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of Minimum Norm. II
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1. Introduction. Let the quadrature remainder with n base points be given by

(1) Rnif)   =   /    / -   t) AkfiZk)
J-1 ic-1

where / is in the Hilbert space L2iEp). L2iE„) is {/(z) : / is analytic inside the ellipse

E„ and íS¡¡P\fiz)\2 dx dy exists}, where Ep is the ellipse with foci at ±1, semimajor

axis a, semiminor axis b = (a2 — l)1'2 and p = (a 4- b)2, and the double integral is

taken over the region inside the ellipse. For additional information on the space

L2iE„) the reader is referred to Davis [5]. For fixed n, Rn is a bounded linear func-

tional on L2iEf). The problem is to minimize \\Rn\\ = sup (|Än(/)|/||/||) by an

appropriate choice of the Ak and zk in Eq. (1). In [2] the problem of minimizing

11/¿„| | with respect to the Ak was solved, and this paper extends those results to the

case of variable base points zk.

The idea of minimizing the norm of the remainder has appeared in several pa-

pers. For the Hardy space H2, Yanagihara [9] posed it for 2-, 3- and 4-point quad-

rature rules and obtained explicit solutions for the weights and points. The first

author rediscovered some of Yanagihara's results and also solved the minimization

problem for the space L2iEp) in his doctoral dissertation [10]. Valentin extended

some of Yanagihara's results for the space H2 and he also considered the space

L2iR) (/? being the unit disc) in his doctoral dissertation [8]. For the space H2,

Wilf [11] has also considered this problem. In the latter three papers the cases

solved were done numerically. The problem is also mentioned in Davis [12].

2. Minimization of the Norm of the Remainder. For an arbitrary normed linear

space X, it is difficult to find a representation of | |Ä„| | that can be computed. How-

ever, since L2iEf) is a Hilbert space, the Biesz representation theorem for Hilbert

space can be used to find a computable representation of | |Ä„| |. This idea was first

applied to quadratures by Davis [3]. Specifically, if {Pmiz)\m=o is a complete ortho-

normal sequence in L2iEp), then

llÄnll2   =   Z   \RniPm)\2   =   Ë  \f   Pmiz)dz  -   J2AkPmiZk)
m=0 m=0 I  ^—1 t-1

For the space L2iEp), the complete orthonormal sequence can be defined as follows:

Pmiz) = 2(m 4- l)l/2[7r(pm+1 - p-m-x)rl/2c7m(2) , where Um(z) = (1 _ z2)~l/2 X

sin [im 4- 1) arc cos z], m = 0, 1, • • • . Then
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(2) \\Rj\2 = ¿ aim, p) ßim) - £ AkUm(zk)
m=0 k=l

where aim, P) = 4(m + l)/k(pm+1 - p'""1)]; ßim) = [1 + (-l)m]/(m + 1) .

| \R„\ | is a continuous function of the Ak and Zk- The zk are assumed real for the cases

considered and this forces the Ak to be real also. If we consider the Ak and Zk as

belonging to a compact region in Euclidean 2n-space, say, 1^4*1 ̂  1, |z¡t| *s 1,

k = 1, ■ ■ •, n, then | |Ä„| | has a minimum in the region.

In order to calculate this minimum, we set d||Ä„||2/3Afc = 0, d|[/?n||2/dz4 = 0,

k = 1, • • -, n and solve the resulting nonlinear system of 2n equations in 2n vari-

ables. The equations to be solved are the following :

co / n \

Y,2aim, p)[ßim) - T.AkUmizk))i-Umizj)) = 0,       j = 1, •••,»,

(3) "-0 A=1

¿2aim,p)(-Aj(ßim) - J2AkUmizk))uLizj)j =0,       / = 1, •••,».
m=0 \ » k=l I I

Newton's method is used to solve the system of Eqs. (3). The initial approxima-

tions to the Zk are the Gaussian base points corresponding to the same value of n.

The initial approximations to the Ak are the AY which minimize | \Rn\ |, with the Zk

fixed as the Gaussian points. The AY are given in reference [2].

3. Examples and Use of the Tables. Tables of the minimum | |Ä„| I and the min-

imizing Ak and zk, for various values of n and ellipses Ep, are given in Section 4.

In this section, we consider the use of the minimum \\R„\\ to estimate the quad-

rature error \Rnif)\ and we also compare |/?«(/)|, using the minimizing Ak and zk,

with \Rn(J)\ for known quadrature rules. The upper bound used is [/?„(/) | ^

I \Pn\ 1*11/11) where [ |/| |2 = J7j?„|/(z) |2 dx dy. An upper bound must usually be used
for | l/l |. One such bound is il/(irao)j/2, where M is the supremum of |/| inside the

ellipse Ep. If / is analytic on the ellipse, then M is the maximum of |/| and it occurs

on the ellipse.

Example 1. / is analytic on the ellipse E„ and ilf = supzeE |/(z)| = e"2,

for /(z) = e'2. Since b = (a2 - l)1'2, we have |Ä„(e*2)| *g |fAn|| -\\e*2\\ g

||/?„||ea [waia2 — l)1'2]1'2. This gives an error bound for/(z) = e2 as a function of

n and a. For each n we select the value of a from the tables which minimizes this

expression. The minimizing values are shown in the table below.

n       Minimizing value of a        ||Ä„||et*"![7ra(a2 — l)1'2]1'2

2 1.50 1.26776
3 2.0 0.15599
4 2.0 0.01290

Example2. We have M = a(e464- e"4i>)/2and | /2n(z cos z sin z)\ S ||Ä»|| -M (xoi))1'2,

for /(z) = z cos z sin z.

The minimizing values are shown in the table below.

n       Minimizing value of a \\Rn\\- Miwab) ' '2

2 1.03 2.25136
3 1.03 1.78641
4 1.40 0.87444
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The following table contains comparisons, for specific functions, of minimum

norm (MN) quadratures with various known quadratures. Composite rules are

used on the functions 1/(1 4- z2) and z sin z cos z with step-lengths as indicated.

The numbers in parentheses indicate the appropriate power of 10. For each func-

tion the same number of base points was used for MN quadratures as for the known

quadratures. The Tchebycheff quadratures are the quadratures with equal weights

that have the highest polynomial precision [7].
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Table 1

N = 2

Base Points Weights \R2

1.03
1.05
1.10
1.15
1.20
1.25
1.30
1.40
1.50
1.75
2.00
2.50

Gauss

0.5306967015
0.5389972688
0.5519030316
0.5592979275
0.5639700051
0.5671105812
0.5693184230
0.5721257073
0.5737590630
0.5757005520
0.5764713404
0.5770260520
0.5773502692

0.5242087319
0.6575665167
0.8369649737
0.9152367390
0.9527037191
0.9720726463
0.9827374321
0.9926623836
0.9965263751
0.9992657692
0.9997914963
0.9999716218
1.0

1.7385340982
1.2883434873
0.7293161604
0.4623701537
0.3127386455
0.2213011434
0.1620129721
0.0936211470
0.0582140241
0.0214811009
0.0099094274
0.0028420266

Table 2

N = 3

Base Points Weights I A3

1.03

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.75

2.00

2.50

Gauss

0.7434834252
0.0
0.7518233122
0.0
0.7623021863
0.0
0.7669501499
0.0
0.7694119638
0.0
0.7708708741
0.0
0.7718054048
0.0
0.7728879061
0.0
0.7734643431
0.0
0.7740993485
0.0
0.7743365086
0.0
0.7745019720
0.0
0.7745966692
0.0

0.4015017486
0.6003729582
0.4749670772
0.7203543980
0.5384360267
0.8322752623
0.5530018003
0.8630079016
0.5568194848
0.8741094499
0.5577469582
0.8791198738
0.5578103560
0.8818136908
0.5573648268
0.8845753232
0.5569025309
0.8859711882
0.5562167388
0.8875450457
0.5559146211
0.8881675221
0.5556895392
0.8886207597
0.5555555556
0.8888888889

1.3800704854

0.8937754839

0.3828139543

0.1960803668

0.1115324621

0.0680827745

0.0437555480

0.0201919851

0.0103573945

0.0026201244

0.0008661110

0.0001506814
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Table 3

N = 4

a Base Points Weights IÄ4

1.03

1.05

1.10

1.15

1.20

1.25

1.30

1.40

1.50

1.75

2.00

2.50

Gauss

0.8434055237
0.3283257294
0.8495395476
0.3319553911
0.8557804260
0.3357683847
0.8580390968
0.3372551809
0.8591144634
0.3380354752
0.8597141460
0.3385155033
0.8600844267
0.3388388676
0.8605008925
0.3392399970
0.8607177992
0.3394709812
0.8609535029
0.3397457245
0.8610408334
0.3398553575
0.8611015909
0.3399345844
0.8611363116
0.3399810436

0.3019737608
0.5308958137
0.3342347346
0.5977818841
0.3503185979
0.6390052212
0.3512050953
0.6463753888
0.3506375343
0.6486767179
0.3500424633
0.6497312377
0.3495766937
0.6503397858
0.3489647267
0.6510207626
0.3486096510
0.6513871622
0.3481958730
0.6518039877
0.3480351680
0.6519648209
0.3479209825
0.6520790173
0.3478548451
0.6521451549

1.0316186099

0.5717864022

0.1845142780

0.0770467932

0.0371216097

0.0196398593

0.0111137456

0.0041087299

0.0017410793

0.0002973320

0.0000716323

0.0000075609

4. Tables. Tables 1, 2, and 3 list the values of the quadrature weights Ak and

base points zk, and the corresponding values obtained for ||Ä„|| from Eq. (2), for

n = 2, 3, 4, respectively. The minimizing values of the zk are symmetric; hence,

only the nonnegative ones are listed. The weights obtained for symmetric base

points are equal and so only those weights corresponding to nonnegative base points

are listed.

5. Conclusions. For the numerous functions tested minimum norm quadratures

were, overall, comparable in accuracy to Gaussian quadratures and better than

Newton-Cotes and Tchebycheff quadratures. It is generally the case that com-

posite rules must be used to achieve sufficient accuracy in a practical problem and

the quadratures of the function z sin z cos z given in Section 3 illustrate the use and

accuracy of a composite minimum norm quadrature. It might be noted that the

MN rules do not integrate constants exactly and so those theorems requiring the

sum of the weights to equal the length of the interval do not apply.

The MN quadratures have interesting asymptotic properties, both as p —> °o

and as n —* °°. From Tables 1, 2 and 3 it can be seen numerically that the weights

and base points of the MN quadratures seem to approach the weights and base
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points of the Gaussian quadratures with the same number of points. Valentin [8]

has proved a similar result and his proof can be altered to prove the above con-

jecture, the details of which will appear in a future paper.
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