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A3, (3/2)(-3 + V5), 3V2/2, (3/190)(-15 + (35)l/2), (15 - (15)1/2)/70 .

The over-all evidence suggests very strongly that in most practical situations

method (A) is preferable to method (B).
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A Polynomial Approximation Converging
in a Lens-Shaped Region1

By Jay A. Leavitt

The Taylor series expansion of y = 1/(1 + x2) about x = 0 has a radius of con-

vergence R = 1, while the function itself is analytic for all real values of x. In

order to represent 1/(1 + x2) by a Taylor series for values of x outside the interval

(—1, 1), it is necessary to expand about a point of nonsymmetry.

In practice, given an analytic function/(x), one uses only its truncated Taylor

series Tn(x). The expansion of such a truncated series of order n, i.e. Tn(x), about

the point b provides a polynomial, say Vn(z) where z = x — b, which is of order n.

But Vn(z) converges to f(x) only in the original circle of convergence of the T„(x).

Nevertheless, this property is used to produce a sequence of even polynomials,

Unix), which have real coefficients and which converge to y = 1/(1 + x2) in a

lens-shaped region that includes an extended interval of the real axis.

Let us expand l/(x + i) about a; = (X — l)¿and l/(x — i) about a; = — (X — l)i

and truncate; X > 1 real.
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(1)

A+~ï-\i[1 ~ (s/x¿) + (sA¿)2 - + ••• + í-i)"(«AO"] s ¿ft(«),

^— =~ -^ [i + («A») + (¿A*')2 + • • • + (¿A¿)n 2
x?'}Qnit),

where s = x — (X — l)i and t = x + (X — 1)¿.

P„(s) and Q„(i) approximate series that converge in the circles of radius |X| with

centers s = 0, t = 0 respectively. The intersection of these circles is a lens lying

between — V (2X — 1) and + V (2X — 1) on the real axis and between -hi on the

imaginary axis.

If we translate Pn(s) and Q„(¿) to the origin, the expansion

¿  [Puis)   -   Qnit)]   =   ~ [Pnix  -   (X   -   l)i)   -   Qnix +   (X   -   l)i)]   =   [/„ (*)

is a polynomial approximation for 1/(1 + x2) in this lens. Furthermore, this poly-

nomial is real and symmetric in x because the coefficients of xk vanish for k odd,

and are real for k even,

Unix) — ¿

2X j=o :(£±i^')'+<-«<^i^)']

2X § Xy 5 V fc / \ i )
(X- !)'-*[!+ (-1)*]

This approximation can also be obtained by using a theorem by Appell.2

By summing the geometric series (1), we find that the error, Rn+i, is given by:

Rn+l -   - ± [Pnis)   -   Qnit)]
[+x       2X

'jt/\i)n+1

2 L \i - t

This can be re-expressed as

x + (X - l)An

+ (-1)"
(«A»)**1
\i + s

Rn+1   —     g

which reduces to

Rn+l   =

Xi
+ (-1)

.-i

(X

\i
iiíY+1"

X - 1
(n+l)/2

cos [(n + 1)0] — x sin [(n +

x2+ 1
m\

where 6 = arg ((X — 1)/X + xi/\).

Below is a comparison between the standard Taylor approximation and the

method of this paper. The degree is 27 and X = 2. The odd coefficients are zero

and the even are given by :

2 J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain,

Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc, Providence, R. I., 1965, p. 19.
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