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1. Introduction. The relation of the hypercircle inequality to a large class of

numerical approximation problems has been demonstrated by Golomb and Wein-

berger [1]. The applications considered in the present paper, while closely related

to those of [1], concern a particular space of analytic functions and are similar in

many respects to the results of Davis [2], [3] on errors of numerical approximation.

Consideration of the functions analytic in \z\ < R and continuous on \z\ = R yields

a Hubert space having as its reproducing kernel an elementary form of the Szegö

kernel function. For approximation in terms of a given set of point functional, the

simplicity of this kernel yields equations defining the various terms of the hyper-

circle approximation which may be solved in closed form.

In Section 2 we review the hypercircle inequality and the various equations

relevant to its use in constructing approximation rules. These results are specialized

in the following section to a particular space of analytic functions, while Section 4

contains examples to illustrate their use in specific cases. Presented as examples are

an elementary interpolation rule and an integration formula for complex functions

closely analogous to the 5-point rule of Birkhoff and Young.

2. The Hypercircle Inequality and Related Results. We begin by listing certain

definitions and results relating to the theory of a complex Hilbert space 3C. The

theorems included are well known and will be stated without proof.*

Definition 2.1. Let xi, • ■ -, xn be n independent elements of 3C and Ci, • • -, c„

be n given constants. The set y £ 3C such that (y, x¡) = c¿, i = 1, • • -, n is called

a hyperplane of codimension n and shall be denoted by P„.

Definition 2.2. The portion of 3C common to Pn and to the ball \\y\\ g r is

called a hypercircle Cr-

Theorem 2.1. Pn may be represented in terms of the orthonormal set {x*\ derived

by the Gram-Schmidt process from ja;,} as

(y, Xi*) = a,-,       i = 1, ••-,«,

where

äi = Ci[g(xi)]~1 2

(2.1)
ak =

(Xi, Xi)    • • •    (xk, Xi)

(x¡, Xk-i)  ■ ■ ■  (xk, Xk-i)

êi        ■ ■ ■        ck

[g(xi, ■ ■■,xk-i)g(xi, ■ --,x4)]
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* For relevant proofs see Davis [4], Chapter IX.
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and g(xi, ■ • •, xk) is the Gram matrix of order k.

Theorem 2.2. The element of Pn closest to the origin (i.e., of minimum norm) is

w =  / "_t aiX* where the constants at are as in (2.1).

Theorem 2.3. If L is a bounded linear functional over 3C, then there exists a unique

element h £ 3C such that Lx = (x, h), £ £ 3C. The element h is called the représenter

ofL.
Theorem 2.4 (The Hypercircle Inequality). Let w be the element of Pn which

is nearest the origin. Then for any x £ Cr and any bounded linear functional L having

représenter h

(2.2) \Lx -Lw\2^ Or2 - IM|2)(||Ä||2 - Ê \Lxk*\*).

In the class of approximations to be considered, it will be assumed that we are

given a bounded linear functional L over 3C, a bound r on the norm of some given

x £ 3C and auxiliary conditions on x defining a hyperplane Pn. In particular, we

shall be given data of the form Ljx — c¡, j = 1, • • -, n, where Lj are the point

functionals associated with a fixed, discrete set of points in the complex plane. That

is

(2.3) Ljx = xOz,) .

We wish to express the approximation Lw in terms of a weighted sum of the values

Cj and to obtain explicit expressions for this approximation and for all of the terms

occurring in the error bound implied by (2.2).

We assume X is such that it possesses a known reproducing kernel K(z, W).

That is

(2.4) (x(z), K(z, w)) = x(w) ,       x £ 3C .

If L is a bounded linear functional over 3C, then the représenter h of L is known

to be given by operation on K as

h(w) = LzK(z, w)

and thus

(2.5) Lx = (x,h) ,       x £ 3C.

From (2.5) we may express the given point functional data in the form of a hyper-

plane Pn, where x¡, the représenter of Lj, is

(2.6) x,(w) = K(zj, W) .

Assume that we have applied the Gram-Schmidt process to the set {xt} ob-

tained as in (2.6) and that the elements of the resulting orthonormal set {x*}

have been written in the form

i

Xi* = X bikXk,       i — 1, ■ • -, n ,
*=i

where the bik are known constants. Considering Pn expressed in the form (x, x*) =

a¿,  i = 1, • • -, n, we see that this is equivalent to
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o¡ = ( x, 22 bikXk ) = 22 bi
\       k-l / k-l

kCk

and that we may write the estimate Lw as a weighted sum of the known hyperplane

data d by noting

tí n

Lw = 22 OkLxk* = 22 OkOx*, h)
k—l k-l

= Íl('tbklcl)(xk*,h)
k—l   \l=l /

=   22 akCk ,
k—l

where

(2.7) a* = ^btkOxi*, h)
l-k

If we now consider the minimum problem

n

min  h — 22 ß&
ßk *-i

and its solution

(2.8)

we note that

n

h — 22 (A, zi.*)z**
fc-i

n n     /   n \

23 (A, z**)z** = 22 ( 22 &**(A, xi*) )xk,
k—l k—l   \l—k /

and hence that ßk = 5*. However, the Fourier solution (2.8) is equivalent to solving

the normal equations
n

22 ßiixi, Xj) = Qi, Xj) ,      j = 1, ■ • -, n ,
<-i

and hence we shall have determined the weight coefficients a* by inverting the

Gram matrix [(a;,-, z/)]",/-i. Denoting the required inverse matrix by [yn]ni,i-i, we

have

(2.9) at = E7it(îi, h) .

Having (2.9), the terms of the error bound implied by the hypercircle inequality

are readily computed, since

(2.10)

~Z\Lxk*\2 = J2ixk*,h)ih,xk*)
k—l k—l

= ^1 22 (A, x**)-r**J = L  22 ®kXk\

22 ctkixk, h) ,
k-l
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while the minimum distance term | |tc| | is just given by | |t<>| |2 = 22*-i la*l2-

From the above results we see that the problem of obtaining the estimate and

bound implied by the hypercircle inequality may be summarized by stating that

one has obtained a complete solution if an inverse is known for the Gram matrix

formed by the representers xk and one can compute the constants ak denned by (2.1).

3. The Hubert Space H2(R). We shall consider the space of functions analytic

in \z\ < R and continuous on \z\ = R. It is known that each function of this class,

which we shall denote by H2(R), possesses the representation**

(3-D /«-s/i   TiÄrt*"¿•tj\»\-b (R  — zW)

where dsw denotes the element of arclength along \w\ = R. Equivalently, H2(R) is

a Hilbert space where the appropriate inner product and norm definitions are

(/.?) = /,  m*.,    f,geH2(R),

11/11 = (/, ff" <* ,       fEH2iR).
From (3.2) we see that the representation (3.1) is equivalent to stating that

H2iR) has as its reproducing kernel

(3.3) KOz, W) = i2v)~lRiR2 - zW)'1.

If one now considers a given set of point functional

Ld-fbi),      i-1, ...,n,      fEH2iR),

then from (3.3) and (2.6), the corresponding set of representers are

(3.4) Xj(w) = (2v)~1R(Ri - z/w)-1

and, hence,

(3.5) (xí, Xj) = (2v)~1R(R2 - My)-1.

From the form of the inner product (3.5) it is evident that an explicit solution

of the normal equations and evaluation of the constants a< of (2.1) depends on the

ability to compute determinants having the form of Cauchy's double alternant

Dn = det [(pi + qjAih-i.

However, it is known [4, p. 268] that

(3.6) Dn = ft (P< - Py)(«i - qj)\  ft  iPi + qj)      ,
i>3 l-ij-l J

and thus the required evaluations are a matter of applying (3.6) and performing

some elementary algebra. Omitting the details, we note the following results :

For the coefficients defined in (2.1)

** Our definition of HH.B) is quite restrictive in the sense that all of the results stated in

this section hold for a much wider class of functions; however, for the intended applications, the

above will be sufficient.
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- /o    D-l\l/2/D2 -  \l/2-
ai =  (ZvR    )     (R   — ZiZi)    Ci

(3.7)

where

(3.8)

ak i2vR->)l,2R-k+\R2 - ZkZkf'vAu %

22(-DA+Jc. lTiR2 ZjZl)j

Zl)

(* = 2,3, ••■,!»),

,*** TT / (g* - go r (^ - ^«) i_i\
il I I«* - «i|   L \R2 - zkZl\ J    1 ■

The factor e'** may be neglected, since in the applications we are only interested in

\Oi\.

For the elements of the inverse matrix needed in (2.9) we obtain

yti = i2vR~1)R

(3.9)

r "(2n-2)     TT

Li=l
(ä2 - m,) n (ß2

k—!;(**/)
ZkZi)\

■ \    ft     izi-zi)      ft      (2,-2*)]  \

One may quite easily derive expressions for the orthonormal set [x*\ and the

coefficients &,-,- relating {x¿*} to {xi} ; however, they are not needed in the applica-

tions and hence will not be included.

4. Applications. Consider an elementary interpolation problem where we are

given fOzi) = Ci, fOz2) — c2 and we wish to approximate f(z0). In this case Lf = f(z0)

and the représenter h of L is simply

while

Also, one has

h(w) = (2vYlR(R2 - zow)-1

\\h\\2 = (2v)-lR(R2 - zoz,)-1 .

(h, xk) = (xk, h) = (2v)  1R(R2 — zkzo) ' ,

Applying (3.9) and (2.9) yields

Lw = ctiCi + a2C2 ,

where

(R2 — ZiZi) (R2 — z2zi)  (za — z2)
Oil = -

(4.1)

0.2   =

k = 1,2.

(R2 — ZiZo) iR2 — Z2Zo) (zi — z2)

jR2 — ziz2)jR2 — z2z2) jzi — zo)

iR2 — z¡z0)(R2 — z2zo)  izi — z2)

From (2.10) and the above values of on, a2, and | \h\ \2 one obtains

(4.2) \h\\2 - 22 \Lxk*\2 = I
R R  \Zg — Zi\   \Zq — Z2\

2* \R2 - ZiZ0\2\R2 - -z2z0\2iR2 - zœo) '
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while for the computation of \\w\\2 = \ai\2 + \a2\2, Eq. (3.7) yields

(4.3)

ai = (2vR~Y2(R2

a2 = (27rÄ-1)l/2(ß2

_  \l/2
ZlZl)     Ci

z2z2)    R   (z2 — zi)

X [-Ci(R2 - zizi) + C2(R2 - z2zi)].

The weights (4.1) are similar in form to the Lagrange interpolation coefficients, and

in the limit as R —> » they reduce to these coefficients. In considering n-point in-

terpolation formulas, one may show that the weights are given by the obvious gen-

eralization of (4.1) and, similarly, that (4.2), the portion of the error bound inde-

pendent of the particular function being considered, generalizes in the obvious way.

The expression for \\w\\2, however, is not conveniently expressible in the general

case.

As a second example we shall consider an approximation analogous to a special

case of the 5-point integration rule

(4.4) /" fiz)dz s -| [24/, + Aifi + /,) - (/- + f*)]

developed by Birkhoff and Young [5]. In (4.4), fk = f(zk) and zk = za + (i)k~xh,

k — 1, • • -, 4, where/is analytic in \z — z0\ ^ hi, hi > |A|, with h a known com-

plex constant. If one takes z0 = 0,  h = i, then (4.4) becomes

(4.5)      /_'_ f(z)dz <* ¿ {24/(0) + A[f(i) + /(-OÍ - [/(I) + /(-!)]! •

We shall consider the hypercircle result equivalent to (4.5) by taking

Lf=f   fiz)dz,      f(=H2iR),       R>1,

•, 5, where

Z2 =  —Z4 = i\ ,

with Lkf = f(zk) = ck,  k = 1,

Zl =  —Zb = X , z2 = —Zi = iK , Zz = 0 ,

and X is an as yet unspecified real constant. This yields the coefficient matrix

K
2v

Gi
G2

G3

G2

L(?4

Gi
G3

G<
G2

Gz

G3

G3

G3

G3

G2

Gi
Oi
Gi
G2

r;4

Oh
G3

G2

Gi.

where Gi = (R2 - X2)-1,  G2 = (R2 + i\*)-\ G3 = R~2, G4 = (R2 + X2)-'.

Application of the results of the previous section yields the inverse

2v \ (R* - X8)

■ R / 16X8Ä4

Ti

72

73

72

L74

72

7i

73

74

72

73

73

75

73

73

72

74

73

7i

72

74

72

73

72

7i-J

where
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7i = (ß4 + X4) (ß2 + X2),       72 = (Ä4 - X4) (ß2 + ¿X2) ,        73 = -4Ä6,

74 = (ß4 + X4) (ß2 - X2) ,       75 = 16ß14(ß8 - X8)-1,

while for the remaining inner products we have

(h, xi) = (A, x6) = - 02v)~\R tan-1 (Xß~2)

(h, x2) = (h, Xi) = - (2v)-\R tanh"1 (Xß~2)

(h,xs)-(2v)~1iR(\R~2) .

Thus one finds

Lw = ai[/(X) + /(-X)] + a2[f(i\) + f(-ik)] + 0.3/(0) ,

where

on = i(Rs - X8)(4X9ie2)~1[(Ä4 + X4) tan"1 (XiT2)

+ (ß4 - X4) tanh-1 (Xß-2) - 2Xß2],

(4.6)    «2 - i(R* - X8) (4X9ß2)_1[(ß4 - X4) tan-1 (Xß-2)

+ (ß4 + X4) tanh-1 (XiT2) - 2Xß2] ,

a3-i(Rs - X8)Ä2X_9[tan-1 (Xß-2) + tanh-1 (Xß~2)

-2Xß8(ß8 - X8)-1] .

The constants determining ||«j|J are

d = (2vRTx)ll2(R2 - X2)l/2Cl,

02 = i2vR-1)l/2iRi - X2)l/2[-Xß(l - i)]- \-(R2 - A)ci + (R2 - i\2)c2] ,

a, = (27rß-1)l/2Ä[iX2Ä2r1

X [(ß2 - X2)(ß2 + ¿X2)c - (ß2 - Í\2)(R2 - X2)c2 + ß4c3],

ai - (2vR-y2(R* - X2)l/2[2X3ß'(l + i)]'1

X ß2[-(ß2 - X2)(ß2 + ¿X2)Cl + (ß2 - ¿X2)(ß2 - X2)C2

-ß4c3 + (ß2 + ¿X2) (ß2 + X2)d] ,

a6 = (2vR-1)l/\Ri - xYWRT1

X ß2[(ß2 - X2)(ß4 + X4)ci - (ß4 - X4)(ß2 - ¿X2)C2 + ß6c3

- (ß4 - X4)(ß2 + i\2)a + (ß4 + X4)(ß2 + X2)c6] ,

while that portion of the error bound independent of the particular function op-

erated upon is

A = \\h\\2 - ¿ |Lx**|2 = 2(vR)~l ¿ (2* + l)~2ß-4*
k-l k—0

- {(2vRA")~1(Rs - X^ß^tan"1 (Xß-2) + tanh"1 (Xß~2))2

+ X4(tan_1 (Xß-2) - tanh-1 (Xß-2))2]

+ 2ß7(7rX8r1 - 2ß(xX9)_1(ß8 - x'Mtan-1 (Xß~2) + tanh-1 (Xß-2)]) .

In the limit asß-> », the weights (4.6) reduce to
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ai-^¿(30X4)_1(3 -5X2) ,

a2-^i(30\i)-1(S + 5\2) ,

a3-^ -2i(5\i)~1(l -5X2) ,

which for the case X = 1 are identical with those of the Birkhoff-Young rule (4.5).

The constant X has been included to indicate the possibility of producing an op-

timum choice of points z*. For example, one may form da/d\ = 0 and solve the re-

sulting transcendental equation to obtain X = X(ß) such that a- is a minimum for

each given ß. We shall not carry out the details of such a computation, but merely

note that expanding the resulting transcendental equation in powers of ß-1 yields

as the leading term (4/63)X12ß~20(7X4 — 3) and, hence, for the integration of func-

tions having a large radius of analyticity, a near optimal choice of X would be
X = (3/7)lli.
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