The Use of the Hypercircle Inequality
in Deriving a Class of Numerical Approximation
Rules for Analytic Functions

By Richard A. Valentin

1. Introduction. The relation of the hypercircle inequality to a large class of
numerical approximation problems has been demonstrated by Golomb and Wein-
berger [1]. The applications considered in the present paper, while closely related
to those of [1], concern a particular space of analytic functions and are similar in
many respects to the results of Davis [2], [3] on errors of numerical approximation.
Consideration of the functions analytic in |z] < R and continuous on |z| = R yields
a Hilbert space having as its reproducing kernel an elementary form of the Szego
kernel function. For approximation in terms of a given set of point functionals, the
simplicity of this kernel yields equations defining the various terms of the hyper-
circle approximation which may be solved in closed form.

In Section 2 we review the hypercircle inequality and the various equations
relevant to its use in constructing approximation rules. These results are specialized
in the following section to a particular space of analytic functions, while Section 4
contains examples to illustrate their use in specific cases. Presented as examples are
an elementary interpolation rule and an integration formula for complex functions
closely analogous to the 5-point rule of Birkhoff and Young.

2. The Hypercircle Inequality and Related Results. We begin by listing certain
definitions and results relating to the theory of a complex Hilbert space 3C. The
theorems included are well known and will be stated without proof.*

DEeFiNITION 2.1. Let 24, - - -, z, be n independent elements of 3¢ and ¢1, - - -, ¢
be n given constants. The set y € 3C such that (y, z;) = ¢, ¢ =1, - - -, n is called
a hyperplane of codimension n and shall be denoted by P...

DerFiNITION 2.2. The portion of 3¢ common to P, and to the ball [|y]| = ris
called a hypercircle C,.

THEOREM 2.1. P, may be represented in terms of the orthonormal set {x*} derived
by the Gram-Schmidt process from {x.} as

(y,x,*) = ay 1= 17 e, M,
where
a = alg@)™”
(@, z) -+ (Ty @)
@.1) ; ; /
a p——g . DY .. .‘1 2
A = (931, xk—l) . (xk’ xk—l) [g(xly ) 271:--].)g(xl, y xk)]

) Tk

Received November 9, 1966.
* For relevant proofs see Davis [4], Chapter IX.
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and g(x1, - - -, k) 18 the Gram matriz of order k.

THEOREM 2.2. The element of P, closest to the origin (i.e., of minimum norm) s
w = i1 ax* where the constants a; are as in (2.1).

TuroreM 2.3. If L is a bounded linear functional over 3C, then there exists a unique
element b € 3C such that Lr = (x, h), * & 3C. The element h is called the representer
of L.

TrEOREM 2.4 (THE HYPRCIRCLE INEQUALITY). Let w be the element of P, which
s nearest the origin. Then for any x € C, and any bounded linear functional L having
representer h

22) Lo — Lol 5 6° =l (0 - 5 izaet).

In the class of approximations to be considered, it will be assumed that we are
given a bounded linear functional L over 3¢, a bound 7 on the norm of some given
z € 3¢ and auxiliary conditions on z defining a hyperplane P,. In particular, we
shall be given data of the form Lz = ¢;, j = 1, -+, n, where L; are the point
functionals associated with a fixed, discrete set of points in the complex plane. That
is

(2.3) Lz = z(z;) .

We wish to express the approximation Lw in terms of a weighted sum of the values
¢; and to obtain explicit expressions for this approximation and for all of the terms
occurring in the error bound implied by (2.2).

We assume 3C is such that it possesses a known reproducing kernel K(z, ).
That is

(2.4) (z(@), Kz, W) =z(w), zE€3X.

If L is a bounded linear functional over 3¢, then the representer A of L is known
to be given by operation on K as

h(w) = L.K(z, W)
and thus

(2.5) Lz = (z,h), TERX.

From (2.5) we may express the given point functional data in the form of a hyper-
plane P,, where z;, the representer of L;, is

(2:6) z;(w) = K(z;, @) .

Assume that we have applied the Gram-Schmidt process to the set {z:} ob-
tained as in (2.6) and that the elements of the resulting orthonormal set {z.*}
have been written in the form

T
x,-*=Zb,<k:c;,, i=1,~~~,n,
k=1

where the b, are known constants. Considering P, expressed in the form (z, z*) =
a;, 1 =1, -+, n, we see that this is equivalent to
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a; = (x, Z bikxk> = Z Ekck
=1 k=1

and that we may write the estimate Lw as a weighted sum of the known hyperplane
data ¢; by noting

Lw = Z a,,ka* = Z ak(xk*, h)
Jem=1 k=1

- 3 (S tuer )

k=1 \l=1

= Z QkCr
k=1
where
2.7) o = lz; bu(z* h) .
If we now consider the minimum problem
min h — Z B,,xk
Bk k=1
and its solution
(2.8) ”h - 2 (@M,

we note that
I; (hy 2e¥)ze* = 2, (; bu(h, x;*))xk ,

-1

and hence that 8; = @. However, the Fourier solution (2.8) is equivalent to solving
the normal equations

Z}ﬂi(xi,xj)= (h,ij), j=1’...’n’

and hence we shall have determined the weight coefficients a; by inverting the
Gram matrix [(z;, 2;)]5,j=1. Denoting the required inverse matrix by [v,]%,;-1, we
have

(2.9) ag = IZ_: Yu(zs, h) .

Having (2.9), the terms of the error bound implied by the hypercircle inequality
are readily computed, since

n n

,; |Le*|* = k; (z4*, h) (R, z:*)
(2.10) = L[k}_;: (h, xk*)xk*] = L[k;‘ mk]

= E ak(xky h) )
k=1
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while the minimum distance term ||w]|| is just given by [[w||? = D 51 &%

From the above results we see that the problem of obtaining the estimate and
bound implied by the hypercircle inequality may be summarized by stating that
one has obtained a complete solution if an inverse is known for the Gram matrix
formed by the representers x; and one can compute the constants a; defined by (2.1).

3. The Hilbert Space H2(R). We shall consider the space of functions analytic
in 2] < R and continuous on [z| = R. It is known that each function of this class,
which we shall denote by H2(R), possesses the representation**

@3.1) fle) = 2% lolmg (J!e_{(iv_)z_w—) Ao

where ds,, denotes the element of arclength along |w| = R. Equivalently, H*(R) is
a Hilbert space where the appropriate inner product and norm definitions are

(fi9) = . fadsw, f,g EH'(R),
(3.2) wi=Fk

Ifl =G N"*<w, fFEHR).

From (3.2) we see that the representation (3.1) is equivalent to stating that
H?(R) has as its reproducing kernel

(3.3) K(z,w) = 2r)'R(R* — zw)".
If one now considers a given set of point functionals

L1f=f(zi)) j=1.-4n, feHg(R)y
then from (3.3) and (2.6), the corresponding set of representers are

(3.4) z;w) = @r)'R(R® — z;w)™*
and, hence,
(3.5) (zs,7;) = Cr)'R(R® — 2:2) ™.

From the form of the inner product (3.5) it is evident that an explicit solution
of the normal equations and evaluation of the constants a; of (2.1) depends on the
ability to compute determinants having the form of Cauchy’s double alternant

D, = det [(ps + ¢;) " Tijm1 -
However, it is known [4, p. 268] that

(3.6) D, = ,I:J,: (@i — pi)(gs — qJ')I: fIl (@: + Qj)]- )

and thus the required evaluations are a matter of applying (3.6) and performing
some elementary algebra. Omitting the details, we note the following results:

For the coefficients defined in (2.1)

*x OQur definition of H¥R) is quite restrictive in the sense that all of the results stated in
this section hold for a much wider class of functions; however, for the intended applications, the
above will be sufficient.
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@ = 2rR™)HR - 22) %
k—1 -1
3.7) a = (2eR™)R™R" ~ zkéo‘”e'”‘[ﬂ (2 — 20]
. I=1

k k—1
Z (_l)k-Hé.i[I—_I (R‘2 - 2‘j""l):l (k = 27 37 ] 'Il) ’

where

k—1 = = 2 = -1
i - R - Zkzl)
3.8 ek = {(zk 2) |:( ] }
( ) II=II !zk - Zz: ]R2 - Ekzl[
The factor e+ may be neglected, since in the applications we are only interested in

]ail .
For the elements of the inverse matrix needed in (2.9) we obtain

n

v = (27I'R_1)R_(2n—2)[§ (R? _ ijl) II (R2 _ _z.kzi)]

k=1; (k#J)

I: ﬁ (2: — 1) I"I (21—21:)]_1-

l=1; (I#7) k=1: (k=j)

(3.9)

One may quite easily derive expressions for the orthonormal set {x;*} and the
coeflicients b,; relating {z.*} to {z.}; however, they are not needed in the applica-
tions and hence will not be included.

4. Applications. Consider an elementary interpolation problem where we are
given f(z1) = ¢i1, f(22) = c2 and we wish to approximate f(2o). In this case Lf = f(20)
and the representer h of L is simply

h(w) = 2r)'R(R’ — zew) ™!
while
”h“2 = (27")_1_R(R2 — Zo20) 7"
Also, one has
(hyxi) = (@i, ) = 2m) 'R(R* — z20)™", k=1,2.
Applying (3.9) and (2.9) yields

Lw = ajc; + asze,

where
o = (R® — 2:2)) (R® — 221) (20— 22)
1 = N
1) (R2 — Z120) (R2 — 2220) (21 — 22)
w = (R2 — 2122)(R2 — Zo22) (21 — 20)

(R2 — Z120) (R2 — Z220) (2, — 22) ’
From (2.10) and the above values of a1, s, and ||h[|? one obtains
R R4120 — 21]2|20 - Z2l2

2
4.2 R||* — Lz*|* = == ,
( ) “ H ’; I o 2m |R2 - 5120|2|R2 - 2220|2(R2 — 20Z0)




THE USE OF THE HYPERCIRCLE INEQUALITY 115

while for the computation of ||w||? = [ai]? + |as|?, Eq. (3.7) yields

a = (QWR"I)I/‘Z(R2 - 2121)1/201
(4.3) as = @rR™HYA(R? — 27) R (22 — 21) "
X [—Cl(R2 —_ 2121) + Cz(R2 — 2221)] .

The weights (4.1) are similar in form to the Lagrange interpolation coefficients, and
in the limit as R — « they reduce to these coefficients. In considering n-point in-
terpolation formulas, one may show that the weights are given by the obvious gen-
eralization of (4.1) and, similarly, that (4.2), the portion of the error bound inde-
pendent of the particular function being considered, generalizes in the obvious way.
The expression for ||w||?, however, is not conveniently expressible in the general
case.

As a second example we shall consider an approximation analogous to a special
case of the 5-point integration rule

(4.4) / J@)de 215 [24fs + 401 + o) = (o + 9]

developed by Birkhoff and Young [5]. In (4.4), fi = f(zx) and 2, = 20 + (2)¥ A,
k=1, -.-, 4, where f is analytic in |z — 20| < h1, h1 > |h], with h a known com-
plex constant. If one takes 2o = 0, h = {7, then (4.4) becomes

@5) [ 1@ 21 2450) + 4176) + F(=D] - D) + F-D]}
We shall consider the hypercircle result equivalent to (4.5) by taking

=/ jea, jer®, R>1,
with Lyf = f(zx) = e, k=1, - -+, 5, where

21 = —25 =N\, 29 = —2z4 =1\, 23=0,

and X is an as yet unspecified real constant. This yields the coefficient matrix

G, G Gs G. G4
G, Gy Gs G4 G,
R |Gy Gs Gs Gs Gs
27| G, Gy G G, G|’
G G G G G
where G1 = (R? — M), G2 = (R2 4+ \)™Y, Gs = B2, Gy = (R? + N2\,
Application of the results of the previous section yields the inverse

71 Y2 Y3 Y2 Y4

(21r (R® — % Y2 71 v3 Y4 Y2
_R— T8 |3 Y3 s Y3 Y3 |,

16M'E Y2 Y4 Y3 Y1 Y2

Y4 Ye Y3 Y2 "1

where
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= RANRHFN), 12= R =AHR+ ), vs= —4R,
vo= (R'"+ AR =), s =16R™R" —2\)7",
while for the remaining inner products we have
(hy z1) = (b, z5) = —(2r) %R tan™' A\R™?)
(h, z2) = (h, zs) = — (27) %R tanh™ (AR™?)
(h, z3) = —(2m)"MR(R™).
Thus one finds
Lw = ay[f(A) + f(=N)] + e[ f(GN) + f(—iN)] + «:f(0) ,
where
a1 = i(R® — N)@NR) (R 4+ \*) tan™! (A\R™?)
+ (R* — A" tanh™ (\R™?) — 2AR"],
(4.6) a2 = i(R® — A @\RHT(R* — A" tan™' (\R™?)
+ (R* 4 \*) tanh™ (\R™?) — 2)R],
as = —i(R* — AR\ *[tan™ (\R™®) + tanh™ (\R™")
—2ARY(R® — 2\¥)7].
The constants determining ||w]|| are
a = (21rR—1)1/2(R2 _ )‘2)1/201 ,
a = @R R = M) [-AR(L — 0] [~ (R = M)e + (B® — iN)ea]
as = (2xR7)'RENRY
X (R = N)(R® + iADer — (R — o) (R? — M)ea + R'cq]
a = (21rR_1)1/2(R2 _ )\2)1/2[2)\3133(1 + i)]_!
X R [—(R* = \)(R® + \D)ey + (R* — ) (R — W)e,
—Res + (R* + %) (R* + N\ed,
a5 = (21rR_l)1/2(R2 _ )\2)1/2[4)\‘134]_1
X R[(R* = \HR + Ney — R = MR — iADes + R
— R = A\YR* + N)ea+ R + AR + NDes]

while that portion of the error bound independent of the particular function op-
erated upon is

1] ©
o = ||h|* - ; |Lz*|® = 2(xR)™* ,Z; 2k + 1)R*
— {2eRN)H(R® — \Y[R*(tan™ (\R™?) + tanh™' (\R7%))?
+ A(tan™ (AR — tanh™ (A\R7?))’]

+ 2R (At — 2R(m\) TN (R® — A¥)[tan™* (A\R7?) 4+ tanh™' (\R7?)]} .
In the limit as R — «, the weights (4.6) reduce to
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ar — 3300713 — 5\,
as —3(300) '3 + 527,
az— —2(5AH7I(1 - 5\,

which for the case A = 1 are identical with those of the Birkhoff-Young rule (4.5).
The constant N has been included to indicate the possibility of producing an op-
timum choice of points zx. For example, one may form ds/d\ = 0 and solve the re-
sulting transcendental equation to obtain A = A(R) such that ¢ is a minimum for
each given R. We shall not carry out the details of such a computation, but merely
note that expanding the resulting transcendental equation in powers of R—! yields
as the leading term (4/63)A\?R—2(7\* — 3) and, hence, for the integration of func-
tions having a large radius of analyticity, a near optimal choice of N\ would be
N = (3/7)14,
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