
Recursion Formulae
for Hypergeometric Functions

By Jet Wimp

I. Notation. The series definition for the generalized hypergeometric function is

« '«felO-s-saE'
where

(2) ia)k = r(« + k)/Tia)

is Pochhammer's symbol and the shorthand product notation above will be used

throughout this paper. In general, where a parameter has a subscript which is a

capital letter, the repeated product notation is understood :

p Q

(3) iaP)k = II (ay)*,        (n + bQ) = Ü (» + &;) ,       etc. ,
y-i 3=1

and the * notation

(4) H + bQ- bh)* =     II    H + bj- bh)
i-1; ir*h

indicates the term corresponding to j = h is to be deleted.

If one of the a, = 0 or a negative integer, then (1) always converges, since it

terminates. Otherwise it converges for all finite x if P ^ Q and for |a;| < 1 if P =

Q + 1. In this case, however, the function can be analytically continued into the cut

plane |arg (1 — a;)| < x, and we shall often denote by q+iFq(x) not only the series

(1), whenever it converges, but also the analytic continuation of the series. If P > Q

+ 1, the series does not converge (unless it terminates) and if one of the b¡ is 0 or a

negative integer, the series is not defined. If one of the at equals one of the bj, pFQ(x)

reduces to P-iFQ-i(x) and such a case is always excluded from consideration in this

paper. We assume all pFQ's are irreducible.

Equation (1) can be given an interpretation for P > Q + 1 by means of the

G-function

(5) V^AGTjbQ) ri.P    (        1 - aP   \

0,   1   -   OQ,

and (5) is (1) (or its analytic continuation) if P :g Q + 1. The G-function can be

defined by a Mellin-Barnes contour integral.

For a treatment of the generalized hypergeometric function and the G-function,

see [1].

We also assume that (5), wherever it occurs, is irreducible, i.e., that no a{ equals

any b}-, i = 1, 2, • • -, P,j = 1, 2, • • -, Q.
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II. Introduction. The subject of the recursion relations satisfied by hypergeo-

metric functions occupies a prominent place in the literature of special functions.

The functions of this type for which recursion formulae have been given are usually

special cases of the functions

(6) Uni\) =  ,,   C?    i       ̂    P+ifWiV 0-jap)nXn „    ( n + ap+i

ibQ)niy + n)n P+ltQ+1\n + bQ, 2n + y + 1

or of the polynomials

(7) '•M-rfe^-^'i")-
or

(8) ^ = wâ^Ft(~T\z)-
It can be shown that (6)-(8) obey linear recursion relationships of the form

(9) X)  lk- + Xl.]$n+y  =  0 ,

where x = 1/X for (6), x = z for (7) and (8), and k, — h(n), I, = l,(n) depend on the

particular function, but not on z or X. Also, fc0 = 1, lo = 0, and p depends on the

number of numerator and denominator parameters in the hypergeometric function :

p = max [P + 1, Q + 2] for (6), p = max [T + 1, R + 2] for (7) and (8).

Un(X) can be given an interpretation for P > Q + 1 by means of the G-f unction

n (\\ -  r(&<?)  r   \», rUF+1   (   \ 1 ~ ap+1 I
UnW -  T(aP) (_) '"&™.«+-V"X  n, -n - y, 1 - bj '

Tn = (2n + y)T(n + y)/T(n + ß + 1) ,

provided a¿ is not 0 or a negative integer, i = 1,2, ■ ■ ■ ,P + 1.

There exists a duality between the functions (7) and (10). For instance, we have,

under a variety of conditions (see [2, Eq. (2.6)] and also related expansions in [3],

[4]),

^p+Ä+i.i        |        1     1, bQ, dT\      T(cR)Y(aP) -y^ ,    ,,,     ,   -.
Ijq+t+i,p+r+i\ — > j —      r,,  s       LrJ 1"+ i)ß

.^s \      \z   cR,aP+i/ 1 (0q)      „_o

X UniX)Pniz) ,

and if, in this multiplication formula, z is replaced by z/y and y —* ce, a similar ex-

pansion in terms of Qn^) results.

In fact, any function analytic at z = 0 can be expanded in a series of the poly-

nomials Pn or Q„, and Fields and Wimp studied such expansions from the standpoint

of basic series in [6]. Linear combinations of Pn, Qn also occur in classes of rational

approximations to generalized hypergeometric functions, see [7] and the references

given there.

For R = 0, T = 1, Pn is related to the Jacobi polynomial, as we have seen, and

Qn to the Laguerre polynomial. Here p = 2, and the recurrence formulae are classical.

For R — 0, T = 0, Pn'S the Bessel polynomial, whose recursion formula and other

properties have recently been studied by a number of writers, see [8].

(io) r(ap)
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Recursion formulae for PH for R = 1, T = 2 (p = 3) have been studied for various

special values of the parameters, see [9]. For values of p > 3, i.e., larger values of R,

T, no general results seem to exist in the literature, although general formulae for

p = 3 have been derived but not published, [6].

When P = 1, Q = 0, then p = 2 and f/„(X) is related to the Jacobi function,

Qn(a,ß), whose recursion formula is given in [5]. No general formulae for larger values

of P, Q seem to be known. However, for special values of y and ß, the recursion

formula for P = 2, Q = 0 is given in [3], where it was also shown that f/„(X) could

be computed by using (9) in the backward direction.

Since UniX) can often be computed by using (9) in the backward direction, and

P„ and Qn always by using (9) in the forward direction, it is quite desirable to have

closed form expressions for I,, k,. It was previously doubted that such expressions

existed, since the derivation of particular recursion formulae has hithertofore in-

volved solving systems of algebraic equations whose complexity increases rapidly

with P, Q, R and T.
In this paper, we determine closed form expressions for the coefficients in the re-

cursion formula for f/„(X). These coefficients are terminating hypergeometric func-

tions of unit argument. We show that t/„(X) satisfies one and only one recursion

relation of type (9) of a certain order and none of a lower order. We next find a

number of other solutions of (9), considered as a difference equation. It turns out

that certain of these solutions are closely related to Pn, and by specialization of a

certain parameter, we are able to determine the recursion formula for P„(z). Next,

by taking a limit as y —> »,we find the recursion formula for Q„(z).

The author is grateful to his colleagues, Yudell Luke and Jerry Fields, for a

number of helpful comments and suggestions.

III. Results.

Theorem 1. Let P, Q, n be integers ^ 0. Let ß, y, ai, b¡, i = 1, 2, • • -, P, j = 1,

2, • • -, Q be complex constants such that none of the quantities ß + 1, ai} bjt y are

negative integers or zero. Let \be a complex variable, finite and ¿¿0, and let a i = ß + 1

for i = P + 1. Then the following statements are true:

(1) the functions Un{X) as given by (10) satisfy the difference equation

(12)

where

(13)

(14)

¿   A, + ~- Un+ÁX) = 0 ,       t - max [P + 1, Q + 2]
►-o L A J

( -)'(2n + 7) > + /3 + 1)
v\0n + y).

vP+sFp+À '
v, 2n + y + v, n + aP+i + 1

X   vP+ZC P+2\ o I I 11 I
2n + y + a + l,n + aP+1

5,=
i-)"j2n + y),+ijn + ß+ l),(n + bQ)

r(v)(n + y)r(n + aP+i)

v      r    (l - v, 2n + y + v + 1, n + bQ + 1
x Q+2FQ+iy       2n + y + (T + 1}n + bQ

iAo = l.Bo = B. = 0);
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(2) other solutions of (12) are

Case A. a = Q + 2;p < Q + 1 orP = Q + 1, |arg (1 - X)| < *■; Qiere i/„(X)

is given by (6)) ;

i, A\ _ _I") r„X_
,-,. VnKh)      T(bQ-n-y)T(n + y + l-aP+i)T(l-y-2n)
(15) , s

Xp+^+\bQ-n-y,l-y-2n   V '

T(2 - bh - n)YOn + 7 + 2 - &*)r(l + bQ - bh)
(16) , s

X P+i-^Vd + hQ - hh)*f 2-bh-n,n + y + 2-bh   V '

A = 1,2, •;Q;
CaseB.  <r = P+l;P>Q+lorP = Q+l, |arg (1 - 1/X)| < tt;

fl m(\\ = _rn(aA)M( —)_

""    W      r(n-r-7 + l-aA)r(l + aÄ-ap+1)

/n + ah, -n - y + ah, 1 - bQ + ah   j-)Q+P+1\

xwFry       {1 + ah_ap+l)* -j   )>

Ä = 1,2, ...,P+1;
(3) none of the functions above satisfy any other difference equation of type (12), with

Ao = 1, Bo = B„ = 0, of order ^ <r.

TVofe. We assume Un is not reducible for all n, i.e., no bi equals any a,- or ß + 1.

However, for particular values of n, Un may be reducible. Such will be the case if

any a¡ = r + y + l,j = 1,2, • • •, P + 1, r an integer ^ 0.

Proof. First we note that

(18) „+2FM+i(-V> ' + * \+ aU   O = 0 ,       *, r = 0, 1, 2, • • • ,
\       p + r, aia /

for M < r ¿= v, as can be seen by writing out the i>th difference with respect to x

of ITilï Ox + r + ß-1 + t) nf_i (z + a,) at a; = 0. This shows that, if (13) and
(14) are true, then A, = 0, v > a and B, = 0, v ^ a, in particular, that Pff = 0, as

stated.

Next, we remark that ifP<Q+l,orP = (3-r-l and |arg (1 — X) | < x, then

Un(\) is precisely (6). If P > Q + 1 or P = Q + 1 and |arg (1 - 1/X)| < r, then

U„iX) is a sum of the functions 0„i*](X), A = 1,2, • • -, P + 1. See [10].

Let P < Q + 1 or P = Q + 1 and |X| < 1. By substituting UAX) into the differ-
ence equation and equating to zero the coefficient of \n+k, we find that the theorem

demands that

(19) Siik) + Siik) = 0 ,

where

(20) Siik) =in + bQ + k) ± T{k_v + 1)r(^; + k + y+iy

(21) &(*) = in + ap+i + k) gr(jfc_r + 2)r(^J; + Ä!+ 2) •
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Now substitute the functions <pnlh} into (12) and equate to zero the coefficient of

X*. The result is

(22) Siik + 1 - n - bh) + S2ik + l-n-bh) = 0,       h - 1, 2, • • -, Q,

with the same value of a as above.

Substituting «MX) into (12) and equating to zero the coefficient of \~n+k, we see

we must have

(23) Siik -2n- y) + S2(fc -2n-y) = 0.

Finally, letP>(3 + lorP = Q-r-l and |X| > 1 and consider the functions

dnlh]iX). Proceeding as above, we see that we must have

(24) Sii-k -ah-n) + S2i~k -ah-n) = 0,       h = 1, 2, • • -, P + 1.

If (19) is multiplied by T(/c + 1) r(2n + a + k + y + 1) which is defined for all
k in some right half-plane, then (19) becomes a polynomial in k, and we see that a

necessary and sufficient condition for (19) to hold is that

(25) On + bQ + k)Mk) + On + aP+i + k)Mk) == 0 ,

(26) fiik) = 2 i-Yi-kU2n + k + v + y + 1)„3„,
V=0

(27) Mk) = £ (-)'-1(-fc),_1(2n + k + v + y + 2),__! Bv,
■—i

where k is a generally complex-valued variable, and

(28) Ay    —     Tn+rAy, By    =     Tn+y B y   .

Thus, if Ay, By can be chosen so that (25) holds, the functions Un, tyn, 4>nW, 6nw

will satisfy the difference equation whenever the series defining them converge, since

(19)-(24) are all equivalent to (25)-(27).

We now discuss the quantity a, which up till now has been unspecified.

Note that/i(&) is a polynomial in k of degree a at most and, since no 6¿ equals any

ai or ß + 1, has zeros at k = —n — ai, i = 1, 2, ■ • •, P + 1.

Or

(29) fiik) = 0n + ap+i + k)Mrik) ,

where M r(fc) is a polynomial of degree r 'ink. Neither /i nor M r can be identically

zero, since

(30) /i(0) = (2n + 7+l).3o.

Equation (29) shows that, for some integer mi, mi ^ 0, o- — mi = P + r + 1 or

a àP+ 1.
Likewise, f2 is a polynomial of degree a — 2 at most and

(31) /,(*) = On + bQ + k)N,ik),

where TV„ is a polynomial of degree sink. Setting k = 0 in (25) gives

(32) Bi = - On + bQ)i2n + y + 1)210/(n + aP+i)

and clearly this is the only possible value of Pi.
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Furthermore,

(33) /2(0) = -in + bQ)i2n + y + 1), Ao/On + aP+l)

so N,ik) fé 0, fiik) ^ 0; (31) shows that, for some integer m2 ^ 0, a — m2 — 2 =

Q + s or o- ̂  Q + 2.

Thus, the smallest possible value of a is

(34) a = max [P + 1, Q + 2].

Assume a has this value. We will show that Av, B, (hence, Av, By) are then uniquely

determined by (25) and that A, ^ 0, which means that no other recursion relation-

ship of order ^ a exists for any of the given functions, i.e., statement (3) of the theo-

rem. (It is clear, however, that larger values of a are possible, e.g., add to (12) the

recursion relationship obtained by replacing n by n + 1 and the result is a recursion

formula of order a + 1.)

Lemma 1. Let the conditions of the theorem hold. Then (25) is true if and only if Ay,

B, are such that

(35) /i(fc) = (2n + 7 + l)c.(n + aP+i + k)Ao/On + aP+1) ,

(36) /2(fc) = - (2n + 7 + l),0n + bQ + k)A~o/On + aP+l) .

If k is assigmsd a distinct values in (35) and a — 2 distinct values in (36), then A„

v = 1, 2, • • •, a and Br, v = 2, 3, • • •, a — 1 are uniquely determined and so, by (28),

are Av, Br. Also, Aa jk 0.

Proof. First assume P>Q+1, o- = P + 1. Then /i(fc) is a polynomial of degree

P + 1 at most. But since fAk) ^ 0, (29) shows it must be exactly of degree P + 1,

and

(37) fiik) = Kin + ap+i + k) .

Letting k = 0 and using (30) determines K, and when (35) is substituted into (25),

(36) follows.

Let P^Q+1, a = Q + 2; fiik) is a polynomial in k of degree Q sit most. As

before, /2(fc) ̂  0 and so

(38) /,(*) = K'in + bQ + k).

Letting k = 0 and using (33) we find K' whence (36) follows. When (36) is substi-

tuted into (25), (35) results.

Now let a distinct values fc<, i = 1, 2, • • -, a be assigned to k in (35). The result

is a nonhomogeneous equations in the <r unknowns A„ v = 1, 2, • • -, a. Now this

system has a unique solution which is independent of the values of k assigned.

Let Vr denote the alternate determinant

R     m—l

(39) VrOxr) = \xi~1\i,j^l,t,...,n = II IT ixm — xm^i) .
m—2    ;-l

Here and in what follows, ri}- is the element in the ith row and jth column of the

determinant | r<,-| iJ_12... B. The determinant of the system formed from (35) is

(40) D = |(-)w(l - fc,-)y_i(2n + ki + j + y + l)a-jU,j=i,2......

which, by [11], is
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(41) D = KV„ikc)

and K is independent of the ft,-'s. To determine K, let fc¿ = i. The resulting determi-

nant is triangular, and we find

(42) D = VaiK) II (2n + 2t + 7 + 1).-,-
i=l

so, under our hypotheses, D ¿¿ 0. If the system is solved by Cramer's rule, it can be

verified that V„iK) also factors out of each numerator determinant, leaving a quan-

tity independent of the k/s. Thus, A, is uniquely determined by (35), and similarly

one can show that B, is uniquely determined by (36), with Pi given by (32). Aa,

hence A„, can be found by putting k = — a — y — 2n in (35), and the result is dis-

played in Theorem 2, Eq. (52). Under our hypothesis, Aa ^ 0.

It remains to prove that A„ B, are indeed given by (13) and (14). For this, we

require two more lemmas.

Lemma 2. Let k, b and z be complex quantities, b + k + 1 9e 0, — 1, — 2, ■•-, and

s an integer è 0. Then

z(k + b)+    (~fc)s+i(& + z)s+i
,,,.        V ib + 2v)j-k)yjb + z)y     n   ^   ' ^ jb + k + !),(! - z).

^ ' h        (1     -    Z)y(b    +    k+     l)y      " (Z    -    k)

Remark. Since the left-hand side and the right-hand side of (43) are the same

meromorphic function of z, they have the same residues at the simple poles 2=1,

2, • • •, s and possess the same limit as z —* k.

Proof. By induction on s.

Lemma 3. If

(AA, n = Y   (~^"a* ft = 012---M>0

then

(45) „, = (ffl + 2r1) t ,(ryi,'(° + s)^\
y! to s!(a + s + v — 1)

provided a ^ 0, —1, —2,

Proof. The determinant of the system is nonzero, so (44) has a unique solution.

The lemma then results by substituting (45) in (44), interchanging the order of

summation, and using Lemma 2 with 2 = 0.

Now, in (35) let k = 0, 1, 2, • • -, a. Then

, 4fis        f       op      (-fc),(-)'3,     = (2w + 7 + l)An + ap+i + k)Jo
(    '       h      tí 02n + y + k+ l)y        0a + aP+i) (2n + 7 + ft + 1),

and this system is the form in Lemma 3 with gv = ( — )"AV, a = 2n + y + 1. Thus

Äy and hence Ay is easily found and the result is (13). Bv is similarly determined by

applying Lemma 3 to (36).

The extension of the theorem to values X such that |arg (1 — X) | < ir in Case A,

P = Q + 1, or |arg (1 — 1/X)| < it in Case B, P = Q + 1 is immediate by the

permanence principle for functional equations [12].
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The proof of Theorem 1 is complete.

Note that no restrictions on bi enter in the proof of the theorem; the restriction

that b i 7a 0, — 1, — 2, • • -, arises from the definition (6). In fact, by slightly modify-

ing (12) (e.g., multiplying by (n + ap+i)) or the solutions of the difference equation

(e.g., dividing Un(X) by r(6Q)), the theorem can be made valid for ot-, b3- negative

integers. Also, <£>« may be redefined so that the theorem will hold for all values of

ß + 1 and y.

Now if no two of the quantities [n, bQ, — y — n] differ by an integer or zero, all

the solutions in Case A are distinct, and if no two of the quantities [ap+i] differ by an

integer or zero, all the solutions in Case B are distinct. In fact, under these restric-

tions the functions in each group are linearly independent functions of X, as is seen

by comparing their behavior near X = 0 or X = <x>. This is not at all the same as

asserting that the functions in either group are linearly independent as functions of n.

If 2n -f- y is an integer, ^„(X) is proportional to U„iX), while if two of the quanti-

ties [bo] (or [ap+i]) differ by an integer or zero, then two of the functions [<t>nlQ]] (or

[0n[P+11]) are proportional. However, in any of these cases a distinct set of solutions

can be constructed. For example, let a¿ = a¡ + m, m = 0, 1, 2, 3, • • -. Then one

forms an appropriate difference of the functions 0„[i!, 0„['] for a,- = a¡ + m + e,

divides by e, and lets e —> 0. See [13] for the mechanics of this procedure.

We will subsequently need the following integral representations of (13) and

(14).
Lemma 4. Let none of the quantities y, a¡, i = 1, 2, • • -, P + 1 be negative integers

or zero. Then, for general a, we have

(47)

(48) B

_  Vn¿_ f  r(2n + 7 + v + z)Tj-z)jn + aP+i + z)dz

2wi JTv      T02n + y + <T+ 1 + z)V0v + 1 - z)

2iri ^r„_!

r(2n + 7 + v + 1 + z)Tj-z)jn + bQ + z)dz

r(2ra + 7 + cr + 1 + z)T(v- z)

UQ, u      _ j-Y+\2n + y),+ijn + ß + l)y
(V) ",v ~~ in + y)yiap+i + n)

and rm denotes a simple closed path enclosing the points z = 0,1,2, • • ■, m but no other

singularities of the integrand.

Proof. By the residue theorem. Note that Tm is a feasible path since, were any of

the poles of r(2n + y + v + z) (or r(2n + y + v + z + 1)) to coincide with any

of the poles of T i—z), then 7 would be zero or a negative integer.

We now give alternate representations of A„ Bv which are useful when v is larger

than [st/2].

Theorem 2. Let none of the quantities y, ß + 1, a,-, i = 1, 2, • • -, P be negative

integers or zero. Then

Ar - (~Y+F+1(2n + ?)■+!(» + 4g + l).(n 4- 7 + v - ap+i)

/-qn       ' IV + 1 — v) On + y)yi2n + y + v)y+iin + aP+i)

v       c     (v - <r,2n + y +v,n + y + v +1 — aP+i     \

X P+-Fp+\2n + y + 2v+1¡n + y + v_ ap+i I V -
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By

(51)

i-Y+Qj2n + y),+ijn + ß + l),(n + y + v + 1 - bQ)

Via -v)0n + 7)v(2n + y +v+ l),0n + aP+l)

X  Q+2

and in partictdar

(

(v+1 - a,2n + y + v+l,n + y + v + 2-bQ

tQ+1\2n + y + 2v+l,n + y + v+l-bQ 0.

(52) .4,=
)'+-p+1(2n + 7).(n + fl + l),(n + y + a - aP+i)

On + y)ai2n + y + a + l)„(n + aP+i)

Proof. We prove (50) only, since (51) follows similarly. Denote the integrand of

(47) by Lniz). It has poles at the points 5m = — 2n — y — m, m = v, v + 1, • • •, a

and ym, m = 0, 1, 2, • • -, v. The integral around any large circle containing both

{ym\ and {¿5m} is zero, since Lniz) = 0{zp~"~1}, \z\ —* •», and is a rational function

of z. If A„ is any simple closed curve containing the points {ym} but none of the points

{Sm}, then

(53) /—/•4 r •'a

and (50), and hence (52), follow immediately by the residue theorem. (Note the

hypotheses separate the points {7*,} from {5m}.)

Because of the form of the functions 6nm (X), Theorems 1 and 2 enable us to give

explicit recurrence formulae for the classes of hypergeometric polynomials studied

in [4].

Corollary 1. Let R and T be integers ^ 0, t = max [T + 1, R + 2]. Let 7, c,-,.

d,,i= 1, 2, • • -, R,j = 1, 2, ■ ■ -, T + 1, (<!,• = 1 forj = T + 1) be complex con-
stants such that none of the quantities y, y + 1 — dj, j = 1, 2, • • -, T are negative

integers or zero. Then the hypergeometric polynomials PB(s), see (7), satisfy the re-

cursion relationship

(54)

where

(55)

and

X [Cy + zDy]Pn-yiz) = 0 ,        n = r, r + 1, r + 2,

c, = ( — )'(«■ + 1 — y)»(l — 7 — 2n)2,jn — v — 1 + dT+i)

v\0n + y — v)v0t + 1 — 7 — 2n)„(n + rfr+i — 1)

v      F     (-v,2,n + y -t -v,n-

\2n + 7+1— 2c, n — f

C + £Ír+l

- 1 + dT+i
1

P» =
(-)"+1(n + 1 - y),(l - 7 - 2n)2y0n - v + cR)

(56)
r(v)(n + 7 -iO,(l +T--7

x R+2FR+iy^

2n)y

1

_i(n + dT+i — 1)

- v,2n + y + 1 — t — v,n + 1 — v + cR

\2n + 7 + 1 — 2v, n — v + cR

and Do = Dr = 0.

Proof. In dn[F+x]iX) let Q = R, P = T, aj = y + 1 - d¡ idT+i = 1), bj = y +
1 - Ci, ß + 1 = y, z = (-)Q+P+1/X, <t = r. Then (55) and (56) follow from Theo-
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rem 2 when the sums are turned around and n is replaced by n — r ; since the poly-

nomials are computed in the forward direction, this is the more useful form of the

recursion relationship. Note that it is not necessary to assume P > Q + 1 in using

Theorem 2. Since 6nlP+1]iX) terminates, the recursion formula is valid for all P, Q.

Also, alternate forms for C„ Dv which are useful when v > [a/2] can be determined

from Theorem 1.

Corollary 2. Let R and T be integers ^ 0, r = max [T + 1, R + 2], and let a,

dj, i = 1, 2, • • -, R, j = 1, 2, • • -, T + 1 be complex constants, id,- = 1 forj = T

+ 1). Then the hypergeometric polynomials Qn0z), see (8), satisfy the recursion rela-

tionship

(57) ¿ EyQn-yiz) + z ¿ FyQn-yiz) = 0 ,
1>=0 K=l

h = min [t, T + 1], h = min [r - 1, R + 1], n = t + S, t + ô+1, t + 8 +
2, • • •, 5 = 0 or — 1, where

(58)
(n + 1 - v)yjn — v — 1 + dT+i)      v     ( —v,n —v + dT+í    \

L> - v\0n + dT+i - 1) T+2tr+\n _v_l + dT+i  V ,

„   _ On + 1 — v)yjn — v + Cr)      „ [1 — v,n + 1 — v + cr     \

*'-       Tiv)in + dT+i-l)      R+l  R\ u-v + Cr V'

v\0n + dT+i-l) +    J+l\n -v - 1 + dT+i

(■y,   _1_   1

(59)

Proof. Let

(60) Qn^iz) = P„(*/7) .

Then

(61) limQ„(T)(2) = Qniz).
7—400

If we form the difference equation for Qnly)iz) we see we must have

(62) lim Cy = Ey,       lim 7_1P, = P, •
7-*oo 7—*o©

Using (55), (56) to take the limits term by term gives (58) and (59).

Note that E, vanishes for v > T + 1 and Fy for v > R + 1 since they may be

expressed as the cth difference of On + dT+i — 1 — v + x) or the Ov — l)th difference

oi On + cR — v + x) respectively evaluated at x = 0.
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