Computation of Tangent, Euler, and Bernoulli Numbers*

By Donald E. Knuth and Thomas J. Buckholtz

Abstract. Some elementary methods are described which may be used to calculate tangent numbers, Euler numbers, and Bernoulli numbers much more easily and rapidly on electronic computers than the traditional recurrence relations which have been used for over a century. These methods have been used to prepare an accompanying table which extends the existing tables of these numbers. Some theorems about the periodicity of the tangent numbers, which were suggested by the tables, are also proved.

1. Introduction. The tangent numbers T_{n}, Euler numbers E_{n}, and Bernoulli numbers B_{n}, are defined to be the coefficients in the following power series:

$$
\begin{align*}
& \tan z=T_{0} / 0!+T_{1} z / 1!+T_{2} z^{2} / 2!+\cdots=\sum_{n \geqq 0} T_{n} z^{n} / n!, \tag{1}\\
& \sec z=E_{0} / 0!+E_{1} z / 1!+E_{2} z^{2} / 2!+\cdots=\sum_{n \geqq 0} E_{n} z^{n} / n!, \tag{2}\\
& z /\left(e^{z}-1\right)=B_{0} / 0!+B_{1} z / 1!+B_{2} z^{2} / 2!+\cdots=\sum_{n \geqq 0} B_{n} z^{n} / n!. \tag{3}
\end{align*}
$$

Much of the older mathematical literature uses a slightly different notation for these numbers, to take account of the zero coefficients. Thus we find many papers where $\tan z$ is written $T_{1} z+T_{2} z^{3} / 3!+T_{3} z^{5} / 5!+\cdots$, sec z is written $E_{0}+E_{1} z^{2} / 2!+E_{2} z^{4} / 4!+\cdots$, and $z /\left(e^{z}-1\right)$ is written $1-z / 2+B_{1} z^{2} / 2!-B_{2} z^{4} / 4$! $+B_{3} z^{6} / 6!\cdots$. Some other authors have used essentially the notation defined above but with different signs; in particular our $E_{2 n}$ is often accompanied by the $\operatorname{sign}(-1)^{n}$.

In Section 2 we present simple methods for computing T_{n}, E_{n}, and B_{n} which are readily adapted to electronic computers, and in Section 3 more details of the computer program are explained. A table of T_{n} and E_{n} for $n \leqq 120$, and B_{n} for $n \leqq 250$, is appended to this paper, thereby extending the hitherto published values of T_{n} for $n \leqq 60[6], E_{n}$ for $n \leqq 100[2,3]$, and B_{n} for $n \leqq 220[7,4]$.

Using the methods of this paper it is not difficult to extend the tables much further, and the authors have submitted a copy of the values of T_{n} ($n \leqq 835$), $E_{n}(n \leqq 808), B_{n}(n \leqq 836)$ to the Unpublished Mathematical Tables repository of this journal.

Section 4 shows how the formulas of Section 2 lead to some simple proofs of arithmetical properties of these numbers.
2. Formulas for Computation. The traditional method of calculating T_{n} and E_{n} is to use recurrence relations, such as the following: Let $\cos z=\sum_{n} \geqq_{0} C_{n} z^{n} / n$;

* Supported in part by NSF Grant GP 3909.
then the coefficient of $z^{n} / n!$ in $(\tan z)(\cos z)$ is

$$
\sum_{k}\binom{n}{k} T_{k} C_{n-k}
$$

and in $(\sec z)(\cos z)$ it is

$$
\sum_{k}\binom{n}{k} E_{k} C_{n-k}
$$

Hence, making use of the fact that $T_{2 n}=E_{2 n+1}=0$, we have the recurrence relations

$$
\begin{align*}
\binom{2 n+1}{1} T_{1}- & \binom{2 n+1}{3} T_{3}+\cdots+(-1)^{n}\binom{2 n+1}{2 n+1} T_{2 n+1}=1, \quad n \geqq 0 \tag{4}\\
& \binom{2 n}{0} E_{0}-\binom{2 n}{2} E_{2}+\cdots+(-1)^{n}\binom{2 n}{2 n} E_{2 n}=0, \quad n>0 \tag{5}
\end{align*}
$$

The disadvantage of these formulas is that the binomial coefficients as well as the numbers T_{n}, E_{n} become very large when n is large, so a time-consuming multiplication of multiple-precision numbers is implied. As Lehmer [4] has observed, we may simplify the calculations if we remember the values of

$$
\binom{2 n+1}{k} T_{k}, \quad\binom{2 n}{k} E_{k}
$$

so that when n increases by 1 we need only multiply

$$
\binom{2 n+1}{k} T_{k}
$$

by

$$
\frac{(2 n+2)(2 n+3)}{(2 n+2-k)(2 n+3-k)}
$$

to get the next value; but the method to be described here is even simpler and has other advantages.

The tangent numbers may be evaluated by noting that $D\left(\tan ^{n} z\right)$ is $n \tan ^{n-1} z\left(1+\tan ^{2} z\right)$; hence the nth derivative of $\tan z$ is a polynomial in $\tan z$. We have $D^{n}(\tan z)=P_{n}(\tan z)$, where the polynomials $P_{n}(x)$ are defined by

$$
\begin{equation*}
P_{1}(x)=x, \quad P_{n+1}(x)=\left(1+x^{2}\right) P_{n}^{\prime}(x) \tag{6}
\end{equation*}
$$

Thus if we write

$$
D^{n}(\tan z)=T_{n 0}+T_{n 1} \tan z+T_{n 2} \tan ^{2} z+\cdots
$$

the coefficients $T_{n k}$ satisfy the recurrence equation

$$
\begin{equation*}
T_{0 k}=\delta_{1 k} ; \quad T_{n+1, k}=(k-1) T_{n, k-1}+(k+1) T_{n, k+1} \tag{7}
\end{equation*}
$$

Since $T_{n}=\left.D^{n}(\tan z)\right|_{z=0}=T_{n 0}$, and since $T_{n k}$ is zero except for at most $(n+3) / 2$ values of k, formula (7) shows that the calculation of all $T_{n+1, k}$ from the values of $T_{n, k}$ essentially requires only $(n+2) / 2$ multiplications of a small number k by a
iarge number $T_{n, k}$ and $n / 2$ additions of large numbers. Since we are interested only $\ln T_{n 0}$ for odd values of n, we might try to use the relation

$$
T_{n+2, k}=(k-2)(k-1) T_{n, k-2}+2 k^{2} T_{n, k}+(k+1)(k+2) T_{n, k+2}
$$

but a count of the operations involved shows this provides little if any improvement over (7), and so the simpler form (7) is preferable.

Similarly, we have $D\left(\sec z \tan ^{n} z\right)=\sec z\left(n \tan ^{n-1} z+(n+1) \tan ^{n+1} z\right)$, hence if we write

$$
\begin{equation*}
D^{n}(\sec z)=(\sec z)\left(E_{n 0}+E_{n 1} \tan z+E_{n 2} \tan ^{2} z+\cdots\right) \tag{8}
\end{equation*}
$$

we have the recurrence

$$
\begin{equation*}
E_{0 k}=\delta_{0 k} ; \quad E_{n+1, k}=k E_{n, k-1}+(k+1) E_{n, k+1} \tag{9}
\end{equation*}
$$

Since $E_{n}=E_{n 0}$, this relation yields an efficient method for calculating the Euler numbers. A somewhat similar recurrence relation was used by Joffe [3] to calculate Euler numbers; his method requires essentially the same amount of computation, but as explained in the next section there is a way to modify (9) to obtain a considerable advantage.

The identities $\tan (\pi / 4+z / 2)=\tan z+\sec z$ and $D^{n}(\tan (\pi / 4+z / 2))=$ $2^{-n} P_{n}(\tan (\pi / 4+z / 2))$ imply that the sums of the numbers $T_{n k}$ have a very simple form:

$$
2^{-n} P_{n}(1)=2^{-n} \sum_{k \geqq 0} T_{n k}=\left\{\begin{array}{l}
E_{n}, n \text { even } \tag{10}\\
T_{n}, n \text { odd }
\end{array}\right.
$$

This relation can be used to advantage when both E_{n} and T_{n} are being calculated.
The definition of $\tan z$ implies

$$
\begin{aligned}
\tan z & =\frac{\sin z}{\cos z}=\frac{\left(e^{i z}-e^{-i z}\right)}{i\left(e^{i z}+e^{-i z}\right)}=\frac{1}{z}\left(\frac{2 i z}{e^{2 i z}+1}-i z\right)=\frac{1}{z}\left(\frac{2 i z}{e^{2 i z}-1}-\frac{4 i z}{e^{4 i z}-1}-i z\right) \\
& =\frac{1}{z}\left(-i z+\sum_{n \geqq 0}\left((2 i z)^{n}-(4 i z)^{n}\right) B_{n} / n!\right) ;
\end{aligned}
$$

and by equating coefficients we obtain the well-known identity

$$
\begin{equation*}
B_{n}=-i^{-n} n T_{n-1} / 2^{n}\left(2^{n}-1\right), \quad n>1 \tag{11}
\end{equation*}
$$

Hence, the Bernoulli numbers may be obtained from the tangent numbers by a calculation which (on a binary computer) is especially simple.

The celebrated von Staudt-Clausen theorem [8, 1] states that

$$
\begin{equation*}
B_{2 n}=C_{2 n}-\sum_{p \text { prime } ;(p-1) \backslash 2 n} \frac{1}{p} \tag{12}
\end{equation*}
$$

where $C_{2 n}$ is an integer. The table appended to this paper expresses B_{n} in this form, and, as shown below, the calculation of (11) may be carried out without any multiple-precision division.
3. Details of the Computation. By the recurrence (7) we may discard the value of $T_{n, k}$ once $T_{n+1, k+1}$ has been calculated, so only about n of the values $T_{n, k}$ need
to be retained in the computer memory at any one time. A further technique can be employed when the memory size has been exceeded; for example, suppose we start with the computation of $T_{n k}$ for $n \leqq 4$:

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$
$n=0$	0	1				
$n=1$	1	0	1			
$n=2$	0	2	0	2		
$n=3$	2	0	8	0	6	
$n=4$	0	16	0	40	0	24

and suppose that very little memory space is available, so that we cannot completely evaluate all of the entries for $n=5$; we might obtain
$n=5 \quad 16$
0136
$0 \quad 240$
0 *
where "*" denotes an unknown value. The calculation may still proceed, keeping track of unknown values:

$n=6$	0	272	0	1232	0	$*$	
$n=7$	272	0	3968	0	$*$		
$n=8$	0	7936	0	$*$			etc.

In this way we may compute the values of about twice as many tangent numbers as were produced before overflow occurred, avoiding much of the calculation of the $T_{n, k}$.

Since the numbers T_{n} become very large (T_{835} has 1866 digits, and T_{n} is asymptotically $2^{n+2} n!/ \pi^{n+1}$ when n is odd), care needs to be taken for storage allocation of the numbers $T_{n, k}$ if we are to make efficient use of memory space. The program we prepared makes use of two rather small areas of memory (say A and B) each of which is capable of holding any one of the numbers $T_{n, k}$, plus a large number of consecutive locations used for all the remaining values. By sweeping cyclically through this large memory area, it is possible to store and retrieve the values in a simple manner.

For the sake of illustration let us suppose the word size of our computer is very small, so that only one decimal digit may be stored per word; and suppose there are just 14 words of memory used for the table of $T_{n, k}$. After the calculation of the values for $n=4$, the memory might have the following configuration:

Here P and Q represent variables in the program that point to the current places of interest in the memory; P points to the number that will be accessed next, and Q points to the place where the next value is to be written. Only locations from P to Q contain information that will be used subsequently by the program. The symbols "." and "," represent special negative codes in the table which delimit the numbers in an obvious fashion. As we begin the calculation for $n=5$, we set area A to zero and a variable k to 1 . The basic cycle is then:
(a) Set area B to k times the next value indicated by P, and move P to the right.
(b) Store the value of $A+B$ into the locations indicated by Q, and move Q to the right.
(c) Transfer the contents of B to area A.
(d) Increase k by 2.

In the case of (13) we would change the memory configuration to

Notice that the value 16 has been stored, the pointer Q has moved to the right and (treating the memory as a circular store) then to the far left. The next two iterations of steps (a)-(d) give

$$
\begin{equation*}
k=7 \quad A=120 . B=120 \tag{15}
\end{equation*}
$$

Now since the terminating "." was sensed, the program attempts to store the value from area A; but since this would make pointer Q pass P, the "memory overflow" condition is sensed, and the memory configuration becomes

where "*" is another internal code symbol. The computation for $n=6$ is similar but it uses a different initialization since n is even; after $n=6$ has been processed we would have

and so on.
The above discussion has been slightly simplified for purposes of exposition. In the actual program, it is preferable to keep the numbers stored with least significant digit first, so that for example (16) would really be

in order to simplify the multiple-precision operations. A few other changes in the sequence of operations were made in order to use memory a little more efficiently (for example the value $T_{n 0}$ need never be retained).

A similar method may be used for E_{n}. This arrangement of the computation gives a substantial advantage over Joffe's method [3] because of the "**", and it
also has advantages over (10) for the same reason.
It remains to consider the calculation of the Bernoulli number $B_{2 n}$ from $T_{2 n-1}$. Consider formula (12); if p is an odd prime, $2^{p-1} \equiv 1$ (modulo p), hence if $(p-1) \backslash 2 n$, then $2^{2 n}-1$ is divisible by p. So we first compute the integer

$$
\begin{equation*}
N=(-1)^{n-1} 2 n T_{2 n-1}+\sum_{p \text { prime } ;(p-1) \backslash 2 n} \frac{(2 n)\left(2^{2 n}\right)\left(2^{2 n}-1\right)}{p} \tag{19}
\end{equation*}
$$

by referring to an auxiliary table of primes that may be calculated at the beginning of the program. Then it is merely a question of computing

$$
\begin{equation*}
C_{2 n}=N / 2^{2 n}\left(2^{2 n}-1\right)=N / 2^{4 n}+N / 2^{6 n}+N / 2^{8 n}+\cdots \tag{20}
\end{equation*}
$$

The calculation of $N / 2^{k}$ is of course merely a "shift right" operation in a binary computer, so all the terms of the infinite series on the right side of (20) are readily computed. This series converges very rapidly, and we know $C_{2 n}$ is an integer, so we need only carry out the calculation indicated in (20) until it converges one wordsize (35 bits) to the right of the decimal point. It is simple to check at the same time that $C_{2 n}$ is indeed very close to an integer, in order to verify the computations.
4. Periodicity of the Sequences. Examination of the tables produced by the computer program shows that the unit's digits of the nonzero tangent numbers repeat endlessly in the pattern $2,6,2,6,2,6$, starting with T_{3}; furthermore the two least significant digits ultimately form a repeating period of length $10: 16,72,36,92$, $56,12,76,32,96,52,16,72, \ldots$ The three least significant digits have a period of length 50 , and for four digits the period-length is 250 . These empirical observations suggest that theoretical investigation of period-length might prove fruitful.

Theorem 1. Let p be an odd prime, and let λ be the period-length of the sequence $\left\langle T_{n} \bmod p\right\rangle$. Then

$$
\lambda= \begin{cases}p-1, & p \equiv 1(\bmod 4) \tag{21}\\ 2(p-1), & p \equiv 3(\bmod 4)\end{cases}
$$

and

$$
\begin{equation*}
T_{n+\lambda} \equiv T_{n}(\bmod p) \quad \text { for all } \quad n \geqq 0 \tag{22}
\end{equation*}
$$

Proof. It is clear from the recurrence relation (7) that the sequence $\left\langle T_{n} \bmod p\right\rangle$ is determined by the recurrence equation

$$
\begin{equation*}
y_{n+1}=A y_{n} \tag{23}
\end{equation*}
$$

where the vector y_{n} and the matrix A are defined by

$$
A=\left[\begin{array}{ccccccc}
0 & 2 & & & & & \tag{24}\\
1 & 0 & 3 & & & & \\
\\
& 2 & 0 & 4 & & & \\
\\
& & 3 & \cdot & & & \\
\\
& & & & \cdot & & \\
& & & & & & 0 \\
& & & & & & 0-2
\end{array}\right], \quad y_{n}=\left[\begin{array}{c}
\\
T_{n, 1} \\
T_{n, 2} \\
\cdot \\
\cdot \\
\cdot \\
\\
T_{n, p-1}
\end{array}\right]
$$

For $T_{n, k}$ can contribute nothing to any subsequent value of T_{n} when $k \geqq p$.
We will show below that the minimum polynomial equation satisfied by A is

$$
\begin{equation*}
A^{p-1}-(-1)^{(p-1) / 2} I \equiv 0(\text { modulo } p) ; \tag{25}
\end{equation*}
$$

hence (22) is valid for the value of λ given by (21). It remains to show that λ is the true period-length of the sequence, not merely a multiple of the period.

Accordingly, suppose $T_{n+\lambda^{\prime}} \equiv T_{n}(\bmod p)$ for some positive $\lambda^{\prime} \leqq \lambda$ and all large n. In view of (22) this congruence must hold for all $n \geqq 0$. Let $y=y_{\lambda^{\prime}}-y_{0}$; then $p\left(A^{n} y\right) \equiv 0$ for all $n \geqq 0$ where p denotes the projection onto the first component of the vector $A^{n} y$. But this implies $n!\alpha_{n} \equiv 0(\bmod p)$ for all components α_{n} of y, hence $y \equiv 0$, i.e., $y_{0} \equiv y_{\lambda^{\prime}}=A^{\lambda^{\prime}} y_{0}$. It follows that $y_{n} \equiv A^{\lambda^{\prime}} y_{n}$ for all $n \geqq 0$, and since the vectors y_{0}, \cdots, y_{p-2} are obviously linearly independent we must have $A^{\lambda^{\prime}} \equiv I$ (modulo p). Therefore, λ^{\prime} is $\geqq \lambda$, and the proof is complete.

It remains to verify (25), which seems to be a nontrivial identity. Clearly, the minimum polynomial of A must be of degree $p-1$, since y_{0}, \cdots, y_{p-2} are linearly independent; therefore, it suffices to calculate the characteristic polynomial of A. Let

$$
D_{n}=\operatorname{det}\left[\begin{array}{cccccc}
x & -(n-1) & & & & \tag{26}\\
-n & x & -(n-2) & & & \\
& -(n-1) & \cdot & & & \\
\\
& & & & \cdot & \\
& & & & & x
\end{array}\right] \text {-1 }
$$

then $D_{n}=x D_{n-1}-(n-1) n D_{n-2}$ so we have

$$
\begin{aligned}
& D_{1}=x \\
& D_{2}=x^{2}-1 \cdot 2, \\
& D_{3}=x^{3}-(1 \cdot 2+2 \cdot 3) x, \\
& D_{4}=x^{4}-(1 \cdot 2+2 \cdot 3+3 \cdot 4) x^{2}+1 \cdot 2 \cdot 3 \cdot 4, \\
& D_{5}=x^{5}-(1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5) x^{3}+(1 \cdot 2 \cdot 3 \cdot 4+1 \cdot 2 \cdot 4 \cdot 5+2 \cdot 3 \cdot 4 \cdot 5) x,
\end{aligned}
$$

and in general

$$
\begin{equation*}
D_{n}=x^{n}-s_{n 1} x^{n-2}+s_{n 2} x^{n-4}-s_{n 3} x^{n-6}+\cdots, \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{n k}=\sum a_{1}\left(a_{1}+1\right) a_{2}\left(a_{2}+1\right) \cdots a_{k}\left(a_{k}+1\right) \tag{28}
\end{equation*}
$$

is summed over all values $1 \leqq a_{1} \ll a_{2} \ll \cdots \ll a_{k}<n$. (Here $u \ll v$, for integers u, v, denotes $v \geqq u+2$.) Thus, $s_{n k}$ is the sum of all products of k of the pairs $1 \cdot 2,2 \cdot 3, \cdots,(n-1) \cdot n$ with no "overlapping" pairs allowed in the same term.

To evaluate $s_{(p-1) k} \bmod p$, it is convenient to allow also the pairs $(p-1) \cdot p$ and $p \cdot 1$, since these contribute nothing to the sum. Thus for example,

$$
\begin{aligned}
s_{62} \equiv & 1 \cdot 2 \cdot 3 \cdot 4+1 \cdot 2 \cdot 4 \cdot 5+1 \cdot 2 \cdot 5 \cdot 6+1 \cdot 2 \cdot 6 \cdot 7+2 \cdot 3 \cdot 4 \cdot 5+2 \cdot 3 \cdot 5 \cdot 6 \\
& +2 \cdot 3 \cdot 6 \cdot 7+2 \cdot 3 \cdot 7 \cdot 1+3 \cdot 4 \cdot 5 \cdot 6+3 \cdot 4 \cdot 6 \cdot 7+3 \cdot 4 \cdot 7 \cdot 1 \\
& +4 \cdot 5 \cdot 6 \cdot 7+4 \cdot 5 \cdot 7 \cdot 1+5 \cdot 6 \cdot 7 \cdot 1
\end{aligned}
$$

(modulo 7). Let us say two terms $a_{1}\left(a_{1}+1\right) \cdots a_{k}\left(a_{k}+1\right)$ and $a_{1}{ }^{\prime}\left(a_{1}{ }^{\prime}+1\right) \cdots$ $a_{k}{ }^{\prime}\left(a_{k}{ }^{\prime}+1\right)$ are "equivalent" if, for some r and t and for all $j, a_{j} \equiv a^{\prime}{ }_{(j+r) \bmod p}+t$; thus, in the above example the terms $1 \cdot 2 \cdot 4 \cdot 5,2 \cdot 3 \cdot 5 \cdot 6,3 \cdot 4 \cdot 6 \cdot 7,4 \cdot 5 \cdot 7 \cdot 1$, $5 \cdot 6 \cdot 1 \cdot 2,6 \cdot 7 \cdot 2 \cdot 3,7 \cdot 1 \cdot 3 \cdot 4$ are mutually equivalent. It is impossible for a term to be equivalent to itself when $0<t<p$, since this would imply $a_{1}+\cdots+a_{k}$ $\equiv a_{1}+\cdots+a_{k}+k t$, and $t \equiv 0$. Therefore, each equivalence class has precisely p terms in it. When $k<(p-1) / 2$ the sum over an equivalence class has the form

$$
\sum_{0 \leqq t<p}\left(a_{1}+t\right)\left(a_{1}+t+1\right) \cdots\left(a_{k}+t\right)\left(a_{k}+t+1\right)
$$

where the summand is a polynomial of degree $\leqq p-2$ in t. Any such summation may be expressed modulo p as a sum of terms of the form

$$
c \sum_{0 \leqq t<p}\binom{t}{j}=c\binom{p}{j+1} \equiv 0, \text { since } 0 \leqq j<p-1,
$$

so $s_{k p} \equiv 0$. It follows that

$$
\begin{equation*}
D_{p-1} \equiv x^{p-1}+(-1)^{(p-1) / 2}(p-1)!(\text { modulo } p) \tag{29}
\end{equation*}
$$

and an application of Wilson's theorem completes the proof of (25).
Theorem 2. Let p be an odd prime, and let λ be the period-length of the sequence $\left\langle E_{n} \bmod p\right\rangle$. Then

$$
\lambda= \begin{cases}p-1, & p \equiv 1(\bmod 4) \tag{30}\\ 2(p-1), & p \equiv 3(\bmod 4)\end{cases}
$$

and

$$
\begin{equation*}
E_{n+\lambda} \equiv E_{n}(\bmod p) \quad \text { for all } \quad n \geqq 1 . \tag{31}
\end{equation*}
$$

Proof. Make the following changes in the proof of Theorem 1:

$$
A=\left[\begin{array}{cccccc}
0 & 1 & & & & \tag{32}\\
1 & 0 & 2 & & & \\
\\
& 2 & 0 & 3 & & \\
\\
& & 3 & \cdot & & \\
\\
& & & & & \\
& & & & & \\
p-1 & p-1
\end{array}\right], \quad y_{n}=\left[\begin{array}{c}
E_{n, 0} \\
\\
E_{n, 1} \\
\vdots \\
E_{n, p-1}
\end{array}\right] .
$$

Then the minimum polynomial equation satisfied by A is

$$
\begin{equation*}
A^{p}-(-1)^{(p-1) / 2} A \equiv 0(\text { modulo } p) . \tag{33}
\end{equation*}
$$

The proof is a straightforward modification of the proof of Theorem 1.
The congruences (22) and (31) were obtained long ago by Kummer (see for example [5, p. 270]), but it was not shown that the true period-length could not be a proper divisor of the number λ given by (21), (30). More general congruences given
by Kummer make it possible to establish further results about the period-length:
Theorem 3. Let p be an odd prime, and let λ be given by (30). Then

$$
\begin{array}{ll}
T_{n+\lambda p^{k-1}} \equiv T_{n}\left(\operatorname{modulo} p^{k}\right), & n \geqq k, \\
E_{n+\lambda p^{k-1}} \equiv E_{n}\left(\operatorname{modulo} p^{k}\right), & n \geqq k \tag{35}
\end{array}
$$

Proof. Assume $n \geqq k$ and define the sequence $\left\langle u_{m}\right\rangle$ by the rule

$$
\begin{equation*}
u_{m}=(-1)^{(p-1) m / 2} T_{n+(p-1) m}, \quad m \geqq 0 \tag{36}
\end{equation*}
$$

Kummer's congruence for the tangent numbers may be written

$$
\begin{equation*}
\Delta^{k} u_{m} \equiv 0\left(\operatorname{modulo} p^{k}\right), \quad m \geqq 0, \quad k \geqq 1 \tag{37}
\end{equation*}
$$

where $\Delta^{k} u_{m}$ denotes

$$
u_{m+k}-\binom{k}{1} u_{m+k-1}+\binom{k}{2} u_{m+k-2}-\cdots+(-1)^{k} u_{m}
$$

We will prove that (37) implies

$$
\begin{equation*}
u_{m+p^{r-1}} \equiv u_{m}\left(\operatorname{modulo} p^{r}\right), \quad m \geqq 0, \quad r \geqq 1 \tag{38}
\end{equation*}
$$

and this will establish (34). Eq. (35) follows in the same way if we let

$$
u_{m}=(-1)^{(p-1) m / 2} E_{n+(p-1) m}
$$

Assume Eq. (37) is valid for some sequence of real numbers (not necessarily integers) u_{0}, u_{1}, \cdots; thus, $\Delta^{k} u_{m}$ is an integer multiple of p^{k} when $k \geqq 1$, but not necessarily when $k=0$. We will prove that the sequence $u_{m} / p, u_{m+p} / p, u_{m+2 p} / p, \cdots$, for fixed m also satisfies Eq. (37), and this suffices to prove (38) by induction on r.

Let E be the operator $E u_{m}=u_{m+1}$. Eq. (37) may be written $(E-1)^{k} u_{m} \equiv 0$ (modulo p^{k}), and our goal as stated in the preceding paragraph is to show that $\left(E^{p}-1\right)^{k}\left(u_{m} / p\right) \equiv 0\left(\operatorname{modulo} p^{k}\right)$, i.e. $\left(E^{p}-1\right)^{k} u_{m} \equiv 0$ (modulo p^{k+1}). Let $f(E)=E^{p-2}+2 E^{p-3}+\cdots+(p-2) E+(p-1) ;$ then $E^{p}-1=$ $(E-1)(p+f(E)(E-1))$, hence

$$
\left(E^{p}-1\right)^{k} u_{m}=\sum_{0 \leqq j \leqq k}\binom{k}{j} p^{j}(E-1)^{2 k-j} f(E)^{k-j} u_{m}
$$

and each term in the sum on the right is an integer multiple of $p^{2 k}$. Hence, we have proved in fact that $\left(E^{p}-1\right)^{k} u_{m} \equiv 0$ (modulo $p^{2 k}$), which is more than enough to complete the proof of the theorem.

Note that Eqs. (34), (35) do not necessarily give the true period-length of the sequence $\bmod p^{k}$ when $k>1$; although (34) is "best possible" when $p=5$ and $k=2,3,4$, the tangent numbers have the same period-length modulo 9 as they do modulo 3.

The tangent number $T_{2 n+1}$ is divisible by 2^{n}, so the period length of $T_{n} \bmod 2^{r}$ is 1 for all r. Eq. (35) is valid for $\lambda=2$ when $p=2$, since Kummer's congruence (37) holds for $u_{m}=E_{n+2 m}$. In particular, we may combine the results proved above to show that for any modulus m the sequences $T_{n} \bmod m, E_{n} \bmod m$ are periodic, and the period-length divides $2 \phi(m)$.
Table 1. The first 60 nonzero tangent numbers

 3741030484
 0
1
∞
∞
∞
∞
∞
∞
∞

 GL68L80L89 01
10
10
00
10
10
7

7 | N |
| :--- |
| ∞ |
| ∞ |
| 0 |
| 0 |
| ∞ |
| \cdots |
| | 7149167320

0347433028 0950687716
4592740313 N
N
N
O
H
0
0
0
0
0
0 9513190225
4033104110 7097769722
0355004525

 9G0IZZ8902

 H
0
0
20
0
20
0
0 -1
0
N
N
N
N

N | 9 |
| :--- |
| |
| 10 |
| 10 |
| N |
| \cdots |
| N | ITLE9890LL

 Z9807GもGL9 | 12 |
| :--- |
| 10 |
| |
| |
| 4 |
| 10 |
| 10 | 66LZGG00L9

NN
N
0
0
0
0
0
10
0
:---
0
0
0
0
10
10

67\＆\＆EZLL89 N | N |
| :--- |
| N |
| 10 |
| 10 |
| |
| |

 9380084736 ．
 9839726592 ． G089879IGE て099160飞09 8719138436 88IEIIZ678 00モI6\＆6066

 866もLLLOLE 0
20
2
11
10
10
20 0LGETL6円IT 896088706T 8668G9997T LGLOEIT6LI EGG866EG67

LIZZ0608L8 IZ669 Lも\＆ 86IGGIE8G9 0LL8ELI986 19も779IEモ\＆ 2662250632 | \circ |
| :--- |
| 0 |
| 10 |
| 10 |
| 10 |
| 0 |
| 0 |
| 10 | 4508016361 0

0
0
0
08
0
00
40 9929718418 N
0
N
N
10
10
∞
 8TL69IGもIE

\＆も667898LS 6887809\＆IT I96ももGG6\＆G 882969も6も9 399106L LEt 8も\＆066もをL0 I89ももL0L\＆L
 97エもLZ6もをも

 \begin{tabular}{l}
N

N

\multirow{2}{N}{}

\multirow{1}{*}{}

1

∞

0

0

0

\multirow{2}{*}{}

H

N

0

0

0
\end{tabular} 1

10
0
0
0
10
10
10
 8L9LOTELLL 987680L90I 2
20
10
0
20
2
9
4 IZLIEI9L06

T9\＆LLZ0ZGI
9 198GZ8もII モL8LZZ7も99

 5231282906

N
8
8

O
N
H
H
Wे ∞
1
ω
2
∞
0
0
0 112
0
10
0
10
10
0
0 G6788も0IZ8

$\begin{aligned} & \text { IGも0ZI9LI L } \\ & 98 L L \hbar 8 Z Z 79 \end{aligned}$	
0	
8Z6980TL8L	
6，	
98もLL99も60	
¢¢C600 000	
2976	
	\％7969
8700LLTL6L	
99\％90を6LZ	
167IL07ZI	
	00L9L998
Lも0も9886	
	90867L9
も゙LIE\＆\＆も6	
	97\％モ
07LL6EEIG	
91081 LLL06	
	09699Z
モ9990モ689才	
－$¢$ LZ9 L0970	
	79888LLGE
69688709L9	
－96も0 688088	
997も¢も¢	
	700286778

99も90L9810 8016962967 モ9G90766 28 908969097Z 8999LGもLT9 869LZLE8L9 H Z0IIE6IG68 IG9ももてZ991 089ZLI66II 6887ZG9999 T96879LTLE
 1278606958
3499287007
7014497286

0171869441
6899187030 9I9 L L6E\＆G9 3871837828 5127146296 7296825215 4140134793 1135561434
 20790ヶ9189 5816406207 1972782143

 9490537680 3312556087 5541548168 | 20 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | CLGL8GG009

6I9968LZL9 0LIL99IEIT 8ZL0 998807 I6067モ6L9I

7004078003
2466184489
1483758302
3711110813
9724342116
 － $788000 \angle$ 6 2

7042772066 ${ }^{\circ}$ 9937408986 8669279906 2879473499 3954320693 م 5263054499 6116040368 0277448013 2060080598 8006679743

 웅 3458730392 686088878 8860\＆EIZ\＆

 º
N
N
N
N

 국

 웅 | \circ |
| :--- |

 10
N
N
0
N
N
7 ํ

 8633084261 2020990976
 G901888EEL モ991981098 8580920993

6762

86608IG\＆
$\stackrel{0}{9}$
GGILL
もももL08I8\＆
G6I
Z99070I

N
0

م-TL - M o N	∞		\cdots	\bigcirc
	∞		\mathfrak{N}	8
	\cdots	\bigcirc	0	\cdots
M N 0 m ${ }^{\text {m }}$		7	O	ล
00510040	-	\bigcirc	∞	O
-		∞		$\underset{\sim}{\text { F }}$
$\bigcirc \times 1$ ¢	$\stackrel{\sim}{1}$	+	N	

Table 2. The first 61 nonzero E'uler numbers

\＆I898I80\＆\＆ \＆ZIL677976 もして6Z66899 Z90696988Z 2640578565
1261825484 3090736003
7489775212

9695760705. 3
N
N
N
N
8
8
 7945376961. 6806459548 8732198729 3
2
1
2
0 8042754623 5135032296 09モ9709090 6417049760

 \begin{tabular}{c}
8

\multirow{2}{2}{}

18

0

0

0

0

0

0

20

\multirow{1}{6}{}

0

8

0

0

0
\end{tabular}

 8ZI996I899 9869806ZL9
 99もLEGも897
\＆LGZZ\＆ILもも

3990906470 N N
N
N
N
N
N
 ∞
0
0
0
0
0
0

0 7907250365 | 4 |
| :--- |
| 0 |
| 10 |
| 0 |
| 0 |
| 0 |
| 8 |
| 0 |

3537309752 7776571876 5015669043 1419813489 0546038347 7643370625 2869245763 9218210539 5218210539 3854077446 7060022407 0000330206 6605063835 3461698760
 N
N
10
0
0
0
0 No

 ZIE6L6Zc98 Nㅜㄴ | ∞ |
| :--- |
| 00 |
| 0 |
| $=1$ |
| -1 |
| 10 | 6768879ヵ19

6981180852
 99LL90L908
0LLZLZ8EG9
E879960LIE

 ∞
20
20
10
10
∞
∞亏．

8122338310

3438103385 6071243105 S421919498 6661097497 9231914699 7485105535 148777892 $\stackrel{N}{\circ}$ 169682143 2169682143 4049404498 | N |
| :--- |
| $\stackrel{N}{\infty}$ |
| N |
| N |
| 8 |
| 8 |
| 8 |

 N 279528164

 \begin{tabular}{c}
N

N

N

\％

\hline 8

\hline∞

\hline

N

\hline
\end{tabular}

 8516010249 4782738106 9980Iも\＆ZZ 8
0
0
0
0
0
0
 2
$\stackrel{2}{2}$
$\stackrel{1}{2}$
$=1$ 0
8
8
2
1
1
2
0

 m
N
N
o
N
N 2
 N

 ๗
 8
8.
0
0
0
0
0
0
 $0 \& 989666 \pm$ GI － モ88L09I879

98	72365
100	290352834
102	121
104	526306
106	2374073071
108	1111
110	5403078
112	2
114	14213
116	76842618
118	42
120	

Table 3. The first 250 Bernoulli numbers
$B_{0}=1, B_{1}=-1 / 2, B_{2 n+1}=0$ for $n \geqq 1$, and the values of $B_{2 n}$ for $1 \leqq n \leqq 125$ appear below in the form $C_{2 n}-\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$. This notation stands for $C_{2 n}-1 / p_{1}-\cdots-1 / p_{k}$; thus $B_{4}=1-\{2,3,5\}=1-1 / 2-1 / 3-1 / 5=-1 / 30$. The Bernoulli numbers have been expressed in this form here, since the numbers $C_{2 n}$ have not been tabulated before.

$-\{2,3,5,11,17$

9153643742

－ 0118865838
$\begin{array}{ll}5019041065 & 6789732987 \\ 5937920621 & 8451368511 \\ 5018971389 & 6038891627\end{array}$
0200659751
0654596737
7890365954
8468092801
0984176879
$-\{2,3,7,103\}$
3186867270
$-\{2,3,5,53\}$
6141946828

－\｛2，3，5，7，13，1
0154812442
2791785388

∞
1
1

1200945120
6124084923
 2304264985

～

786モ298\＆

110
998tz－
－918855282
07
002ォー
1131804
-283822495
-2009
566571
-165845111
-1586
517567
∞
$\underset{\sim}{\infty}$
$\underset{1}{\infty}$
$\underset{1}{+}$
$\underset{1}{\infty}$

TABLE $3-$ Continued			
3472158762	1228952384	0015332666	6438279520
1160519994	9521852558	2452526426	4167780767
0071684324	0112735747	5076344103	1489529605
2776912707	8349422883	2345671293	2445573185
5056655269	3027736635	0025726591	0252803139
$-\{2,3,5,7,11,13,31,41,61\}$			
7679877096	9854221062	4599845957	3120465051
8488529885	8447202350	0718881721	8561301633
1141570958	3591634369	1808148735	2627667109
5042431195	3111814531	4804543981	2034228242
$-\{2,3,5\}$			
7500822233	8779298231	0024302926	6798669571
3295160585	7353822073	1833362242	1938478819
5958141510	$-\{2,3,7,19,43,127\}$		
0923086774	1338994028	2462456517	5446919894
6078013452	2227018183	3065745383	0640452814
7075399446	$-\{2,3,5,17\}$		
7894241625	2098692981	9883872814	3738272150
9055078103	8036345171	2245962893	1773876814
8286208932	$-\{2,3,11,131\}$		
3095520443	8633513398	9802393011	6690267498
1706618959	8371132984	4759158434	4882999447
2315481909	$-\{2,3,5,7,13,23,67\}$		
0983619784	5295427227	2622874813	1691918757
4735319759	1401112942	6528175678	7997886065
1078243989	1580698362	$-\{2,3\}$	
5708864640	8883972933	7727583015	4864565966
3087398275	4818594264	3022208918	6918602388
5442476427	3682977286	$-\{2,3,5,137\}$	
3279791277	1075729696	0209752104	1491857990
3196274811	6831819391	1585658026	7855114057
3082120499	9429964679	$-\{2,3,7,47,139\}$	
8208880508	7891967099	6341276113	0549942324
5625800263	1506521525	5521783095	3721687111
7957252622	4667309228	$-\{2,3,5,11,29,71\}$	
5308880148	0982609783	4674040886	9039967369
4603247983	2901257676	9302738510	9499436486
5805824257	3375943467	8897524866	$-\{2,3\}$

 $-\{2,3,5,59\}$
7268467832
9086182634
0549877801
1154956835

8433566283
9661427406
9112273184
2969820299

9179638977
1283226347

0377552432
1149421273

8758785424
5763813725
5678971000
8018574251
5426552811
2087390581
9040083595
7468948154
7241070558
4147212665
6203851158
4312353272
5039984404
8624711701 $\underbrace{\sim}_{1} \quad \overbrace{1}^{\sim}$
-2212
827227
-319589251
$\stackrel{\sim}{\sim}$
8
10
10
1
2230181
-976845219
H
20
0
0
0
1
1
9821443
-4841260079
N
\approx
$\stackrel{\infty}{\square}$ 욱
122
124
126
128
130
132
134
136
138
140
142

10
10
0
10
0
6
8
4
1
$\underset{\sim}{\circ}$
-22049
16812597
1
-854328
712878213
8
\approx
$\stackrel{\infty}{-1}$
170
172
174
176
178
180
182
184
$\underset{-\infty}{\infty}$

3429355657	1403660905
1178927312	4036225303
9281199287	3335083984
8224372602	4150845715
8242731374	8983148899
8334448739	3615611074
4679418664	6682265708
1840875841	2535715340
9370917366	3618746795
9308402125	9096461499
438498570	4423384432
9360250776	4120246691
9676853975	9962892161
7204489612	7090496935
5220024031	0159699351
1689483118	7470399162
$-\{2,3,7,11,31,43,71,211\}$	
4251219952	0385256050
8886924331	4587153964
1550902842	4409830023
1858879998	4318266834
$-\{2,3,5,107\}$	
5107953790	8103711340
6499243600	5693167818
7867121979	7119475720
9856004904	0741960957
$-\{2,3\}$	
2957000240	1395817760
2936510368	0530514353
7344439893	1506681060
4283324504	8399788068
$-\{2,3,5,7,13,19,37,73,109\}$	
4852939477	9681195006
5981956117	8018896163
3098394359	2743108529

 3902826948
4757739143
0009611241
4333801645
9949979112
8200465711
5262230714
3986637022
7933278680
7664139458
5598029405
3799606865
8802899119
7170675162
2193925929
6295759279
8959297983
2201695440
5827189886
7938441124
9554015377
1720376565
0123632318
4213714925
2760829621
0322637794
3304042329
1809297698
3084385157
1367729728
5916259639
2128994899
4002045806
2584232544
2690855641
8725524544
5610846395
9040581129

ค~
$\stackrel{\sim}{2}$
*
옹
∞
웅

20
-5782
$\stackrel{\infty}{\circ}$
옷
212

+

ค

0
0
0
0
0
0
0
0

$\underset{\sim}{\text { F }} \underset{\sim}{\infty}$

Mathematics Department
California Institute of Technology
Pasadena, California 91109

1. Thomas Clausen, "Theorem," Astr. Nachrichten, v. 17, 1840, cols. 351-352.
2. S. A. Joffe, "Calculation of the first thirty-two Eulerian numbers from central differences of zero," Quart. J. Math., v. 47, 1916, pp. 103-126.
3. S. A. Joffe, "Calculation of eighteen more, fifty in all, Eulerian numbers from central differences of zero," Quart. J. Math., v. 48, 1917-1920, pp. 193-271.
4. D. H. Lehmer, "An extension of the table of Bernoulli numbers," Duke Math. J., v. 2, 1936, pp. 460-464.
5. Niels Nielsen, Traité Élémentaire des Nombres de Bernoulli, Paris, 1923.
6. J. Peters \& J. Stein, Zehnstellige Logarithmentafel, Berlin, 1922.
7. S. Z. Serebrennikoff, "Tables des premiers quatre vingt dix nombres de Bernoulli," Mém. Acad. St. Petersbourg 8, v. 16, 1905, no. 10, pp. 1-8.
8. K. G. C. von Staudt, "Beweis eines Lehrsatzes die Bernoullischen Zahlen betreffend," J. für Math., v. 21, 1840, pp. 372-374.
