
A Map-Folding Problem

By W. F. Lunnon

Abstract. An algorithm is described to compute the number of ways of folding a

one-dimensional map, and a table of values given.

Introduction. In how many ways can a map be folded up? What follows is re-

stricted to the one-dimensional problem, that is : Given a plane chain ('map') of p

equal segments ('leaves') jointed together, in how many ways ('p-foldings') G(p) can

it be rigidly collapsed into one segment? For example G(3) = 6, (see the figures (1)-

(6) and the table (31)). In the figures, the free edge of the 'front cover' is tagged with

a dot; by turning the folding round (in the plane) or over (out of the plane), this tag

can always be arranged on the left and pointing upwards. We shall assume it to be

so.
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The leaves can be numbered 1, 2, • ■ -, p in natural order from the front, and in

any particular folding they can also be numbered by position from the top; e.g., the

figure (3) has leaves 1, 2, 3 in positions 2, 3,1. So to each folding there corresponds a

unique permutation which (as well as its inverse) describes the folding in a natural

mathematical fashion. This fact seems of no great utility.

The problem can be restricted by requiring that the two free ends of the map be

joined together, creating a closed chain. Here one approach to enumeration would be

to first flatten the map into a 'tree' with \p branches, then manipulate this tree into

a folding (a generalisation of the original problem for \p).

The Theory. GOp) can be computed by simple enumeration, and we have found

no radical improvement on this method. But for given p we can 'reduce' the set of

all foldings to a subset, i.e., construct an equivalence relation over the set and then

enumerate just one from each equivalence class.

There are several such equivalences of order 2 : e.g., in the figures (l)-(3) the

first crease (between leaf 1 and 2) turns down, but in (4)-(6) up ; and, in general, just

half the foldings turn down at the first crease, so we need only enumerate this subset.

It follows that 2 divides GOp). It is observed empirically (table (34)) that 2p

divides GOp), which suggests an equivalence of order 2p. We shall prove the divisi-

bility and demonstrate the subset.
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Consider figure (7). Leaf 3 is in position 4. Let it be translated supernaturally

through the other leaves to position 1, dragging its creases (connections to leaves 2

and 4) with it, and move all the other leaves down one position to make room. The

result is figure (8). We call this operation 'rotation' : (8) rotates to give (9), and so on

till (11) = (7) again. In defiance of the well-known law that maps never fold up so

that the front cover is on top, we shall call such a folding 'normal'—figure (7) is

normal. Suppose we take the set of all normal foldings and rotate it k — 1 times,

where 1 ^ fc ^ p; the result will be the set of all foldings whose first leaf is in

position fc. So all these sets contain the same number of foldings, G0p)/p, since there

are p possible values of fc.

X

I

Z X

(12) (13)

We now want to reduce the set of normal foldings by a factor of two. Instead of

discriminating on the first crease (which must perforce turn downwards) we use the

second : consider figure (12)—(13). Here X, Y, Z denote the rest of the leaves after

the third, assuming p ^ 3. If figure (12) is rotated once backwards and turned up-

side down (out of the plane), the result resembles (13) except that its leaves (and its

tag) face down. This is remedied by undoing it, turning it over and doing it up again

in the same shape; the entire operation will then transform the set of normal foldings

whose second crease turns up (like (12)) into the set whose second crease turns down

(like (13)). So both sets contain the same number of foldings, G0p)/2p, the latter

must be an integer, and we have reduced the set of all foldings to the set of normal

foldings whose second crease turns up. Q.E.D.

The prime factors of G0p)/2p turn out depressingly large (table (35)), so that no

larger equivalence classes are possible.

The Ratio. The ratio G0p)/Gip — 1) is interesting (table (22)). It can be in-

terpreted as the average number of p-foldings derivable from a given (p — l)-fold-
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ing by attaching a pth leaf (see next section). For even and odd p separately, it

appears monotone increasing to a pair of limits rather larger than 3; so it seems

reasonable to try fitting a pair of polynomials in 1/p. [This is performed for sev-

eral polynomial degrees, and repeated as a check on sequences which are known

to converge and diverge.] The result is that for both polynomials the constant term

is very nearly 3§, suggesting the conjecture that G(p)/G(p — 1) —* 3J.

16-

16-
16-

16-

15
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(14) (15)

In an attempt to prove this, we reason thus. Let p be even and consider just

the right-hand half of an arbitrary Op — 2)-folding (see (14) where p = 16). This

half-folding is abstractly equivalent to an ordered rooted tree with |p nodes (figure

(15)) : each 'm-crease' (immediately enclosing m gaps) corresponds to an 'm-node'

(at which there are m branches). [The correspondence is spoiled by the root node

a, complete with spurious extra branch. It is convenient to imagine an external

crease, enclosing the entire half-folding, to correspond to a; and a's extra branch

simplifies the definitions.] Suppose now that leaf (p — 1) appears in one of the

gaps, which will be enclosed by some m-crease (leaf 15 is enclosed by the 3-crease

b in (14)). Then there will be 1 + m choices for leaf p (A choices for leaf 16), and

G(p)/G(p — 1) = the mean of 1 + m over the set of all (p — l)-foldings.

We now make two assumptions, both of which are untrue: that in the set of all

(p — 2)-foldings, each distinct half-folding occurs equally often; and that each gap

of a given (p — 2)-folding is equally likely to be occupied by leaf (p — 1). Let

a(p, m) be the total of m-creases which occur in the set of all distinct half-foldings =

the total of m-nodes in the set of all ordered rooted \p-trees

(16)
_ (p - m - 2\

~\    \p-2   J'

Then the mean of 1 + m = 1 + the mean number of gaps immediately within the

same crease as an arbitrary gap of an arbitrary half-folding
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(17)

= 1 + X aiV, m)m2 / 2^ aOp, m)m

Í(A-\)+ÍAA)l/(iA\)= i +
,íp - 1/        \îp-V/J/   \tp

= 4p/p + 2 = G0p)/G0p - 1) ?

Steps (16) and (17) require wads of binomial coefficient manipulation for their

proof; we shrink from inflicting this on the reader, since for one thing the estimate

we have derived is too high (table (33)). Its limit is 4.

As a check on the proceedings, we estimate the mean number of gaps per crease

hp I \v

— ̂ aOp,m)m I ^,aip,m)

which is obviously true (independently of our assumptions) since there are p — 1

gaps and §p creases (including the imaginary one) in any half-folding.

The Algorithm. The foregoing remarks leave the computational problem of G(p)

unchanged : to enumerate (a subset of) all p-foldings. The most successful algorithm

will be described; it is a natural adaptation of the intuitive hand method. The basic

loop constructs and counts all ¿-foldings which can possibly be made by attaching

an 7th leaf on the tail end of a given (i — l)-folding, by searching for gaps in the ap-

propriate area of the (i — l)-folding. Starting this loop on the trivial 1-folding

and calling it recursively down to level i = p, we get all possible p-foldings. A vector

FOR is kept : FOR(fc) contains the number of the leaf in the next position after leaf

k in the current ¿-folding, so completely describing it, and new leaves are attached

by altering the entries in FOR.

1

3
4

5

2

"I    I

1

3
4

5
6
2

1
6
3
4
ó

2

1

3
4

6
5
2

! i

(18) (19) (20) (21)

Consider (18), the FOR-vector for which is (22). Suppose that p > 6, and in the

course of the enumeration we have constructed the 5-folding shown. To construct

all (i = 6)-foldings of which it is the front, first set some.? equal to 5. Then :

Insert leaf 6 between leaf j and the one in front, by setting FOR(6) = FORfj)

and FORO") = 6. Count one more 6-folding, and call the construction recursively to

insert leaf 7. On return, reset FOR(j) = FOR(6) and step j on to the leaf joined to

FORO") on the right (left for odd *).
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Now repeat the last paragraph until FORO') = 5 again, when return to the level

above (i = 5).

fc 0        12       3       4       5

FOR(fc)       13       0       4       5       2

(22)

In (18), this process locates three gaps for leaf 6, j taking the values 5, 1, 4. The

resulting 6-foldings are (19)—(21). Notice that there is no need to search both down

and up from leaf 5; the algorithm automatically continues the search from the lower-

most gap (above leaf 2) to the uppermost (below leaf 1). This happy feature can be

extended : if leaf 1 is conventionally 'joined' to itself on the left, and a leaf 0 is in-

vented which is joined to itself at both sides, is before the top leaf (FOR(0) = 1 in

(22)), and is after the bottom leaf (FOR (2) = 0), then there is no longer any need to

test for the free edge of leaf 1 nor for the bottom of the folding : the previous algo-

rithm is sufficient. Figure (23) illustrates these modifications on (18).

0

1

3
4

5
2

0

0- -, 0

! _i I   I I ._i
5     )l    '-

2    I' !
2

0

(23) (24)

In order to compute G0p)/2p rather than GOp), leaf 1 is omitted and the right

edge of leaf 2 is joined to leaf 0 (figure (24)). This ensures that leaf 2 is always ac-

cessible from the exterior, and so can be joined to leaf 1 in position 1. To force the

second crease upwards, j is initialised to 0 instead of to 2 at the start of the search for

gaps for leaf 3 (there are only 2 of them anyway).

To speed the inner loop we do not actually insert leaf p; it is enough to just

count the gaps at this bottom level. All intermediate values of G0Ï), i < p, come out

in the wash instead of requiring separate calculation.

The Program. Three programs realising basically this algorithm were written by

the author for the Manchester Atlas I computer : an Atlas Autocode program, a

machine code program, and a machine code program in which the recursion was

'unwound' into a nest of p — 3 similar sequences. The third was 1.5 times faster than

the second, which was 7 times faster than the first. The factor of 7 is due largely to

the Atlas I modifier registers ('B-lines') being particularly suited to the algorithm,

whereas Atlas Autocode performs all assignments full-length using the accumulator.

The time taken is strictly proportional to the size of the answer G0p)/2p : 9 basic in-

structions obeyed per folding constructed in the final program. At fixed intervals the
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inner loop punches out the current j'$ and partial answers, together with a check

sum, from which the program can easily be restarted. Very little store is used, which

makes the program ideal for time-sharing with magnetic tape- and output-limited

jobs.

For p ;S 20, table (34) has been computed twice by the same program; but for 21

^ p i? 24, there exists only a computation lasting 55 hours (46 useful), during which

undetected machine errors are known to have occurred at least five times. These

were probably digit-pairs dropping out of the store. In three cases they led rapidly

to a halt through the generation of an illegal address, and in two the computation

went into a characteristic loop in which the partial answers below a certain number

of leaves ceased to increase. This behaviour seems more probable than apparently

correct continuation, but suspicion remains. P. H. Robinson has also programmed

the problem for the PDP 8, which has nominal speeds much the same as Atlas but

was in practice 8 times as slow, owing to the restricted instruction code, etc. He con-

firms table (31) for p ^ 15.

In a lighter vein, we observe that for p = 24 the author's present program is

faster by a factor of a million than his first attempt, and by a spectacular 1016 than

another early program.

G(p) Ap

V

0

1

2

3
4

5
6
7

8
9

10
11

12
13
14

15
16
17
18
19

20

21

22 2

23 7
24 25

1

4

15
52

168

565
1849

6229
20502

69279
29301
76921
83605

(31)

Gip)

0
1

2

6
16

50
144

462
1392
4536

14060
46310
46376

85914
57892
02690
61984
79196
40388
45970
28360

64218
09884
42980
86368

Gip - 1)       p + 2

2.00000

3.00000
2.66667
3.12500
2.88000
3.20833
3.01299
3.25862
3.09965
3.29374
3.16079
3.31963
3.20611

3.33957
3.24101
3.35543
3.26870
3.36836
3.29118
3.37912
3.30979
3.38822
3.32544

(32)

2.00

2.67

3.00

3.20

3.33

3.43

3.50

3.56

3.60

3.64

3.67

3.69

(33)

Gip)/2p

0

Vi
A
i
2

5
12

33
87

252
703

2105

6099
18689
55639

1 73423
5 26937

16 64094
51 37233

163 93315
512 55709

1649 51529
5211 38861

168S9 59630
53825 12216

(34)

Prime

Factors

2

5
2.2.3

3.11
3.29
2.2.3.3.7
19.37
5.421

3.19.107
11.1699
55639
61.2843
526937
2.3.53.5233
3.1712411

5.151.21713
47.73.14939

3.47.53.22073
31.16810931
2.5.223.7573S1
2.2.2.7529.89363

(35)



THE   MAXIMA   OF  Pr(7li,   7l2) 199

The author is indebted to C. F. J. Outred for, among other things, the notion of

rotation. The referee has pointed out that in the table for Pn ( = G0n)/n in the present

notation) of [1, p. 397] the last entry should read 12198 instead of 12196. There are

further references in [1].
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1. J. Touchard, "Contributions à l'étude du problème des timbres poste," Cañad. J. Math.,
v. 2, 19.50, pp. 385-398. MR 12, 312.

The Maxima of Pr(nit n2)

By M. S. Cheema* and H. Gupta

1. In this note, we study the maxima of Pr0ni, ti2), the number of partitions of

the vector (m, n2) into exactly r parts (vectors) with positive integral components.

The generating function <pr(xi, x2) for Pr0ßi, n2) is given by

(Li) n (i - zziVr1 = i + T,zr<br(xi,xi)

CO

(1.2) <t>r(xi, Xi) = 1 +    £   Prim, n2)xinixP .
n1,n2-l

2. If qr(n\, n2) denotes the number of partitions of (tii, ti2) into at most r parts

(vectors) with nonnegative integral components, then it follows that qr(ni, n2) =

Pr(7ii + r,n2 + r). It is clear that <?r(7ii, ti2) is an increasing function of r for 1 ^ r

< Tii + 7i2, and becomes constant for r ^ ni + n2, on the other hand Pi(tii, ti2) = 1

and Pr(ni, n2) = 0 for r > min (tii, n2). From the table of values of Pr(7ii, ti2) com-

puted by Cheema, we notice that for tu jg n2 > 0, there is a unique s such that

Pi(tii, n2) < P2(nh n2) < ■ ■ • < P,(nh n2) ^ P.+i(ni, n2) ^ • • • è P^Oßi, n2) .

We use s in this sense in all that follows. The values of s were computed for all ni,

n2 ^ 50. We might remark that a similar conjecture holds for the number of parti-

tions of n into exactly r summands. An explicit formula for Pr0ni, n2) for general r is

not known, Pr0ni, n2) do satisfy a recurrence relation and behave very much like a

polynomial in Tii, n2, i.e., Pr(7ii, ti2) is a semipolynomial of degree r — 1 in Tii and ti2

relative to modulus r! as shown by Wright [2]. Thus

r r

Pr(7ll, 772)   =   ^Z     2 ß\tl, ¿2, 7li, n2)ni'1~17l2'2"'1 ,
-X-l    (2-l

where ßOli, ti, ni, n2) depends on r, ti, t2 and on the residues of m, n2 to moduli 1, 2,

3, • • ■, [r/ti], but not otherwise on ni, n2. A rough estimate for s is obtained by study-

ing the maxima of a function which behaves very much like PT0ni, ra2).
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