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Very similar methods can be applied for the generation of the modified Bessel

functions In(x) and Kn(x).

With the improvement just described the widely used recurrence techniques are

very straightforward methods for the generation of the sets of Bessel functions with

real argument x and varying index n.
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The Zeros of F (cos 0 and | P (cos e)*

By Peter H. Wilcox

Introduction. In the course of a recent study [1] of the scattering of an electro-

magnetic wave by a semi-infinite, perfectly conducting cone, it became necessary

to compute numerically sets of positive zeros of certain associated Legendre func-

tions treated as functions of their degree; that is, to find m and /i¿, i = 1, 2, 3, • • •,

satisfying

(1) Pecoso) = 0,

and

(2) (d/d6) Pilcos 6) = 0 ,

for a given 6. The method presented here employs a trigonometric series expansion

for the Legendre functions to obtain these zeros.

Formulas. An expression for the associated Legendre function valid for 0 < 6 <

180° is [2]

f> /p. + 1/2M> + ß + l)k .   u ,      n ,\
S I-kl(v + 3/2)k-Sm K" + " + 2k + W/
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Table I

The first 50 zeros of the Legendre function and its derivative

Vi; Pilcos 165°) = 0    m; — P¡,¿(cos 165°) = O
de

i
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1.0316313
2.0844338
3.1499290
4.2230957
5.3010868
6.3822487
7.4655810
8.550453
9.636450

10.723293
11.810784
12.898783
13.987187
15.075917
16.164916
17.254136
18.343542
19.433106
20.522803
21.612615
22.702527
23.792526
24.882601
25.972743
27.062943
28.153197
29.243498
30.333840
31.424221
32.514636
33.605082
34.695557
35.786057
36.876580
37.967126
39.057691
40.14827
41.23887
42.32949
43.42012
44.51076
45.60142
46.69209
47.78277
48.87345
49.96415
51.05486
52.14557
53.23630
54.32703

.9671403
1.9189013
2.8870839
3.8878600
4.9171089
5.9656383
7.0264388
8.095136
9.169086

10.246663
11.326832
12.408911
13.492435
14.577076
15.662599
16.748830
17.835637
18.922921
20.010602
21.098619
22.186921
23.275468
24.364227
25.453171
26.542276
27.631524
28.720898
29.810384
30.899971
31.989647
33.079405
34.169236
35.259134
36.349093
37.439106
38.529170
39.61928
40.70943
41.79963
42.88986
43.98012
45.07041
46.16073
47.25108
48.34146
49.43186
50.52228
51.61272
52.70318
53.79366
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Direct substitution of p. = 1 does not lead to useful results, since the series then

diverges. However, if S,(d) is defined as

(4) ^) = gfc^3(;^sin[(, + 2fc)e],

then letting p. — — 1 in Eq. (3) gives

Since [3]

(6) p-iz) = rfr + ̂ ÍÍ) C-D"-""«
(for integer m), Eq. (3) finally becomes

^ ^^--^e^re)8^'
An expression for the derivative of the Legendre function found from Eq. (7)

and from the recurrence relation

(8) ¿ Poicos 0) = -4- [„ cos M»,1 (cos 6) - iv + l)PLi(cos 6)]
oo sin a

may be written in the form

(9) ap'1(cosö) - wÈÂe [ff+^ê)]/^68^ - 0+k)8-™]
The expressions in (7) and (9) may be evaluated on a digital computer, and so

the zeros of the respective functions may be found by an iterative technique (e.g.,

that of Newton-Raphson). The series involved in either case does converge, although

slowly, and accurate results can be obtained if enough terms are included. Since the

parameter, 0, enters only in the argument for the sine function, it does not affect

the rate of convergence. Methods exist for evaluating the gamma functions, al-

though they are not needed if only the zeros are required.

Results. The zeros were calculated at the University of Michigan Computing

Center on an IBM 7090 computer in double precision. This would indicate a pos-

sible accuracy of 14 to 16 significant figures. Actually, the magnitude of the terms

in S,(6) decreases so slowly that results of this accuracy would require so many

terms as to be impractical when many zeros are required. But if 500 terms are used

in the series, the coefficient of the sine function in the last term varies from less

than 10-8 when v is very small up to about 2 X 10~* when v = 100. This leads to

7 or 8 significant figures in the zeros themselves over the whole range. In general,

the time required to compute S,(6) with 500 terms is about 0.4 to 0.6 seconds, al-

though a considerable savings in time may be had in those instances where

sin (2fc + v)9, k = 0, 1, 2, • • -, is a repeating function in k such that a small table

of values may be used for it.

When the zeros for one value of 0 are found in ascending order, the separation

between successive zeros becomes nearly constant. In fact, it can be shown that [4]
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(10) llí+l  -  fi -   (T/0)I   <  6

for any arbitrarily small e if i is large enough, where £i represents either vi or m.

Thus, when two successive zeros have been found, the next can be easily estimated.

For higher-order zeros this estimate is usually good enough so that only three func-

tion-evaluations are needed for the correction term in the iteration to be less than

10""8. Also, when only one zero is known, v/B can be used as an increment to get

an estimate of an adjacent zero.

Since Eq. (3) holds for 0 < 0 < 180°, it should be possible to find zeros for any

angle in this range. In connection with our work, we have found the zeros, r« and

Pi, for i = 1, 2, 3, • • -, 100 at a number of angles between 150° and 172.5° and

also some low-order zeros at angles from 2.5° to 177.5°. Table I shows the first 50

zeros at 165°, which were computed by carrying £„(0) to 500 terms or until the

magnitude of the coefficient became less than 10-8. As a test, the same zeros were

found using 2000 terms in the series, which in general, represents a decrease of two

orders of magnitude in the size of the last term. As a second test, the expressions

in (7) and (9) were evaluated for integer values of v, and the results compared with

values calculated using the recurrence relations for the Legendre functions. From

these tests, the number of significant figures present in the values for the Legendre

functions and in the zeros themselves was determined. The tests verified the ac-

curacy of the numbers in Table I.

Of the various tables and bounds that have been published relating to these

zeros [4]-[7], only Waterman's work [7] provides results of precision comparable

with those given here. His values for vt 0i = 1, 2, • • •, 30) at 165° agree with ours

to six and usually seven significant figures, the latter being the limit of his tables.

However, for p.{ Oi = 2, 3, • • -, 30), his zeros are consistently lower, with the dif-

ference showing up in the fifth decimal place for the higher-order zeros. In each

case where such a discrepancy exists, the representations in (7) and (9) have been

used to evaluate the appropriate Legendre function at each of the two proposed

values for the zero. In all instances, the resulting values were significantly smaller

for the zeros listed in Table I than for the values presented by Waterman. From

this, it is concluded that the zeros given here are more accurate.
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