}{m_1}, \cdots, \frac{x_s-x_1}{m_1}\right).$$

*Proof.*  $n - x_1$  is divisible by  $m_1$  and since  $0 \le n < m$ , it follows that

$$0 \leq \frac{n-x_1}{m_1} < \frac{m}{m_1}.$$

Definition 2. Let  $m_i^{-1} \equiv m_{ij} \pmod{m_j}$ ,  $i < j \leq s$ ,  $0 < m_{ij} < m_j$  and put  $n_{ij} = m_j - m_{ij}$ . Let  $I_k$  be the identity matrix of rank k. Define, for  $1 \leq k \leq s - 1$ ,  $s \times s$  matrices,

Lemma 3. If  $(y_1, y_2, \dots, y_s)$  is a modular number with respect to the moduli  $m_i$   $(i = 1, \dots, s)$ , then

(3) 
$$(y_1, y_2, \dots, y_s) A_k = \left(y_1, y_2, \dots, y_k, \frac{y_{k+1} - y_k}{m_k}, \dots, \frac{y_s - y_k}{m_k}\right).$$

*Proof.* The matrix  $A_k$  is the product of the elementary matrices  $E_{k,k+1}(n_{k,k+1}) \cdots E_{ks}(n_{ks})$  multiplied by the diagonal matrix

$$D = egin{bmatrix} I_k & & & & \\ & m_{k,k+1} & & & \\ & & \ddots & & \\ & & & m_{ks} \end{bmatrix}.$$

By Lemma 1 associativity holds and the effect of postmultiplication by  $A_k$  is the

same as the effect of successive postmultiplications by  $E_{k,k+1}$ ,  $E_{k,k+2}$ ,  $\cdots$ ,  $E_{ks}$  and D, which is precisely the right side of (3).

LEMMA 4. Let  $n \equiv (x_1, x_2, \dots, x_s)$  and let  $q_i, r_i$   $(i = 1, \dots, s)$  be the quotients and the remainders in the successive divisions

(4) 
$$n = m_1 q_1 + r_1,$$

$$q_i = m_{i+1} q_{i+1} + r_{i+1} \qquad (i = 1, \dots, s-1)$$

then

$$(\cdots(((x_1, x_2, \cdots, x_s)A_1)A_2)\cdots)A_k = (r_1, r_2, \cdots, r_k, r_{k+1}, y_{k+2}, y_{k+3}, \cdots, y_s)$$
 and

$$(r_{k+1}, y_{k+2}, \cdots, y_s) \equiv q_k$$

*Proof.* Proceed by induction on k. Let k = 1. Then by Lemma 3

$$(x_1, \dots, x_s)A_1 = \left(x_1, \frac{x_2 - x_1}{m_1}, \dots, \frac{x_2 - x_1}{m_2}\right),$$

hence  $r_1 = x_1$  and by Lemma 2,

$$\left(\frac{x_2-x_1}{m_1}, \cdots, \frac{x_s-x_1}{n_1}\right) \equiv \frac{n-x_1}{m_1} = q_1.$$

Therefore

$$\frac{x_2 - x_1}{m_1} \equiv r_2 \pmod{m_2} \qquad 0 \le r_2 < m_2.$$

Suppose the assertion is true for  $1 < k < h \le s - 1$ , thus

(5) 
$$(\cdots((x_1, x_2, \cdots, x_s)A_1)\cdots)A_{h-1} = (r_1, r_2, \cdots, r_h, y_{h+1}, y_{h+r}, \cdots, y_s),$$
 and

(6) 
$$q_{h-1} \equiv (r_h, y_{h+1}, \cdots, y_s)$$

with respect to the moduli  $m_i$  ( $i = h, h + 1, \dots, s$ ). Then by Lemma 3 and (5)

$$((\cdots ((x_1, x_2, \cdots, x_s)A_1) \cdots)A_{h-1})A_h = \left(r_1, r_2, \cdots, r_h \frac{y_{h+1} - r_h}{m_h}, \cdots, \frac{y_s - r_h}{m_h}\right)$$

and by (6) and Lemma 2

$$\left(\frac{y_{h+1}-r_h}{m_h}, \cdots, \frac{y_s-r_h}{m_h}\right) \equiv \frac{q_{h-1}-r_h}{m_h} = q_h.$$

Therefore

$$\frac{y_{h+1} - r_h}{m_h} = r_{h+1}, \qquad 0 \le r_{h+1} < m_{h+1}.$$

Hence the result is true for k = h.

THEOREM. If  $m_i$ ,  $m_i > 1$   $(i = 1, 2, \dots, s)$  are integers, relatively prime in pairs

 $m=m_1\cdots m_s$ , and if n is the least nonnegative residue of the class  $(x_1, x_2, \dots, x_s)$  mod m and  $b_1, b_2, \dots, b_s$  are the digits of the mixed radix representation of n with respect to the radices  $m_i$   $(i=1, \dots, s)$  then with matrix multiplication and matrices  $A_i$   $(i=1, \dots, s)$  as defined in Definitions 1 and 2

$$(b_1, b_2, \dots, b_s) = (\dots(((x_1, x_2, \dots, x_s)A_1)A_2)\dots)A_{s-1}.$$

*Proof.* The digits  $b_1$ ,  $\cdots$ ,  $b_s$  of the required representation are the remainders of the successive divisions (4) and the theorem is a corollary of Lemma 4 with k = s - 1.

Remark 2. The above algorithm requires in general s-1 matrix multiplications, but if k < s-1 and

$$(7) \quad (\cdots (((x_1, x_2, \cdots, x_s)A_1)A_2)\cdots)A_k = (r_1, r_2, \cdots, r_{k+1}, 0, 0, \cdots, 0)$$

then the right side of (7) is the result, and no further multiplications are needed.

*Example.* Let 2, 3, 5, 7 be the moduli  $m_1$ ,  $m_2$ ,  $m_3$ ,  $m_4$ . Then the numbers  $m_{ij}$ , i < j are given by

and therefore the numbers  $n_{ij}$  are

The matrices  $A_1$ ,  $A_2$ ,  $A_3$  are

$$A_{1} = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}; \qquad A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}; \qquad A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Let  $(0\ 2\ 0\ 0)$  be a residue class mod 210. Let n be the least nonnegative residue of this class. Then  $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$ , the digits of the mixed radix representation of n, with respect to the radices 2, 3, 5, 7 are given by

$$(b_1, b_2, b_3, b_4) = (((0\ 2\ 0\ 0)A_1)A_2)A_3 = (0\ 1\ 3\ 4).$$

Indeed  $0 + 1 \cdot 2 + 3 \cdot 2 \cdot 3 + 4 \cdot 2 \cdot 3 \cdot 5 = 140$ , 140 < 210 and  $140 \equiv 0 \pmod{2}$ ,  $2 \pmod{3}$ ,  $0 \pmod{5}$  and  $0 \pmod{7}$ .

Department of Applied Mathematics Tel-Aviv University Ramat-Aviv, Tel-Aviv Israel 1. M. VALACH & A. Syoboda, "Circuit operators," Stroje na. Zpracovani Informaci Sb.,

v. 111, 1957, pp. 247-297. (Czech)

2. H. S. Shapiro, "Some remarks on modular arithmetic and parallel computation," Math. Comp., v. 16, 1962, pp. 218-222. MR 26 \* 4511.

3. H. B. Mann, "On modular computation," Math. Comp., v. 15, 1961, pp. 190-192. MR 22 **\* 10944.** 

4. G. E. Lindamood & G. Shapiro, "Magnitude comparison and overflow detection in modular arithmetic computers," SIAM Rev., v. 5, 1963, pp. 342-350. MR 29 \*6662.
5. A. Svoboda, "The numerical system of residual classes in mathematical machines," Information Processing, pp. 419-422, UNESCO, Paris, R. Oldenbourg, Munich and Butterworths, London, 1960. MR 28 \*5581.
6. J. Borosh & A. S. Fraenkel, "Exact solutions of linear equations with rational coefficients by congruence techniques," Math. Comp., v. 20, 1966, pp. 107-112.
7. V. N. Teïtel'Baum, "Comparison of numbers in the Czech system of numbers," Dokl. Akad. Nauk SSSR, v. 121, 1958, pp. 807-810. (Russian) MR 21 \*3367.
8. A. S. Fraenkel, On Size of Modular Numbers, Proc. ACM 19th National Conference, Philadelphia, Pa., 1964.

Philadelphia, Pa., 1964.