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1. Introduction. Expansions of functions either in the usual Fourier-Bessel series

or in Dini series are often necessary in the solution of problems in physics or engi-

neering for which the use of cylindrical coordinates is appropriate. Determination

of the coefficients in these expansions requires the evaluation of integrals. In two

quite different nonlinear physical problems [1], [2], (see also [3]) the need for in-

tegrals of products of three or four Bessel functions has been encountered. In the

belief that these integrals may have application to other nonlinear problems in-

volving Fourier-Bessel or Dini expansions, the authors present herein the values of

the particular integrals needed for their own problems. In Section 2, integrals of

products of four Bessel functions involving eigenvalues satisfying Jo(x) = 0 are

treated. In Section 3, integrals of products of three or four Bessel functions involv-

ing eigenvalues satisfying Ji(x) = 0 are presented. A brief discussion of the com-

putational procedure and of the accuracy of the results is given in Section 4.

2. Integrals Involving Eigenvalues Satisfying J0(x) = 0. Let K„, n > 1, be the

positive eigenvalues, arranged in ascending order of magnitude, for which

(1) Jo(Kn)   =   0 .

Let us introduce the shortened notation

(2) Jmn =   Jm(KrX) , m  =   0 Or 1  ,

and define the integral operator 7(F) as

(3) 1(F) = / rF(r)dr .
J o

Fourier-Bessel expansions arising in the theory of oscillation of a circular membrane

on a nonlinear Duffing-type foundation [1], [3] involve integrals 1(F) for which the

functions F(r) are products of four Bessel functions with arguments containing the

eigenvalues (1). Integrals required for the second-order membrane solution for gen-

eral values of the tension parameter and those required for the first-order solution

for tensions near the particular first-order critical tension Tss are listed in Table 1.

Each function with which we are concerned in this paper is sufficiently well be-

haved that the appropriate series expansion (Fourier-Bessel or Dini) is uniformly

convergent to the function in the closed interval, 0 < r < 1, [4, Chapter 18]. For

each function G(r) for which the first ten Fourier-Bessel coefficients are determin-

able from the integrals of Table 1 and for which the first ten Fourier-Bessel terms

adequately represent the function, comparison of the successive partial sums which

approximate the right side of the identity
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(4) G(0) = 2 £ ^^
"=1  Jl   (Kn)

provides an accuracy check.

Since Fettis [5] has presented values of I(JoiJo¡Jok) calculated by a different

Table 1

Integrals 1(F) of functions F(r) for eigenvalues Kn given by roots of Eq. (1).

F(r) 100 1(F) F(r) 100 1(F)

J 01

JoiJ011/02

J oAos

JoAoi

J OlJ Ob

JOlJ06

JoAol

JoiJos

JOlJ09

</oi/oio

T2    j2
J OlJ 02

J01J02J 03

J OlJ 02J Oi

J OlJ 02J 05

J OlJ 02J Oi

J 01J 02J 01

J OlJ 02J 08

J OlJ 02J OS

J OlJ 02J 010
,2    .2

J 01«/ 03

J OlJ OSJ 04

« OlJ 03J 05

J OlJ 03J 06

J01J03J 07

J 01J 03J OS

J 01J 03J OS

J01J03J010

T2   T2
J OlJ 04

J OlJ OiJ Oh

JoiJoiJoo

J 01J OiJ 01

J OlJ OiJ OS

JOlJOiJ09

J OlJ OiJ 010

T2   T2J OlJ 05

J OlJ ObJ 00

J OlJ ObJ 07

7.62101
2.39034
0.08820

-0.00810

0.00177
-0.00056

0.00022
-0.00010

0.00005"
-0.00003

2.80757
1.18217

0.05064
-0.00535"

0.00130
-0.00044

0.00019
-0.00009

0.00005"
1.76106

0.80034
0.03584

-0.00395+

0.00100
-0.00035"

0.00015+
-0.00007

1.28576
0.60705"
0.02785"

-0.00314

0.00081
-0.00029

0.00013
1.01313

0.48951
0.02281

J 01J ObJ OS

J OlJ ObJ OS

J OlJ ObJ 010

T2   T2
J OlJ 06

J OlJooJoi

J OlJ OiJ OS

JOlJ06«/09

J OlJ 06«/ 010

T2    J2J OlJ 07

J OlJ 01J OS

J OlJ 01J OS

J OlJ 01J 010

T2   T2J OlJ 08

JOlJOsJ09

J 01J osJoio
T2   T2J 01J OS

J OlJ OS J 010

T2  T2J aiJ 010

J 01J02J 03

JoiJos

J 01J 03J Oi

J OlJ 03J Ob

JoiJ 03J00

JoAosJoi

J 01J 03J OS

JOlJ03J09

J 01J 03J 010

J 02J 03

J03

J 03J Oi

J 03J Ob

J 03J 00

JosJoi

J03JOS

J03J0S

</03</oiO

-0.00261

0.00068
-0.00025"

0.83610
0.41030
0.01933

-0.00223

0.00059
0.71181
0.35324
0.01678

-0.00195+

0.61973
0.31015+
0.01483
0.54877
0.27646
0.49239
0.76184
0.49830
0.44991

0.53300
0.31108
0.01619

-0.00212

0.00061
-0.00024

0.59604
0.83760
0.44321
0.28351
0.21278
0.16714
0.12788
0.00781

-0.00123
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Table 2

Integrals 1(F) of functions F(r) for eigenvalues Kn given by roots of Eq. (5).

F(r) 100 1(F) F(r) 100 1(F)

■A
Jl
Jl
Jl
Jl
Jl
Jl
Jl
Jl
J
J,

Jo

Jo

Jo

Jo

Jo

Jo

Jo

./,

Jo
Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

J
J

Jo

J

Jo

Jo

Jo

Jo2

Jo3

Joi

Job

</o6

J 01

J OS

J OS

J 010

T2J 02

J02J03

J 02J04

J 02J Ob

J02J0O

</o2«/o7

J02J0S

J02J0S

</o2</oiO

T2J 03

J03J0Í

J03J Ob

J03J 00

J03J07

J03J0S

J 03J OS

</o3«/oiO

Joi

JoiJob

JoiJoo

J OiJoi

J OiJ OS

JoiJos

</o4</oiO

Job

JobJOS

JObJ07

JObJoS

JoiJos

JobJoiO
T2J 06

JoiJol

2.85725+
2.15858

0.02145+
-0.00202

0.00040
-0.00011

0.00004
-0.00002

0.00001
-0.00000

1.35985"
1.32595+
0.01766

-0.00195"

0.00044
-0.00014

0.00005+
-0.00002

0.00001
0.91289
0.96206
0.01429

-0.00170

0.00041
-0.00014

0.00005+
-0.00002

0.69023
0.75603
0.01187

-0.00148

0.00037
-0.00013

0.00005+
0.55573
0.62304
0.01011

-0.00129

0.00033
-0.00012

0.46541
0.52999

Jo
Jo

Jo

Jo

Jo

Jo

Jo

Jo

Jo

J
Jo

Jo

Jo

Ji
Jl
J
J
Jl
J
J

Jl
J

Jl
Jo

Jo

Jo

Jo

J
J
J
J

J
J

J OiJ OS

JooJos

J06«/010

T2J 07

JoiJos

JoiJos

JoiJoio
T2J OS

JosJos

«/o8«/oiO

T2J 09

«/o9«/oiO

J2J 010

J 02

J 03

Joi

J Ob

J06

Joi

Jos

Jos

Joio

J 02J11

J03J11

JoiJn

JobJll

J0A11

JoiJn

JosJ 11

JosJ 11

</oio«/ii

J\i/Kir

Jo2Jll/KiT

JoiJu/Kir

JoiJii/Kir

JobJ\i/Kir

JoeJii/Kir

JoiJii/Kir

JosJii/Kir

JosJn/Kir

JoioJii/Kir

0.00879
-0.00115"

0.00030
0.40048

0.46119
0.00777

-0.00103

0.35151

0.40823
0.00696
0.31324
0.36620
0.28251
3.35702
1.42132

0.64857
0.01395"

-0.00126

0.00026
-0.00008

0.00003
-0.00001

0.00001
-0.08346
-0.43773
-0.02113

0.00326
-0.00101

0.00042
-0.00020

0.00011
-0.00007

0.65784
-0.34902
-0.15058

0.00611
-0.00207

0.00086
-0.00042

0.00022
-0.00013

0.00008
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scheme for all distinct combinations of i, j, k selected from among the integers 1, 2,

3, we applied our method to these same ten integrals. In six cases the magnitudes

of our results and of Fettis' are identical; however, the sign of I(J\iJos) was incor-

rectly shown as positive by Fettis, when actually I(J\iJas) is negative. Our results

differ from those of Fettis in two cases by 1 X 10~7 and in two cases by 2 X 10~7.

Throughout this section, including Table 1, Kn have been the roots of (1); in

Section 3, however, Kn will be the roots of (5).

3. Integrals Involving Eigenvalues Satisfying Ji(x) = 0. Let Kn, n > 0, now

be the eigenvalues for which

(5) Ji(Kn) = 0 ,        Kn > 0 ,

arranged in ascending order of magnitude beginning with Ko = 0. Again we use

the notation of (2) and (3). Dini series expansions arising in the theory of finite-

amplitude axisymmetric gravity waves [2] involve integrals 1(F) for which the func-

tions F(r) are products of three or four Bessel functions with arguments containing

the eigenvalues (5). Integrals required through the second nonlinear order in the

gravity-wave solution are listed in Table 2.

Other integrals needed for gravity-wave theory are given in terms of those in

Table 2 by the identities

(6) /G/oVu) = i I(JÎi) ,

(7) I(J¡i/Kir) = f I(Jli),

obtained from the results of Mack [6], and

K2 + K2 — K2
(8) I(JllJlpJon)   = ArA^K ¡(JoiJopJon)  ,

obtained from the results of Fettis [5].

Values of I(J\iJon), 0 < n < 8, and of I(JnJi2Jon), 0 < n < 6, were computed

both by direct integration and, by use of (8), from I(J\iJon) and I(JoiJo2Jon), re-

spectively; likewise, I(JliJii) and I(J\i/Kir) were computed by direct integration

and by use of (6) and (7), respectively. For each such integral the two values ob-

tained differed by only about one-tenth the presumed error (see Section 4) in the

individual integrals. An equally favorable comparison was obtained between the

direct integration of I(JoiJon), 0 < n < 8, and the values given by

/ns t/ ,S   T    s 0   V-*   I (J OlJ 0m) I (J OlJ OmJ On)
(y) 1 (J OlJ On)   =  ¿  2-1 T   2,-tt   -, '

-»-0 Jo   (it,)

a special case of [6, Eq. (19), in which the subscript p should read 0]. For each func-

tion Hir) for which the first eleven Dini coefficients are determinable either directly

or by use of (6), (7), or (8) from the integrals of Table 2 and for which the first

eleven Dini terms adequately represent the function, comparison of the successive

partial sums which approximate the right side of the identity

(10) H(0) = 2 ± ^f^-}
«-0   Jo   (Kn)

provides an accuracy check.
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Although we have not yet found an analytical proof, the numerical result very

strongly suggests that

(11) I(JoiJZn/Kir) = \Jo\Ki).

4. Computational Procedure. The individual Bessel functions were generated by

use of the well-known expression

i F
(12) Jmix) = - /    cos ix sin d — md)dO,       m > 0 ,

7T •'o

in which the generating integrals were evaluated by Gill's method [7]. Various step

sizes were tried and the results were checked against standard tables [8]. It was

found that 60 increments gave the best results, the errors in the values of Joix) and

Ji(x) for 0 < x < 30 being of the order of 10~8.

The desired integrals of products of Bessel functions were also evaluated by

Gill's method, the number of increments used being increased with increases in the

number of zeros which the product possesses in the range of integration. As a check

on the accuracy of the procedure, those products of two Bessel functions whose

integrals are known from the orthogonality relations were computed. In no case

was the error as great as 4 X 10~8. It is thus believed that for the majority of the

integrals presented in Tables 1 and 2 the last digit shown is correct, although it is

probable that the last digit is in error by one or even two units for some of the

values. Other checks confirming the accuracy of the computations have already

been mentioned in Sections 2 and 3.

No claim is made that the numerical-integration procedure followed is neces-

sarily the most efficient one.
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