TECHNICAL NOTES AND SHORT PAPERS

Proof that Every Integer $\leqq 452,479,659$ is a Sum of Five Numbers of the Form $Q_{x} \equiv\left(x^{3}+5 x\right) / 6, x \geqq 0$

By Herbert E. Salzer and Norman Levine

Watson [1] proved that every positive integer is a sum of eight tetrahedral numbers $T_{x} \equiv\left(x^{3}-x\right) / 6, x \geqq 1$, as well as of eight numbers $Q_{x} \equiv T_{x}+x=\left(x^{3}+5 x\right) / 6$, $x \geqq 0$, and states that "a similar result holds" for $R_{x} \equiv T_{x}-x=\left(x^{3}-7 x\right) / 6$, $x=0$ or $x \geqq 3$. He also points out that T_{x}, Q_{x} and R_{x} are the only expressions of the form $T_{x}+D x, D$ integral, which can take the value 1 and permit a universal result for summands $\geqq 0$. In view of the results obtained by the authors in [2], which gave overwhelming evidence that every integer required only five values of T_{x}, it is interesting to see whether a similar conjecture is justified for Q_{x} and R_{x}. There is an immediate lack of comparative interest in R_{x} whose nonnegative values are $0,1,6,15,29,49,76,111, \ldots$ because six such addends are needed for the following values of $n \leqq 100: 11,26,40,54,69$. The remaining form of possible interest, namely Q_{x}, whose values run $0,1,3,7,14,25,41,63,92,129,175, \ldots$ does not appear offhand as promising or "nice looking" as T_{x} to allow every integer to be a sum of five, even though Watson [1] verified that for $n \leqq 210$. However, it was quite a surprise to find that, defining an "exceptional number" as a number requiring more than four summands, when the test was made up to $1,000,000$, for Q_{x} there were vastly fewer exceptional numbers than for T_{x}. Thus, whereas in [1] the authors found as many as 241 exceptional numbers for T_{x}, the largest being as high as 343,867 , in the present investigation only 21 exceptional numbers were found for Q_{x}, the largest being only 28415.

Following are the only numbers $\leqq 1,000,000$ that are not the sum of four numbers Q_{x} :

Table I
Exceptional numbers $\leqq 1,000,000$

37	372	2861	5898	28415
115	541	3340	6522	
122	1805	4148	6529	
166	2532	4980	7557	
334	2773	5157	10915	

From Table I it is immediately apparent that every integer $\leqq 1,000,000$ is a sum of five numbers Q_{x}. The size of the gap between 28415 and $1,000,000$ enables us to find a number N much larger than $1,000,000$ for which every $n \leqq N$ is a \sum_{5}, or sum of five numbers Q_{x}. The basic principle in finding such an N is not new, having been employed by both Watson [1] and the authors [2] in a sort of loose manner. Apparently the sharpest form of that principle is formulated in the lemma below, which is also applicable to T_{x} and a wide class of similar functions.

Lemma. Let E be the largest exceptional number found in a test extending through $L>E$. Let x be the largest x for which $\Delta Q_{x} \equiv Q_{x+1}-Q_{x}<I=L-E$. Suppose that from the tabulation of exceptional numbers it is apparent that every $n \leqq E$ is a \sum_{5}. Then any $n \leqq N \equiv Q_{x+1}+L$ is a \sum_{5}.

Proof. For $n \leqq L$, the result is in the hypothesis. If $L<n<Q_{x+1},{ }^{*} n$ - some $Q_{i}, i \leqq x-1$, will come closest above L, so that $n-Q_{i+1} \leqq L$. Since $Q_{i+1}-Q_{i}$ $\leqq Q_{x}-Q_{x-1}<Q_{x+1}-Q_{x}<I, n-Q_{i+1}$ falls within the interval (E, L), so that n is a \sum_{5}. For $n=Q_{x+1}$, or $n=N \equiv Q_{x+1}+L$, the result is immediate, since L is the largest tested \sum_{4}. For $Q_{x+1}<n<N \equiv Q_{x+1}+L$, since $n-Q_{x+1}<L$, if $n>L, n-$ some $Q_{i}, i \leqq x$, comes closest above L, so that $n-Q_{i+1} \leqq L$, and from $Q_{i+1}-Q_{i} \leqq Q_{x+1}-Q_{x}<I, n-Q_{i+1}$ falls within the interval (E, L), so that n is a \sum_{5}. Q.E.D.

If we try to push the lemma to apply beyond $N \equiv Q_{x+1}+L$, say up to $Q_{x+1}+L+e$, it fails because for some n beyond $Q_{x+1}+L$ the i making $n-Q_{i}$ come closest above L must be $\geqq x+1$, and we have no assurance that $n-Q_{i+1}$ falls within the interval (E, L). The reason is that $Q_{i+1}-Q_{i} \geqq Q_{x+2}-Q_{x+1} \geqq I$, and if the number by which $Q_{x+2}-Q_{x+1}$ exceeds I is greater than the number by which $n-Q_{i}$ exceeds L, then $n-Q_{i+1}<L-I=E$.

Applying this lemma to Q_{x}, where the condition $\Delta Q_{x}<I$ is equivalent to $x^{2}+x+2<2 I$, from Table I, $E=28415, L=1,000,000,2 I=2(L-E)=$ $1,943,170$, and $x=1393$ is the largest x for which $x^{2}+x+2=1,941,844<2 I$. Thus, every $n \leqq N=Q_{1394}+L=451,479,659+1,000,000=452,479,659$ is a \sum_{5}.

We may apply this lemma also to T_{x} for which it was found in [1] that $E=$ 343,867 when the test for exceptional numbers extended as far as $L=1,043,999$. From the tabulation of exceptional numbers in [1] it was apparent that every $n \leqq E$ is a \sum_{5} for T_{x}. The condition $\Delta T_{x}<I$ is equivalent to $x^{2}+x<2 I$. The largest x satisfying $x^{2}+x<2 I=2(L-E)=1,400,264$ is $x=1182(x=1183$ for which $x^{2}+x=1,400,672$ is just slightly too big). Thus, every $n \leqq T_{1183}+L$ $=275,932,384+1,043,999=276,976,383$ is a sum of five tetrahedral numbers. This is a substantial improvement over the $250,000,000$ obtained previously in [1] from a looser use of the main idea in the above lemma instead of its optimally sharpened formulation given above.

Table I was calculated with a program similar to that employed in [1] to find exceptional numbers with respect to T_{x}. The first run, using $1,000,000$ words of memory was done on an IBM 360-75. The print-out was checked by using a different machine, an IBM 360-65, and by varying the code to perform in five groups of 200000 words of memory.

941 Washington Avenue
Brooklyn, New York 11225
14 Kingswood Circle
Old Bethpage, Long Island, New York 11804

1. G. L. Watson, "Sums of eight values of a cubic polynomial," J. London Math. Soc., v. 27, 1952, pp. 217-224. MR 14, 250.
2. H. E. Salzer \& N. Levine, "Table of integers not exceeding 1000000 that are not expressible as the sum of four tetrahedral numbers," $M T A C$, v. 12, 1958, pp. 141-144. MR 20 \#6194.
[^0]
[^0]: * Q_{x+1} may be less than L when I is small. But the result for the case $Q_{x+1}<n<L$ is contained in the hypothesis.

