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By A. H. Stroud

1. Introduction. Assume we are given an integration formula for the ra-dimen-

sional cube Cm of the form

(1) /     • • •  /    f(xh ■•-, xm)dxi- • -dxm c~ X Ajf(vjl, ■ • •, vjm)
J-i       J-i j=i

which is exact for all polynomials of degree ge?; this is equivalent to assuming (1)

is exact for all monomials

xiaix2a"- ■ ■ ■ xmam ,       ah • • -, am nonnegative integers ,

0 ^ ai + a2 +  ■ • • + am g d .

We say that such a formula (1) has degree d.

We say that formula (1) is symmetric if the right side of (1) is not changed

under any of the ml permutations of the variables xi, x2, ■ ■ ■, xm. In other words

(1) is symmetric provided that if the formula contains the point

(vj\, vj2, ■ • -, vjm)       coeff. Aj

then the formula also contains the point

(vjpv "in,  • • -, VjpJ coeff- A.}

where (pi, p2, • • -, pm) is any permutation of (1, 2, • • -, m).

In this article we show how a symmetric formula (1) of degree d ¿ 2m + 1

for Cm can be used to construct a symmetric formula of the same degree for C„,

n > m.

Following Hammer and Stroud [2] we say that formula (1) is fully-symmetric if

the right side of (1) is not changed under any of the 2m(ra!) linear transformations

of Cm onto itself. Lyness [3] has given a method by which a fully-symmetric formula

of degree d ^ 2m + 1 can be used to construct a fully-symmetric formula of de-

gree d for C„, n > m. Lyness defines a formula for C„ constructed by this method

as an extension of the formula for Cm. The result of this article is a variation of the

result of Lyness.

In what follows we use the notation

Icm(xiaix2"2---xmam) = /    ••• /    Xxlxp---xmamdxvdXm
J-i        •'-i

and Vm = Icm(l) = 2m. We note for future reference that if

Icm(XlaiX2a* ■ ■ -Xm"™)   -  Ca¡...amVm

then
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Icn(XlalX*a2- ■ ■«»"»■)   = Car.amVn .

2. The Method of Extension. We assume formula (1) is symmetric and we

write the points and coefficients in this formula as follows:

(2)
(Mil, Mil» P-ik, Pik, 0, • ■ -,0)s       Ai = aiVm,

ma times m ik times     m — m ¿times

m£ = ma + • • • + mik, 0 ^ m¿ ;£ m, 1 ;£ m,i ^ m, • • -, 1 ^ mrt ^ m, fit> ?¿ juís

r j¿ s, i = 1,2, • ■ -,M .

Here (i»ti, • • -, y,-m)s denotes the set of points consisting of the point

(va, • • •, Vim) and all points obtained by permuting the coordinates va, • • -, p,m

in all possible ways, yl ¿ is the coefficient of each point in the set of points (2).

We define the extension of formula (2) to be the formula for Cn consisting of

the following:

(m«i, • Mil, M«t) ßik, 0, ■■■,0)s Bi
•>ik '

w ja times

for all possible choices of ja,

and for all i,  i = 1,2, • ■ ■

intimes n — ji times

ji = ja +

■ ■ -,jik which satisfy 0 ^ ja Ú ma, • • •

, M. The coefficient of the points (3) is

+ i it,

0 ^ jik á mik

(4) " i.Jil.'

(-l)»<-^Z(n,m,TO,-,j,-)
aiV n

k      (ma — ja) !•••(»»«— j«) !

where Z(n, m, m¿, j<) = (n — m + m¿ — j¿ — l)!/(w — m — 1)! .

We now state :

Theorem 1. If formula (2) for Cm has degree d, where d 5? 2m + 1, then the

points (3) with coefficients (4) are a formula of degree d for Cn,n > m.

We do not know how to prove this theorem for all m but we believe it to be

true. We have verified it for m ^ 5; we will show how it can be verified for m = 4.

To start let us assume that the points (2) have the special form

(Mil, Mil, Mi2, Mi2)s Ai = aiVi(5)

for all i 1,2, • • •, M. The points (3) and coefficients (4) will then be

(Mil, Mil, Mi2, Mi2, 0, •

(Mil, Mil, Mi2, 0, 0, •

(Mil, Mi2, Mi2, 0, 0, •

(Mil, Mil,   0, 0, 0, •

(Mi2, Mi2,   0, 0, 0, •

(6)   (mü, Mi2,   0, 0, 0, •

(míi,   0,   0, 0, 0, •
(mí2,  0,   0, 0, 0, •

,0)s

,0)s

,0)8

,0)8

,0)8

,0)8

,0)8

,0)8

■Di,2,2      —   aiYn ,

^i,2,l

¿"i.1,2.

5i.2,0Í

■Bi.0,2

= — (n — 4)o,-Fn ,

aiVn,

( 0    0,   0,   0, 0, ...,o)

Bi.1,1     = (n - 3)(n - 4)a,Fn

ßi.i.oi       -(w-2)(n-3)(n-4)

Bi.o.i

•Bi.O.O

a ir n ,

(n - l)(n - 2)(n - 3)(n - 4)

4
a%v n .

i= 1,2,---,M .
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Here Z?¿,0,o is only part of the coefficient of the point (0, 0, • • -, 0) in the extended

formula; this coefficient is ^¿Li JSi.o.o-

Let a\, a2, a-j, a4 be fixed, but arbitrary, positive integers which satisfy

0 < ai ^ d ,

0 < a\ + a2 ¿, d ,

0 < ai + a2 + a3 ^ d ,

0 < a\ + a-i + a% + a4 ^ d ,

where d 5= 9. We show that formula (6) is exact for each of the five monomials

(7) Xi*1Xia*XtatXf* , X^'X^Xa"3 , Xi°"X2al , Xiai , 1 .

Consider, for example, the monomial xiaix2ai. The assumption that (5) is a

formula of degree d,  d ^ 9, implies that

T7      ,Ç~* „   f   "1   °2   _L  O   ai   "2  _1_ O   "2   «l     i        "1   "21 r       /„  «1„ <*2\
l m ¿^ «-iMiiMii + ¿ßaßii + ¿p-np-iï + Mi2M¿2j = ¿cw^i   Za   J .

i=i

Using formula (6) to approximate Ic„(xiaix2ai) we can verify that we obtain

M

17     V"1 „   r   "'   °2   _1_ O   ai   <*2  _L  O   "2   "1     I        <"'   "21
K„ ¿^ «ilMiiMii ~r ¿M>iM»2 + ¿pap-ii + Pi2Pi2\ .

i=i

By the remark made at the end of Section 1 this shows that formula (6) is exact

for x\a\x2a-. In a similar way we can verify that (6) is exact for all the monomials

(7). By symmetry it follows that (0) is also exact for all monomials

«I    «2    «3    «4 /l«!«1 /U«! ,."2

where (pi, p2, />3, /n) is any permutation of (1, 2, 3, 4).

To complete the proof that (6) has degree d there only remains to show that

(6) is exact for all monomials of the form

(8) XplXpl- ■ •x™ ,        4 < s ^ n, a i > 0, i = 1, • • -, s, 0 < ai + • • • + a, ^ 9 .

We note that in each monomial (8) the a¡ cannot all satisfy a< ^ 2, i = 1, • • -, s.

Therefore, for at least one i we must have a ¡ = 1. This means that

//   ai   a, „as\   _  r\
On\  PI   Pi' '      Ps/ ^ •

But formula (6) also gives zero for the integral of (8) because each point of (6) has

at most four nonzero coordinates.

In a similar way we can verify that if a formula (2) for C4 consists of any col-

lection of points and has degree d :S 9 then the extended formula (3) also has

degree d.

3. An Example. Albrecht and Collatz [1] have given the following oth-degree

7-point formula for C2:

(0, 0)        2F2/7 ,
(r, r)        25TV168 ,

(-r,-r)        25F2/168,

(s,-t)s       5F2/48,

(-s,t)s       5F2/48,

r2 = 7/15,        s'2 = (7 + (24)1,2)/15 ,        f- = (7 - (24)1,2)/15 .
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The extension of this formula gives the following 5th-degree formula for C„

which uses 3n2 + 3n + 1 points :

±(r,r,0, ■■-,0)s 25F„/168,
±(r, 0, 0, • • -, 0)a -25(n - 2)Fn/168 ,

±(s, -i,0, ■■■,0)s       5F„/48,
±(s, 0, 0, ■ • -, 0)s -5(n - 2)F„/48 ,

±(t, 0, 0, • • -, 0)s -5(n - 2)Fn/48 ,

(0, 0, 0, ■ • ■, 0) (5n2 - 15n + 14)F»/14 .

Here ±(r, r, 0,   • • -, 0)s denotes the two sets of points (r, r, 0,   • • -, 0)s and

(-r, -r,0, •••,0)s.

4. Remarks. If formula (2) for Cm is fully-symmetric and if we denote it by

Ä(m) as Lyness [3] does, then our extension of R<-m) coincides with the formula de-

noted by Lyness as Emn(0)R(m). We have not discussed formulas which correspond

to the Emn(y)R(m), y ^ 0, of Lyness.

The method described in Section 2 for extending a formula for Cm can also be

applied to certain other special regions. Let Ri be a one-dimensional region and

wi(x) è 0 a weight function which satisfy J Rl Wi (x)x°dx = 0, k an odd integer, 0 < k ú d.

Let Rm = Ri X Ri X • • • X Ri and wm(:ci, • • •, xm) = wi(xi) ■ • -Wi(xm). Given

a symmetric integration formula of degree d S 2m + 1 for

I-/(9) J     ■■• J wm(xi, ■ ■■,Xm)f(xi, ■ • ■,xm)dxi- ■ • dxm
Rm

we can extend this formula—by a method exactly similar to the method for Cm—

to obtain a symmetric formula of degree d for

I       • • ■  J Wn(Xi,  • ■ ■,Xn)f(xU  ■ • -, Xn)dXv • -dxn .
Rn

As an example of (9) we have

• • • /    exp (—x2 — ••• — xm2)f(xi, ■•-, xm)dxv • -axm .
-OO •'-00

Lyness [4] has discussed extensions of fully-symmetric formulas for (10).

The method of extension discussed here (and by Lyness) has the undesirable

property of producing integration formulas with both positive and negative co-

efficients. Hopefully, methods of extension will be found which do not introduce

negative coefficients.
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