
Chebyshev Expansions for
Integrals of the Error Function

By Van E. Wood

1. Introduction. The repeated integrals of the error function [1, Chapter 7] are

defined by

(la) in erfc z = J   t"-1 erfc t dt,        (n = 0, 1, 2, • • ■ )

(lb) i erfc z = erfc z,       i    erfc z = 2ir     e z .

From the recurrence relation

(2)       in erfc z = -zn~\n-2 erfc z + (2n)~V-2 erfc z,        (n = 1, 2, 3, • • • ) ,

the integrals may be calculated for small z, although with considerable loss of ac-

curacy. For large z, backward recurrence may be used [2]; this is certainly the

best method if one needs several of these functions for fairly large arguments, but

if one wants values of a single function for a large range of arguments, it is very

convenient to use Chebyshev expansions. In this note we present such expansions

for the cases n = 1 and n = 2, z real and nonnegative.

2. General Remarks. The integrals of the error function may be expressed in

terms of generalized hypergeometric functions as follows:

(3a) i" erfc . = 2~" £-(~2^   .    + *=£ + iwÇL
o*ir(i + 2^*)      n!      '  rW

/     In n+ 1.      2^
X2F\-~2'l'2'~2~ '~Z )

e-"       p (n+1 n + 2,        A
A/22nzn+1     °\    2    '     2    '~2   y-

(3b)
"22nz

The first expression is closely related to the recurrence relation (2) and also suffers

from cancellation of terms, but for the cases of interest here can be used for z < 1,

as explained further below. In the cases n = 1, 2, the 2^2 reduces to a confluent

hypergeometric function. All we wish to do in this case is to give Chebyshev ex-

pansions for these hypergeometric functions, thus making the evaluation of the

series a little more efficient. The expression (3b) is just the usual asymptotic ex-

pansion for the integrals of the error function [1], [3]; by expanding the 2^0 in

Chebyshev polynomials, this asymptotic series is converted to a rapidly convergent,

easily evaluated form, as discussed by Clenshaw [4]. The coefficients occurring in

the expansions of the hypergeometric functions in terms of Chebyshev polynomials

may be expressed in terms of generalized hypergeometric functions of higher order,
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as discussed by Fields, Wimp, and Luke [5], [6], [7], but for numerical calculation

of these coefficients it is somewhat easier in the present case to use the solution of

the differential equation to obtain a recurrence relation for the coefficients [4]. The

recurrence relations for the confluent functions are easily found ; for the asymptotic

expansion the appropriate differential equation is

(4)

where

v3f" + 2(k2 + (n + 2)v2)f + (n+l)(n + 2)f = 0

A'22nf = 2Fo(\(n + 1), hin + 2); -z~2) = \ £ era2rT2r(v) ;

v = kz~~  ; er = 2 — ôr, .

The a's are then found to satisfy the relations

(r + n)(r + n - l)ar_2 = (r - n)(r - n + l)or+2 - 2((2fc)2 + 2n + 1) rar

— 2r(a'_i + a'r+i) )

(5b) a'_i = a'r+i + 2rar ;       r = 2, 4, 6, • • • .

(5a)

3. Results and Discussion. We obtain for the first two integrals of the error

function

(6a)    A'2i erfc z = - Al2z + \ £ trbrT2r(z) = \ z~2e'!' £ trCrT2r(z~l) ;

(6b)  Ai2 erfc z = 1 + 2z2 - 2tT1,2z X (4rT2r(z) = \ iT1' Wz" X trerT2r(z~1) ;

where the coefficients o, c, d, e, are given to 7 decimal places in Table I. Using the

expansions in T2r(z) for z < 1 and those in T2r(z~l) for z > 1, one can calculate

Table I

Numerical values of expansion coefficients occurring in Eq. 6

l>r dr

0
1
2
:;
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

8929827
4300235
0156956

7391
319

12

3618413
2409343
0560098
0152168

45926
14980
5192
1890
717
282
114
48
21

9
4
1

3109853
1519739

34009
1139

38
1

0388528
3229885
1028703
0347257
0123637

46072
17850
7152
2951
1249
541
239
108
49
23
11
5
3
1
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¿erfc2and z2 erfc z correct to 6 significant figures (7 s.f. for z > 1) using single pre-

cision on a computer with word length of 8 decimal places, for all z for which e~z* can

be calculated correctly. To obtain greater accuracy, it is necessary either to use

double precision or to use more than two different expansions for each function.

From Gautschi's formula [2] for the number of terms required for calculation by

backward recurrence, we see that that method will be better (for 7 s.f. accuracy) if

all the z's of interest are greater than about 2.5. The advantage accruing from the

use of Chebyshev approximations would be still greater for multiple-precision cal-

culations of very high accuracy.
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An Integral Representation for
the Modified Bessel Function of the Third Kind,

Computable for Large, Imaginary Order

By James D. Lear and James E. Sturm

The one-dimensional Schroedinger equation describing the quantum-mechanical

motion of a particle of total energy E and mass p in a potential field of the form :

V — B exp ( — r/a)    for r > 0

V = oo for r < 0

has, as time-independent solutions, the functions

(^f^J/2K,(z)

where v = 2a(2pE/h2)112, z = 2aBe~rl2a, Kiv(z) is the modified Bessel function of the

third kind, and the normalization is to unit amplitude of the asymptotic (r increas-

ing) solution [1]. In attempting to compute values for Kiv(z) through use of the

representation :
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