$$
\sqrt{ } 3,(3 / 2)(-3+\sqrt{ } 5), 3 \sqrt{ } 2 / 2,(3 / 190)\left(-15+(35)^{1 / 2}\right),\left(15-(15)^{1 / 2}\right) / 70
$$

The over-all evidence suggests very strongly that in most practical situations method (A) is preferable to method (B).

Table

	Method (A). $\|q\|$-bound for convergence	Method (B). q-range for convergence	Method (B). q-range such that convergence factor $\leq \cdot 1$
k	1.73	$(-1.15,2.12)$	$(-.143, .159)$
2	1.43	$(-.860,1.43)$	$(-.119, .135)$
3	1.33	$(-.738,1.64)$	$(-.106, .117)$
4	1.21	$(-.711,1.21)$	$(-.0994, .102)$
5	1.16	$(-.687,1.50)$	$(-.0926, .0866)$
6	1.10	$(-.576, .813)$	$(-.0769, .0686)$
7	1.07	$(-.493, .475)$	$(-.0629, .0517)$
8			

University of Kentucky
Lexington, Kentucky

1. W. E. Milne, Numerical Solution of Differential Equations, Wiley, New York, 1953. MR 16, 864.
2. A. D. Воотн, Numerical Methods, Academic Press, New York; Butterworth, London, 1955. MR 16, 861 .
3. A. C. R. Newbery, "Multistep integration formulas," Math. Comp., v. 17, 1963, pp. 452-455. (See also corrigendum, Math. Comp., v. 18, 1964, p. 536.) MR 27 \#5362.

A Polynomial Approximation Converging in a Lens-Shaped Region ${ }^{1}$

By Jay A. Leavitt

The Taylor series expansion of $y=1 /\left(1+x^{2}\right)$ about $x=0$ has a radius of convergence $R=1$, while the function itself is analytic for all real values of x. In order to represent $1 /\left(1+x^{2}\right)$ by a Taylor series for values of x outside the interval $(-1,1)$, it is necessary to expand about a point of nonsymmetry.

In practice, given an analytic function $f(x)$, one uses only its truncated Taylor series $T_{n}(x)$. The expansion of such a truncated series of order n, i.e. $T_{n}(x)$, about the point b provides a polynomial, say $V_{n}(z)$ where $z=x-b$, which is of order n. But $V_{n}(z)$ converges to $f(x)$ only in the original circle of convergence of the $T_{n}(x)$. Nevertheless, this property is used to produce a sequence of even polynomials, $U_{n}(x)$, which have real coefficients and which converge to $y=1 /\left(1+x^{2}\right)$ in a lens-shaped region that includes an extended interval of the real axis.

Let us expand $1 /(x+i)$ about $x=(\lambda-1) i$ and $1 /(x-i)$ about $x=-(\lambda-1) i$ and truncate; $\lambda \geq 1$ real.

[^0]\[

$$
\begin{align*}
& \frac{1}{x+i} \simeq \frac{1}{\lambda i}\left[1-(s / \lambda i)+(s / \lambda i)^{2}-+\cdots+(-1)^{n}(s / \lambda i)^{n}\right] \equiv \frac{1}{\lambda i} P_{n}(s), \tag{1}\\
& \frac{1}{x-i} \simeq \frac{-1}{\lambda i}\left[1+(t / \lambda i)+(t / \lambda i)^{2}+\cdots+(t / \lambda i)^{n}\right] \equiv \frac{1}{\lambda i} Q_{n}(t)
\end{align*}
$$
\]

where $s=x-(\lambda-1) i$ and $t=x+(\lambda-1) i$.
$P_{n}(s)$ and $Q_{n}(t)$ approximate series that converge in the circles of radius $|\lambda|$ with centers $s=0, t=0$ respectively. The intersection of these circles is a lens lying between $-\sqrt{ }(2 \lambda-1)$ and $+V(2 \lambda-1)$ on the real axis and between $\pm i$ on the imaginary axis.

If we translate $P_{n}(s)$ and $Q_{n}(t)$ to the origin, the expansion

$$
\frac{1}{2 \lambda}\left[P_{n}(s)-Q_{n}(t)\right]=\frac{1}{2 \lambda}\left[P_{n}(x-(\lambda-1) i)-Q_{n}(x+(\lambda-1) i)\right] \equiv U_{n}(x)
$$

is a polynomial approximation for $1 /\left(1+x^{2}\right)$ in this lens. Furthermore, this polynomial is real and symmetric in x because the coefficients of x^{k} vanish for k odd, and are real for k even,

$$
\begin{aligned}
U_{n}(x) & =\frac{1}{2 \lambda} \sum_{j=0}^{n}\left[\left(\frac{x+(\lambda-1) i}{\lambda i}\right)^{j}+(-1)^{j}\left(\frac{x-(\lambda-1) i}{\lambda i}\right)^{j}\right] \\
& =\frac{1}{2 \lambda} \sum_{j=0}^{n} \frac{1}{\lambda^{j}} \sum_{k=0}^{j}\binom{j}{k}\left(\frac{x}{i}\right)^{k}(\lambda-1)^{j-k}\left[1+(-1)^{k}\right] .
\end{aligned}
$$

This approximation can also be obtained by using a theorem by Appell. ${ }^{2}$
By summing the geometric series (1), we find that the error, R_{n+1}, is given by:

$$
\begin{aligned}
R_{n+1} & \equiv \frac{1}{1+x^{2}}-\frac{1}{2 \lambda}\left[P_{n}(s)-Q_{n}(t)\right] \\
& =\frac{i}{2}\left[\frac{(t / \lambda i)^{n+1}}{\lambda i-t}+(-1)^{n+1} \frac{(s / \lambda i)^{n+1}}{\lambda i+s}\right] .
\end{aligned}
$$

This can be re-expressed as

$$
R_{n+1}=\frac{i}{2}\left[\frac{\left(\frac{x+(\lambda-1) i}{\lambda i}\right)^{n+1}}{i-x}+(-1)^{n+1} \frac{\left(\frac{x-(\lambda-1) i}{\lambda i}\right)^{n+1}}{i+x}\right]
$$

which reduces to

$$
R_{n+1}=\left[\left(\frac{x}{\lambda}\right)^{2}+\left(\frac{\lambda-1}{\lambda}\right)^{2}\right]^{(n+1) / 2}\left[\frac{\cos [(n+1) \theta]-x \sin [(n+1) \theta]}{x^{2}+1}\right]
$$

where $\theta=\arg ((\lambda-1) / \lambda+x i / \lambda)$.
Below is a comparison between the standard Taylor approximation and the method of this paper. The degree is 27 and $\lambda=2$. The odd coefficients are zero and the even are given by:

[^1]. 9999999963
$-.9999984838$
. 9999100044
-. 9981404170
.9821509309
-. 9075333290
.7142059058
-. 4252770096
. 1724642254
$-.4357927665 \times 10^{-1}$
$.6270475686 \times 10^{-2}$
$-.4561170936 \times 10^{-3}$
$.1372024417 \times 10^{-4}$
$-.1080334187 \times 10^{-6}$

	$\frac{1}{1+x^{2}}$
0.0	1.0000000000
.1	.9900990099
.2	.9615384615
.3	.9174311927
.4	.8620689655
.5	.8000000000
.6	.7352941176
.7	.6711409369
.8	.6097560975
.9	.5524861878
1.0	.5000000000
1.1	.4524886878
1.2	.4098360656
1.3	.3717472119
1.4	.3378378378
1.5	.3076923077

$\frac{1}{1+x^{2}}-T_{27}(x)$	R_{28}
0.0	$.37 \times 10^{-8}$
$.99 \times 10^{-28}$	$-.41 \times 10^{-8}$
$.16 \times 10^{-18}$	$.53 \times 10^{-8}$
. 21×10^{-14}	$-.67 \times 10^{-8}$
. 62×10^{-11}	$.11 \times 10^{-8}$
$.30 \times 10^{-8}$	$.48 \times 10^{-7}$
45×10^{-6}	$-.24 \times 10^{-6}$
$.31 \times 10^{-4}$	$.34 \times 10^{-6}$
$.12 \times 10^{-2}$	$.22 \times 10^{-5}$
. 29×10^{-1}	$-.83 \times 10^{-5}$
. 5	$-.31 \times 10^{-4}$
- -	$.93 \times 10^{-4}$
--	$.61 \times 10^{-3}$
-	$.39 \times 10^{-3}$
-	$-.65 \times 10^{-2}$
-	$-.30 \times 10^{-1}$

University of Minnesota
Minneapolis, Minnesota

[^0]: Received July 6, 1966. Revised February 13, 1967.
 ${ }^{1}$ This paper was sponsored, in part, by the National Science Foundation, Grant No. GP-4572.

[^1]: ${ }^{2}$ J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R. I., 1965, p. 19.

