
A Rational Approximation to the Logarithm

By R. P. Kelisky and T. J. Rivlin

We shall use the r-method of Lanczos to obtain rational approximations to the

logarithm which converge in the entire complex plane slit along the nonpositive real

axis, uniformly in certain closed regions in the slit plane. We also provide error esti-

mates valid in these regions.

1. Suppose z is a complex number, and s(l, z) denotes the closed line segment

joining 1 and z. Let y be a positive real number, y ¿¿ 1. As a polynomial approxima-

tion, of degree n, to log x on s(l, y) we propose p* G Pn, Pn being the set of poly-

nomials with real coefficients of degree at most n, which minimizes

||xp'(x) — X|J =====   max   \xp'(x) — 1\
*e«(l.v)

among all p G Pn which satisfy p(l) = 0. (This procedure is suggested by the

observation that w = log x satisfies xto'(x) — 1=0, to(l) = 0.)

We determine p* as follows. Suppose p(x) = a0 + aix + ■ • • + a„xn, p(l) = 0

and

(1) xp'(x) - 1 = x(x) = b0 + bix +-h bnxn .

Then

(2) 6o = -1 ,

(3) a,- = bj/j,       j = 1, ■ •-,«,

and

n

(4) a0= - E Oj •
.-i

Thus, minimizing \\xp' — 1|| subject to p(l) = 0 is equivalent to minimizing ||«-||

among all i£P„ which satisfy — ir(0) = 1. This, in turn, is equivalent to maximiz-

ing |7r(0) I among all v G Pn which satisfy ||ir|| = 1, in the sense that if vo maximizes

|7r(0)[ subject to ||x|| = 1, then** = — iro/-7ro(0) minimizes ||x|| subject to —ir(0) =

1. For, — v*(0) = 1 and since ||7r0|| = 1, ||ir*|| = l/|ir0(0)|. Now suppose v G Pn

satisfies —ir(0) = 1, then vi = 7r/||ir|| has norm 1 and so |iri(0)| = |ir(0)|/||7r|| =

l/lk|| = |tto(0)| = l/||.r*||, from which we conclude that ¡|tt*|| = ||t||.

Since 0 is exterior to s(l, y), it is known (cf. Rivlin and Shapiro [3, p. 684]) that

the Chebyshev polynomial for s(l, y),

Tn.y(x)   =   Tn((2x  -   (1  + V))/(l   -  V)) ,

(where T„(x) = cos nd, x = cos 9, 0 = 8 _ v) is the polynomial satisfying || r„,v|| = 1

and |*(0)| < |.Tn,.,(0)| for all v G Pn, \\v\\ = 1, v ^ ± Tn,y. Thus v„ is Tn,y and

||xp' — 1H is minimized, subject to p(l) = 0 for p = p* when
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(5) XP*'(X)   -   1   =   7T*(X)   =   TnAx)/-Tn,yiO)  ,

and if we put p = p* and ir(x) = 77„,B(x)/(— Tn,i/(0)) in (1), then the coefficients of

p*, a0, • ■ •, On, are easily determined by (2), (3), and (4). We obtain explicitly

a=_i-iy^_è (-i)(* V^V
(6) '    jTniiy+i)/iy-i))ii + yy^       J\j/\i~y/1'

» = 1, ••-,»,

and

(7) a0 = — (oi + • • • + an) ,

where tt is the coefficient of x* in .Tn(x). Thus, a0, • ■ -, an are rational functions of y,

and so is

(8) rn(y) = p*iy) = a0(t/) + a^t/)?/ + • • • + Oniy)yn .

We shall take rn0z), where z is any complex number which does not satisfy z = 0, as

our rational approximation to log z, and study its convergence to log z as n —» °o in

the next section. The determination of the polynomial approximation to log x,

p*(x), by means of (5) is Lanczos' r-method with t = — l/Tn,v(Çi). Lanczos [2] starts

with rTn,y on the right-hand side in (5), whereas we have provided here a justifica-

tion of this choice. A more detailed and systematic exposition of this view of the t-

method is given in Rivlin and Weiss [4].

2. The rational function defined in (8) can be rewritten in the form

£ (-ir-+'2V-l)¿ (_!){ j V(i + ,)-(! _ zf~-
(9) r.(«) = ¿=ï-i-*=*-^^-

E(-l)J'¿y(l + 2)y(l-^ry
J'-O

which reveals that the numerator and denominator of rn0z) are polynomials of

degree n. Before studying the properties of r„iz) further, we wish to consider its

effectiveness as an approximation to log z.

Suppose that z =■=■ 1 is a complex number which does not satisfy z = 0. Then if

w G s(l, z) we integrate the differential equation

wp*'iw) - 1 = TnAw)/-TnA0)

along s(l, z) to obtain, after an elementary change of variables,

1 f1 T (t)
(10) rn(z) - log z = _+i)/(i_i)} ^ <_((,+n1)/(,_1)) dt,

where we have used the facts that p*(l)   =  0, p*(z)   =  rn(z) and Tn *(0)   =

Tn((z   +   1)/(Z   -   1)).

Note that the point

(ii) r = (2 +1)/(* - i)

is exterior to [ —1, 1]. Let Cp, for 0 < p < 1, denote the ellipse in the f-plane,

f = £ + »?,
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| =  i(p+  (1/p)) COS ¿, n^   ±   ^n
O ^ <p < ¿v

V = Up - (1/p)) sin ¿,

which has foci at (±1, 0), p as sum of its semiaxes and passes through the point f.

Thus

(12) (p + (1/p))/2 = (1 + |z|)/|z - 1| .

For some <f>0, 0 = <f>0 < 2v we have

r»(f) = *{«■ + (f2 - i)I/2r + (r - (f2 - i)1/2n

= J{p"exp (irupo) + p~"exp ( — impo)} ,

and so

(i3) i/|r.(f)l = 2/(p- - pn).

Lemma 1. 7/ — 1 = x = 1 and

s„(x) = /  r»(0d<
•'-l

¡Tien

|&(*)|á|, n = l,

= l/(n - 1) ,       n > 1

and

Snil) =0,       nodd,

= —2/(n  — 1) ,       n eyen .

The proof is by direct computation and we omit it.

Lemma 2.

\Lit-!dt = (A - i)|i _ f| +n - W.x |i _ f|" >    •

Proof. Integration by parts yields

f1 r.(p 7.   ¿.(p    r &(o  ,.
•'-i- - rd -1 - i- + r7-! (í - f)*^

and the conclusion follows from Lemma 1.

Lemma 3.

/:.
dt

-i \t - f |2 - [p + (1/p) - 2]2 ■

Proof. (See Fig. 1.)
Consider Fig. 1. Suppose f is located on the arc of Cp in the first quadrant.

Certainly |f - <| = Im f for real t, hence if Re f = 1, |f - t| = Im f = QF. How-
ever, since F'P + PF = const, for any point P of the ellipse, we conclude that QF =

AF. Also, if Re<T > l, then |f - t| =■ If - 1| è A F. But

AF = (p + (1/p) - 2)/2 .
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F':(-|,0)

Figure 1

Hence

l/\t - if SS 4/(p + (1/p) - 2)2,        -láíál.

Considerations of symmetry show that the same bound holds for any position of f

on Cp, and the conclusion of the lemma follows.

We can now prove

Theorem l.Ifz does not satisfy z ^ 0, then forn>l

(14) |r„(z) - logz| ^ c(p)pn/n,

where p is the unique solution of (12) which satisfies 0 ^ p < 1 (the value p = 0 corre-

sponding to z = 1) and c(o) is a finite quantity depending only on p.

Proof. In view of (10), (11), (13) and Lemmas 2 and 3, we obtain

|r„(z) - logz| ^ -=r
— P

+
l(n2 - 1)|1 - r|       On- l)[p + (1/p) - 2]'J

As we saw in the proof of Lemma 3

|i-rlfc (p+ (i/p)-2)/2,
and so

M»> - log -I S -£-f (~s) (p + (,'p) _ 2) (^TT +

*(rJ7)C+(W-2)(' +

=0

The theorem follows by choosing

(15) c(p)=——A
1 — p   \

1

p + (1/p) - 2

p + (1/p) - 2

X'+H

p + (1/p)

/ n

Remark 1. The choice of cip) made in (15) is larger than necessary. It is clear, for

example, that numbers c(p, n) that have the property

c(p, n) ~ 16/(p + (1/p) -2)2,

will serve as well in (14).

n ■
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Remark 2. If n = 1

\n(z) - log z\ g 8p/(l - p2)(P + (1/p) - 2)2.

Remark 3. If z > 1 then Theorem 1 holds with

c(p) = c(p, n) ~ 16/((p + (1/p))2 - 4) ,       n -+ ■» ,

as a reexamination of the proof reveals.

Theorem 1 establishes the convergence of our rational approximation to the

logarithm at each point of the slit plane. The bound obtained in (14) holds for all z

whose images in the f-plane under the mapping (11) lie on Cp. It is not difficult to

verify that these points form the limaçon, Pp, 0 < p < 1, defined by

(16) 2 = i + -^2(^ + -^cos<.y,        -V^8<V,
1 — p   \1- p       1—p '

or, if we introduce polar coordinates (R, 6) in the z-plane, with pole at z = 1, Pp is

given by

(17) R = 4p(l + p2 + 2p cos 6)/(l - p2)2.

This is perhaps most readily seen by noting that the sequence of mappings

z = x2,        X = (w + l)/(w - 1) ,        t « (w + w-1)/2

is equivalent to the mapping (11). C„ is the image of \w\ = p under ç = (w + w~l)/2,

and if Kp is the circle in the X-plane which is the image of |tt>| = p under X =

(w + l)/(w — 1) then Pp is the image of Kp under the mapping z = X2. From Kober,

Dictionary of Conformai Representations, Dover, New York, 1952, p. 38, we find that

Pp is given by (16). Let Pp denote the closed set in the z-plane consisting of Pp and

all points inside the curve Pp. Since, under the mapping (11) Pp corresponds to Cp

plus its exterior (in a 1-1 conformai fashion), P„ is a simply-connected closed region

which does not meet z ^ 0. Therefore, we have

Theorem 2. If z G Pp, 0 < p < 1, then for n > 1

(18) |rn(z) -logz\ úc(p)pn/n,

where c(o) may be defined by (15).

Proof. From (9) we conclude that rn(z) has poles only at the zeros of

Tn((z + l)/(z — 1)), which are the points of the negative real axis

zi= (fy + D/(fy - 1),

where

Xi = cos ((2/ - l)7r/2n) ,       j = 1, ■ ■ -, n .

Therefore r„(z) — log z is a single-valued analytic function in Pp, and since (18) holds

on Pp, it holds throughout Pp by the maximum modulus principle.

The set of limaçon domains Pp, 0 < p < 1, satisfy Pp, C PPs when pi < p2, and

every z not satisfying z ^ 0 is contained in Pp for p close enough to 1. A typical Pp,

p = .5, is shown in Fig. 2.
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Figure 2

3. Having established the convergence of our rational approximations, we wish

to examine other of their properties. The function log z satisfies the functional equa-

tion log z = —log (1/z). We wish to show that the same is true of rn(z).

Theorem 3. rn(z) as defined in (9) satisfies the functional equation

(19) r„iz) = -r„(l/z) ,

for all z not satisfying z ^ 0.

Proof. Since t¡ is the coefficient of x' in Tn(x), t¡

[n/2] and thus, for y = 0, • • •, n,

Oiorjr^n — 2i, i = 0,

(20) (-l)'í,- (-1)%.

(19) now follows easily upon replacing z by 1/z in (9).

Remark 1. In the slit plane, — v < arg z < v, f(z) = log z also satisfies/(z) =

[f(z)]* and so does/(z) = r„(z). The asterisk denotes the complex conjugate in the

preceding sentence.

Remark 2. The limaçon Pp defined in (16) is transformed onto itself by the map-

pings z^>z,z—> 1/z, hence also by z —» 1/z, and the same is true of Pp. Thus, approxi-

mation to log z throughout Pp is easily obtainable from evaluations of rn(z) in Pp (\

{\z\ ál}.
By utilizing (20) we rewrite (9) as

(21)

where

rn(z) =Nn(z)/DAz)
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(22) Nn(z) = £ (-l)j+1 2'{z'~l) £ ( \ \(1 + z)lW(l - zf*
J-l J i-i   \J f

(23) Dn(z) == £ tj(l + z)j(l - z)n-¡.
]-0

Theorem 4.

(24) Dn(z) = £[[f.)zj-,        n=l,2, ••-,

and

(25) Dn(z) = 2(1 + z)Dn-i(z) - (1 - z)2Dn-2(z) ,       n = 2, 3, •••.

Proof. According to (23)

(26) Dn(z) = (1 - z)nTn((l + z)/(l - z)) .

But

.   s _ (w + (w   - 1)    )   + (w - (w   - 1)    )
In(w)   =  -7¿-,

so that

Dniz)   =   i[(l + Azfn +   il-Vz)2n]

and (24) follows at once. Equation (25) follows from (26) and the three-term

recurrence relationship for the Chebyshev polynomials.

Remark. We observe from (24) that the coefficients of Dn are palindromic. More-

over, it is clear from (22) that z — 1 is a factor of Nniz) and that znA7„(l/z) = — iV„(z)

sothat iV„(z) = (z - l)Ñn-iiz).

These two relations imply that the coefficients of A^„_i are palindromic.

Theorem 5. The numerator of rniz) satisñes

(27) JV,n(z) = - (i - zy f TÁÍ\ -_ lÁX) dt,

n-l g

(28) Nniz) = 2(z - 1)     E'    t4-T (1 - z)kDn-i-kiz)
k—0:k even /C "T"  X

and the recurrence relationship

(29) Nn(z) = 2(1 + z)Nn-i(z) - (1 - z)2Nn-2(z) - 2(1 - z)>„ ,

where

m

X  =   (1  + Z)/(1   — Z) , ^2' Uk = U0 + Ui +   ■ ■ ■   + Urn-l + um/2 ,
k-0

and

<pn = 0 ,       n even ,

= —2/n(n — 2) ,       n odd .

Proof. If we write rn(z) = Nn(z)/Dn(z), and observe that
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logz = LiTh:dt'

then (27) follows from

i /n !      r Tn(t) ,7.
logz-r^-.-.-^^^^di,

which is simply (10), with z replaced by 1/z, keeping (19) and (26) in mind.

In order to verify (28) we use the generating functions

U 1 - 2tu + u2        A«)

1 + 2 E TÁW = *

and

Now

4.(0

t - X

A(i)   '

y-1 ̂ y+i(0   i_L
U 3 + 1 A(<

I — ut      1 — uk u        1 — u

Ait)    ~    A(X) J ~ La(¿)J L A(X) J '
from which it is easy to see that

fA-^A^^-rM^-^m}'
— a    yv    Tn-i-kjA

k—0; k even      * T 1

Thus, we conclude from (27) that

(30) Nn(z) =-a(i - zy   E'  TT-tV,
*=0;/fc even     /C "I" X

and (28) now follows from (26) and the definition of X.

(29) is a consequence of (27) and the three-term recurrence relationship for the

Chebyshev polynomials.

Remark. To find the value of rn(z) = Nn(z)/D„(z), one can either utilize the two

(closely related) recurrence relationships (29) and (25), or take advantage of the fact

that in the form (28) ¿V„(z) is expressed in terms of D0, • • •, D„_i.

The first few approximations are the following:

. (,) - 2 z~ l ■    r,(z, = A (z- l)(l+z)
rl(z)-23+1,    r2(z)      A    { + & + ^   ,

2 (z - l)(7 + 34z + 7z2) , = 16 (z - 1)(1 + Hz + llz2 + z3)

3 (1 + 15z + 15z2 + z3)   ' "   3  (l + 28z + 70z2 + 28z3 + z4) '

,     = _2_ (z - 1)(43 + 868z + 2018z2 + 868z3 + 43z4)

"15       (1 + 45z + 210z2 + 210z3 + 45z4 + z5)
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The form of these approximations resembles those obtained from the continued

fraction expansion of Euler (cf. Khovanskii [1, Formula 4.7, p. 112]), but the actual

coefficients appearing are different for n > 1. Indeed, it appears that the Euler

approximations are obtainable from ours by replacing the Chebyshev polynomials

throughout by Legendre polynomials, which suggests that the convergents in the

Euler expansion would be obtained by replacing the uniform norm by the least-

squares norm in the minimum problem of Section 1 and following our subsequent

procedure.
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