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1. Introduction. Classical error estimates for the Gauss quadrature formula using

derivatives can be used, but they are not of great practical value since the deriva-

tives are not usually available. Davis and Rabinowitz [1] give a more convenient

method for obtaining an upper bound for the error in the quadrature of analytic

functions. McNamee [2] has discussed complex-variable methods for obtaining

upper bounds for the errors of the Gaussian quadratures applied to analytic func-

tions, and Barrett [3] has discussed their convergence.

The error of the n-point Gauss quadrature depends on n and also on the func-

tion to be integrated. The object of the present paper is to obtain asymptotic es-

timates for the error of the Gauss quadrature formula, for large n, according to the

nature of the integrand fix). The analysis also brings out the effect of the nature

of /(z) on the rate of convergence of the Gauss quadrature formula.

2. The Gauss Quadrature Formula. Let C be a closed contour in the complex

plane enclosing the interval [—1, 1] in its interior and let /(z) be regular within C

and continuous in the closure of C. Denoting the zeros of the Legendre polynomial

P„ix) defined on [— 1, 1] by {xk} in, on applying the residue theorem to the contour

integral

(1)

we get

(2)

2iri J r

fjz)dz
2tíJcÍz - x)Pniz)'

fM  _   V P"W ffv\M±.l    /(*)^"(*)<k
nX) h  ix  -  Xk)Pn'iXk)  Rk)   + 2« Je (Z -  x)Pniz)  ■

Integrating both sides with respect to x over [—1, 1], we get

(3) /   fix)dx = ¿ Xkfixk) + E„if) .
J -1 k-=X

This is the Gaussian integration rule of order n over the interval [ — 1, 1] with

weights X* = [Pn'ixkïY1 Jii Pnix)dx/ix — xk). The abscissas xk and weights Xk have

been tabulated extensively in [4], [5].

The error of the Gauss quadrature formula is given by

(4) En{f) = l.Jc^Mm<h>

where Qniz) = § J-i Pnix)dx/iz — x) is the Legendre function of the second kind.

See also Davis [6, p. 361].
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3. An Asymptotic Formula for En(J). We now put the formula for the error in an

asymptotic form for large n. An asymptotic expression for Qn(z)/P„(z), for large n,

is given (Barrett [3]) by

(5)
Qniz)

Pniz) -  (Z ±   (Z2  -   l)1^1 '

where the sign is chosen so that \z ± (z2 — 1)1/2| > 1, and (5) is valid in the z-

plane with the  interval  [—1,   1]  removed.  Observe  that   Qni—z)/Pni — z)   —

-   Qniz)/Pniz).

Substituting (5) in (4) we obtain an asymptotic formula for the error

valid for large n. In the following we shall be concerned with the estimation of

the contour integral in (6) according to the behaviour of/(z).

A similar integral has been estimated, for large n, depending on the nature of

/(z), in connection with the asymptotic estimation of the coefficients in the

Chebyshev series expansion of a function, by Elliott [7] and by Elliott and Szekeres

[8].
3.1. Entire Functions. In this section we consider the estimation of the error

Enif) of the Gauss quadrature applied to entire functions.

Observe that for entire /(z), the contour in (6) can be displaced freely in the

plane, provided only that it never crosses the branch points z = ±1. We can there-

fore use the method of steepest descents to estimate En(J), when the contour is

deformed to pass through the saddle points of the integrand.

As in [8], we write the integrand in (6) as exp (^(z)) where

*C0 = log fiz) - (2n + 1) log (z + (z2 - 1)1/2) .

Assuming that the main contribution to the contour integral, for large n, comes

from the portion of the integral passing through a saddle point (where ^'(f) = 0),

we obtain the estimate of error,

(7) Enif) « -ï(27r)l/2«|^"(f)|-l/2 exp (*(f)) ,

where |«| = 1 and arg a = ir/2 — \ arg ^"(f).

For example, for the function exp (a;), (7) gives the error estimate,

(to v(f\~- Q)l/2(2n + 1) exp (f)

where f = (1 + (2ra + l)2)1'2.

Table 1*

n Estimated E„ Actual En

5 8.698 (-10) 8.248 (-10)
6 1.641 (-12) 1.568 (-12)

* Values in the parentheses indicate the power of 10 by which the tabulated values should be

multiplied.
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Table la

n Estimated En Actual En Upper bound

for \En\

5 6.387 (-7) 6.041 (-7) 4.0 (-6)
6 2.195 (-9) 2.094 (-9) 2.0 (-8)
7 4.955 (-12) 4.758 (-12) 4.0 (-11)

A comparison of the estimated with the actual error for exp ix) is given in Table 1.

As a second example, consider fix) = x% exp (x). Table la gives a comparison of

the actual error for this function with that estimated from (7), and with the upper

bounds for E„ obtained by McNamee [2] (last column).

3.2. Function with Pole. Let ep (p > 1) designate the ellipse whose foci are at

z = dbl and whose semi-axes are respectively Mp + P-1) and %(p — p_1).

Suppose that/(z) has a pole of order k at z = z0, say/(z) = Ak/iz — zo)k where

Ak is constant. In (6), let the contour be selected to be an ellipse ep described in

the positive sense and enclosing zo in its interior, joined by a cross-cut (not inter-

secting the interval [—1, 1]) to a small circle with centre at z0, described in the

negative sense. Now, let p —> «> and let the radius of the small circle tend to zero.

Assuming that/(z) is such that the integral around ep tends to zero as p —» », for

large n, from (6) we obtain

(9) EM a. -2, 3JÀJ5, £ [(,+ (,.^1),/.)W]„, -

An estimate of error for /(z) having a simple pole at z = z0 follows immediately

from (9). In case /(z) has simple poles away from the real axis, say at z0 and 30

with residues A o and A~o, we easily obtain the estimate

(io, «■^-"'•[|„t[a.i.,1).»r]

See also Barrett [3, p. 273]. As an example, consider the function fix) = (9z2 + 1)_1

for which (10) gives the error estimate

(11)

O ~|2n+l

En a¡ (-1)"2t -7—TTiLi + (io)1/2J+ (10

Table 2

n Estimated En Actual E„

5 -5.714 (-2) -5.7S7 (-2)
6 2.968 (-2) 2.891 (-2)
7 -1.542 (-2) -1.537 (-2)
8 8.011 (-3) 7.904 (-3)
9 -4.161 (-3) -4.134 (-3)

10 2.162 (-3) 2.143 (-3)
11 -1.123 (-3) -1.116 (-3)
12 5.834 (-4) 5.794 (-4)
16 4.249 (-5) 4.227 (-5)
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The estimated error is compared in Table 2 with the actual error.

To estimate (9) for k ^ 2, on performing one differentiation, it can be put in

the form

(12) Enif) =* 2r(2n + l)iAk/ik - iy)Yk-2\zo) ,

where we have put

(13) Siz) = ~~2        .i/2/    :   71      lNi/2N2n+i •
(z   - 1)     (z + (z   - 1)     )

Substituting for gf(*_2)(z) from [7, p. 278], we find when Re z0 > 1 and subject to

the condition that |z0/(zo2 - l)1'2 - 1| < 2

(u) E(f)_2jr__^_(-!)*(> +fc- 1)1_
{    ' nU) ~ (2n)! ik - 1)! {z2 - l)^%0 + {z2 - i/*)**1 '

and in case Re z0 < — 1, the estimate (14) is to be multiplied by —1.

For |Re z0\ < 1, again substituting for </(t_2)(z0) from [7, p. 279], we obtain

(15)

wff\      9/9   j.i^      A*       (-l)"eT("+l/2)iT(2n + fc- 1)!
Enif) =* 2*0 + 1) -7¡—Y)]-,2 _ x)ik-x)/2-

SS   p-(2n+l) ( Zp \

XPk~2   V(2o2_iW'
^0¿ -1)1

where the upper or the lower sign is taken according as Im z0 ^ 0, and í>¡r_(2"+1) is

the Legendre function of the first kind.

3.3. Function with Singularity on the Real Axis. First, we consider the case of a

function having a branch point on the real axis.

Assume that /(z) = (c — z)*giz), (c > 1) where (p is nonintegral and giz) is

regular at z = c. To estimate the contour integral in (6), we choose the contour as

in Section 3.2 except that the cross-cut now encloses the part of the real axis be-

tween the small circle, centered at z = c, and the ellipse. We assume again that

the integral in (6) along ep tends to zero as p —-> =° ; and <p > — 1 so that the in-

tegral around the small circle tends to zero. In the limit, therefore, the only con-

tributions to the contour integral in (6) come from the line segments of the cross-

cut, which combine to give

/;-(16) £„(/)--2 sin (»*) Urn J ' "     ,        .
«-» J c   (x +  ÍX    —  1)      )

The integral in (16) can be estimated as in [7, p. 282]. Assuming that giz) is such

that, for large n, the main contribution to the integral comes from values close to

z = c, we obtain the estimate

(n,  em = -2 s,„ W)„ - !,<"■>'■ {2n + YYY:Y-rr^ ■

In case/(z) has a branch point at z = — c (c > 1), the estimate (20) holds with

the sign changed.

The above analysis can be used to obtain estimates of error for a function
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regular everywhere except at the end-points of the interval of integration. Let

/(z) = (1 — z)*giz). Since/(z) has to be bounded at z = 1, we must have <j> > 0.

Under similar assumptions as above, we obtain in this case the estimate

(18) Enif)^-\r"KZ'£xV T(2* + 2).
2W sin jir<p)gjl)

(2n + l)2

For /(z) with only singularity of the above type at z =  —1, the estimate (21)

holds with the sign changed.

As an illustration, consider the function (1 -f- x)112, for which (21) gives the

error estimate

(19) En^,    2V'\Z.
(2n + l)3

The estimated and the actual errors in the Gauss quadrature formula for the func-

tion (1 + x)1'2 are compared in Table 3.

Table 3

Estimated En Actual E„

5 2.125 (-3) 1.782 (-3)
6 1.287 (-3) 1.074 (-3)
7 8.381 (-4) 6.970 (-4)
8 5.757 (-4) 4.778 (-4)
9 4.066 (-4) 3.417 (-4)

10 3.054 (-4) 2.528 (-4)
11 2.325 (-4) 1.923 (-4)
12 1.810 (-4) 1.496 (-4)
16 6.906 (-5) 6.495 (-5)

Next, error estimates for a function having a logarithmic singularity on the real

axis can also be obtained by the above method. Let/(z) = giz) log (c — z) (c > 1),

and let/(z) and giz) satisfy the same conditions as above. Since the integral around

the small circle tends to zero as the radius of the circle tends to zero, the contribu-

tions from the cross-cut in this case combine to give

(20) Enif) =* -to- lim /' (g2{x)d*/2.2n+x ■
a^oo  ■> c    (X +   ÍX    —   1)       )

Calculating the integral as above, we obtain the estimate

(ou vm~ 27rg(c)(c2-l)1/2
(21) ¿»(/) — - zr——r——7i—,.1/2,2«+! •

(2ra + l)(c + (c   - 1)    )

In case c lies on the negative real axis (c < —1), the estimate (21) holds with the

sign changed. As an example, consider/(x) = log (1.1 + x) for which (21) gives

the error estimate

(22) E_^J0.21Y/2_

{    > "_(2n+l)(l.l + (0.21)l/2)2n+1-
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Table 4 gives a comparison of the estimated with the actual error for this function.

Table 4

n Estimated En               Actual En

5 1.991 (-3) 2.212 (-3)
6 6.938 (-4) 7.591 (-4)
7 2.476 (-4) 2.678 (-4)
8 8.998 (-5) 9.647 (-5)
9 3.316 (-5) 3.529 (-5)

10 1.235 (-5) 1.307 (-5)
11 4.646 (-6) 4.893 (-6)
12 1.760 (-6) 1.846 (-6)
16 3.836 (-8)               3.977 (-8)

4. Extension to the Gauss-Jacobi Quadratures. Finally, we indicate that the

above methods can be used to obtain asymptotic error estimates for the Gauss-

Jacobi quadratures. The Gauss-Jacobi quadrature formula

(23) f   (1  - X)°(l + X)ßfix)dx =   £ XkfiXk) + Enif)

has been described in Barrett [3], and an asymptotic formula for the error is given

in the form

(24) Enif) - -* ¡o iz - lYiz + 1)' {z + (gl _/(ffl)(2B+B+g+1) -

Estimates for Enif) can now be obtained from (24).

5. Conclusion. In this paper we have obtained estimates for Gaussian quadrature

errors for large n. The form of the estimate depends upon the nature of the in-

tegrand /(z). The analysis also brings out the effect of the nature of/(z) on the rate

of convergence of the Gaussian quadrature. For instance, Eq. (19) indicates that

Gaussian integration can be relatively slow in convergence. Even entire functions

can behave quite wildly and the behaviour of the function in the neighbourhood

of saddle points may be quite inadequate as an estimate of the function over a

domain of the complex plane.
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