
On First Appearance of Prime Differences

By L. J. Lander and T. R. Parkin

There has long been interest in strings of consecutive composite numbers ap-

pearing among the natural numbers. Most elementary texts on number theory in-

clude a discussion of how arbitrarily large gaps between consecutive primes can be

constructed, for example [1]. Such constructive techniques lead to rather large num-

bers, however, and lower occurrences have been studied [2], [3] to gain insight into

the subject.

In 1961, Gruenberger and Armerding examined the first six million primes (up

to P — 104,395,289) [4] on a computer and produced certain statistics covering

these primes [5]. They tabulated the primes forming the lower boundary for the

first appearance of prime differences of prescribed lengths, where all intervening

numbers are composite, up to the limit of the primes list. The largest difference

found between two consecutive primes was 220, and the smallest difference whose

first appearance was not found was 186.

An algorithm for direct search for prime-differences (usable on a computer of

limited storage capacity) proceeds as follows :

(a) Start at a known prime, say Pa, below which all differences of interest are

known.

(b) Form Pa + D, where D is the smallest difference whose first appearance is

unknown.

(c) From the point Pa + D, test the successively smaller numbers for primality

by trial division or other technique until a prime Pb is found.

(d) If Pb > Pa, replace Pa by Pb and repeat the algorithm.

(e) If P;, = Pa, start testing at Pa + D, and proceed to successively larger num-

bers until a prime Pc is reached. Pc — Pais then a difference >D between

successive primes, and is recorded, unless such a difference has already oc-

curred.

(f) Update D, if necessary, to the next larger difference whose first appearance

is unknown; replace Pa by Pc, and repeat the algorithm.

A computer program for the CDC 3200 was written to implement this algorithm,

and Table I through the range 0 < P < 1.46 X 109 represents the data obtained

from this program.

The algorithm itself guarantees that no difference of interest (i.e., > smallest

difference whose first appearance is unknown) will escape notice, while a separate

check was run on the data in Table I. This check took the form of another com-

puter program which read the Table I data as input, established the primality of

Pa and Pb by testing for divisibility by primes up to the square root of Pa or Pb,

and explicitly exhibited all the prime factors of each odd number between the two

primes. Thus, the differences listed are verified to be exactly as long as stated.

Since all previous results in [5] were exactly duplicated (items of Table I for D

< 184 and D = 196,198,210,220), the data may be regarded as accurate.
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The primality testing process was designed to operate without using an ex-

tensive table of primes, while, at the same time, being made as rapid as practicable.

First, the numbers to be tested were required to be prime to 210. Since a sequence

of consecutive numbers was being tested, a single division by 210 followed by a

table lookup in a table of 210 positions sufficed to exclude all numbers not prime

to 210. Each entry of the table actually pointed to the next eligible number to be

tested. Secondly, division by a few small primes was used. Since the range of in-

terest quickly exceeded the single-precision word length of the computer (24 bits),

the 48-bit hardware arithmetic of the machine was used. However, in order to avoid

double-precision division as long as possible, the numbers being tested were reduced

to single precision by subtraction of self-adjusting multiples of groups of small

primes prior to division by those primes. The final step was division by all odd num-

bers prime to 6 (by alternately adding 2, then 4, to an appropriate starting prime)

and less than the square root of the number tested, in order to verify the primality

of the end points for the algorithm, and to determine that intervening numbers were

composite. Of course, as soon as any eligible number being tested was found to be

composite, it was rejected, and the next eligible number was selected for testing.

Since there was no room in the program to store a table of pseudoprimes to the

base 2, experiments with the converse of Fermat's Theorem to detect composite

numbers were dropped when it was noted that the program spent the majority of

its running time verifying the primality of the end points, rather than eliminating

composite numbers between the end points.

With the availability of a larger computer memory in which to store a table of

primes and their starting points with respect to a fixed field of bits, it becomes

feasible to use a sieve technique for extending this search. However, with a very

limited computer memory, the algorithm given above has the advantage of requir-

ing only a table of previously found differences, and a starting point for each run,

and thus could be used as a small background problem.

A program for the CDC 6600 was written to implement a sieve technique for

generating and examining gaps in primes. This program occupied considerably

more memory but ran significantly faster (partially due to an increase in computer

speed) than the program described above. The sieve program allocated a block of

computer memory in which consecutive bits represented the successive odd integers.

A table of the first ten thousand primes was generated and stored by the program

during initialization. Another table of starting points (i.e., index of the first bit in

the field corresponding to a multiple of each prime in the stored table) for marking

by each prime in the sieve field was also generated and saved. The program then

cycled through successive bit fields marking bits corresponding to the odd com-

posite numbers, then searched the field for gaps of interest. End effects at the

boundaries of the sieve fields were noted so that gaps of interest would not be

missed. Table I for 1.46 X 109 < P < 1.096 X 1010 presents the results obtained

from this program.

In private correspondence Daniel Shanks suggested the possibility of extend-

ing Table I in [2] over the new differences found. Accordingly, Table I shows

log Pb/iD — l)1'2, with each maximal gap D marked with an asterisk. Maximal gaps,

according to Shanks, are those larger than any preceding gap in the sequence of



ON   FIRST  APPEARANCE  OF  PRIME   DIFFERENCES 485

Table I

1) Po log pa(D-iy12

2*
4*
6*
8*

10
12
14*
16
18*
20*
22*
24
26
28
30
32
34*
36*
38
40
42
44*
46
48
50
52*
54
56
58
60
62
64
66
68
70
72*
74
76
78
80
82
84
86*
88
90
92
94
96*
98

100

3
7

23
89

139
199
113

1831
523
887

1129
1669
2477
2971
4297
5591
1327
9551

30593
19333
16141
15683
81463
28229
31907
19609
35617
82073
44293
43331
34061
89689

162143
134513
173359
31397

404597
212701
188029
542603
265621
461717
155921
544279
404851
927869

1100977
360653
604073
396733

5
11
29
97

149
211
127

1847
541
907

1151
1693
2503
2999
4327
5623
1361
9587

30631
19373
16183
15727
81509
28277
31957
19661
35671
82129
44351
43391
34123
89753

162209
134581
173429
31469

404671
212777
188107
542683
265703
461801
156007
544367
404941
927961

1101071
360749
604171
396833

1.609
1.384
1.506
1.729
1.668
1.614
1.344
1.942
1.526
1.562
1.538
1.550
1.565
1.541
1.555
1.551
1.256
1.550
1.698
1.581
1.514
1.474
1.686
1.495
1.482
1.384
1.440
1.526
1.417
1.390
1.336
1.437
1.488
1.443
1.452
1.229
1.511
1.417
1.384
1.486
1.388
1.432
1.297
1.416
1.369
1.440
1.443
1.313
1.352
1.296
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Table I—Continued

D Pa iogPb/(D-iy12

102
104
106
108
110
112*
114*
116
118*
120
122
124
126
128
130
132*
134
136
138
140
142
144
146
148*
150
152
154*
156
158
160
162
164
166
168
170
172
174
176
178
180*
182
184
186
188
190
192
194
196
198
200

1444309
1388483
1098847
2238823
1468277
370261
492113

5845193
1349533
1895359
3117299
6752623
1671781
3851459
5518687
1357201
6958667
6371401
3826019
7621259

10343761
11981443
6034247
2010733

13626257
8421251
4652353

17983717
49269581
33803689
39175217
20285099
83751121
37305713
27915737
38394127
52721113
38089277
39389989
17051707
36271601
79167733

147684137
134065829
142414669
123454691
166726367
70396393
46006769

378043979

1444411
1388587
1098953
2238931
1468387
370373
492227

5845309
1349651
1895479
3117421
6752747
1671907
3851587
5518817
1357333
6958801
6371537
3826157
7621399

10343903
11981587
6034393
2010881

13626407
8421403
4652507

17983873
49269739
33803849
39175379
20285263
83751287
37305881
27915907
38394299
52721287
38089453
39390167
17051887
36271783
79167917

147684323
134066017
142414859
123454883
166726561
70396589
46006967

378044179

1.411
1.394
1.357
1.414
1.360
1.217
1.233
1.453
1.305
1.325
1.359
1.418
1.282
1.346
1.367
1.234
1.366
1.348
1.295
1.344
1.360
1.363
1.297
1.197
1.346
1.298
1.241
1.342
1.414
1.375
1.378
1.318
1.420
1.349
1.319
1.335
1.352
1.320
1.315
1.245
1.294
1.344
1.383
1.368
1.366
1.348
1.363
1.294
1.257
1.400
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Table I—Continued

1) Pa \ogPb/(D-iy

202
204
206
208
210*
212
214
216
218
220*
222*
224
226
228
230
232
234*
236
238
240
242
244
246
248*
250*
252
254
256
258
260
262
264
266
268
270
272
274
276
278
280
282*
284
286
288*
290
292*
294
296
298
300

107534587
112098817
232423823
192983851
20831323

215949407
253878403
202551667
327966101
47326693

122164747
409866323
519653371
895858039
607010093
525436489
189695659
216668603
673919143
391995431
367876529
693103639
555142061
191912783
387096133
630045137

1202442089
1872851947
1316355323
944192807

1649328997
2357881993
1438779821
1579306789
1391048047
1851255191
1282463269
649580171

4260928601
1855047163
436273009

1667186459
2842739311
1294268491
1948819133
1453168141
5692630189
5260030511
8650524583
4758958741

107534789
112099021
232424029
192984059
20831533

215949619
253878617
202551883
327966319
47326913

122164969
409866547
519653597
895858267
607010323
525436721
189695893
216668839
673919381
391995671
367876771
693103883
555142307
191913031
387096383
630045389

1202442343
1872852203
1316355581
944193067

1649329259
2357882257
1438780087
1579307057
1391048317
1851255463
1282463543
649580447

4260928879
1855047443
436273291

1667186743
2842739597
1294268779
1948819423
1453168433
5692630483
5260030807
8650524881
4758959041

1.304
1.301
1.345
1.326
1.166
1.321
1.326
1.304
1.331
1.194
1.253
1.328
1.338
1.368
1.336
1.321
1.249
1.252
1.320
1.280
1.270
1.306
1.286
1.214
1.253
1.279
1.314
1.337
1.310
1.284
1.314
1.331
1.295
1.296
1.284
1.296
1.269
1.224
1.332
1.278
1.187
1.262
1.289
1.238
1.258
1.237
1.312
1.303
1.328
1.289
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Table I—Continued

1) logiy(D-l)1'

302
304
306
308
310
312
314
318
320*
322
324
326
330
332
336*
340
354*
382*

6675573497
2433630109
3917587237
5490459101
4024713661
6570018347
8948418749
4372999721
2300942549
7961074441

10958687879
5837935373
6291356009
5893180121
3842610773
8605261447
4302407359

10726904659

6675573799
2433630413
3917587543
5490459409
4024713971
6570018659
8948419063
4373000039
2300942869
7961074763

10958688203
5837935699
6291356339
5893180453
3842611109
8605261787
4302407713

10726905041

1.304
1.242
1.265
1.280
1.258
1.282
1.295
1.247
1.207
1.272
1.286
1.247
1.244
1.237
1.206
1.242
1.181
1.183

primes. These data tend to support the conjectured relation in [2], namely that log

Pb ~ (D — l)1'2 for maximal gaps, and, also, possibly, for all gaps at the point of

their first appearance. For example, D = 316 is the first difference that does not

appear in our table, but since log Pb/(D — l)1'2 is consistently < 4/3 for D > 256,

it is not unreasonable to guess that D = 316 will appear before exp (4 ( V 315)/3)
_   pQlO-277

The authors wish to acknowledge the assistance of Miss Pauline Parkin who
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