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Formulas for Bivariate Hyperosculatory Interpolation

By Herbert E. Salzer

Abstract. For a given function /(*, y), bivariate hyperosculatory interpolation formulas

are obtained by employing a suitably constructed binary zzic />„(*, y) that is fitted to

the values of /(*, y) and its first and second partial derivatives at the m points (*¡, y,) of

a rectangular h X k Cartesian grid, where (*<, y,) = (xo + pîh, y0 + qdi), Pi and q¡ are

small integers ä 0, i = 0(l)m — 1, m § 2. In terms of the variables (p, q), where * =

*o +ph,y = yo + qk (and /(*, y) = F(p, q)), we have pn(x, y) = Pn(j>, q). Often, for Pa(p, q)

having a specified desirable form, this problem turns out to be insoluble for every con-

figuration of the points (*,-, y<). When this is not the case, it generally requires considerable

investigation to find a practical configuration of points (*,-, y¿) for which there is a solution

of the form Pn{p, q). Formulas are found for choices of Pn(j>, q), and soluble configurations

of points (*,-, yd, that have dominant remainder terms in

n KBJx..,x(r timefl)i/...y(t time9)(*0» yo)

whose orders r + s are as high as possible. Three two-point formulas, two three-point

formulas and one four-point formula, including all remainder terms through the order

,     _ f«, for m = 2   "|
r + S ~ In + 1,    for m = 3, 4) '

are given here in convenient matrix form.

1. Introduction. This present article is concerned with some formulas for zzz-point

bivariate hyperosculatory interpolation over an h X k rectangular Cartesian grid,

where we interpolate for f(x, y) by means of a binary zzic pn(x, y), which together

with its first and second partial derivatives at (*„ y{) agrees with /,■ = /(*,■, y{),

Ui = U(Xi, y,), fVi m /„(*,, y{), fXXi m fxx(Xi, yx), fxti = /IV(x,-, y,) and /„„, ■ /„„(*,, y,),

x, = Xo + Pih, yi = y0 + qtk, wherep( and q{ are small integers ^ 0, i = 0(l)m — 1,

and x = x0 + ph, y = y0 + qk. Such formulas might be specially convenient when

/(*, y) is the solution of a second-order partial differential equation where some, or

even all, of the first and second partial derivatives are readily available at (xit j\),

either as a byproduct of a numerical solution of the equation, or from the equation

itself.

2. Previous Related Work. To review briefly the situation for osculatory and

hyperosculatory interpolation up to the present investigation, we recall first the

very widely known fact that for a single variable we can always find a unique poly-

nomial of degree zz, say Pn(x), such that at any zzz points xi; i = 0(l)zzz — 1, regularly

or irregularly spaced, real or complex, we have P¿'°(Xí) = fu\x,), j\ = 0(1)^^

]C"í-¿ k{ + m = n + I. For two variables, even for ordinary interpolation, say in
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fitting a binary zzic like a + bx + cy + dx2 + exy + jy2 + • • • + rx" + sx'^y +

• ■ • + ty" to /(*;, y¡)> z = 0, 1, • • • , (zz + l)(zz + 2)/2 — 1, there is the restriction

that the determinant |1, xis v¡, x2, x,yi( y\, ■ ■ ■ , x", af1?«, • ■ ■ , y"\ ^0, which

appears to be just mildly restrictive. It was the detailed investigation of bivariate

osculatory interpolation, i.e., fitting a binary polynomial to /¡, ]xi and /„,.,

z = 0(l)m — 1, that brought out some surprising results about the insolubility of

the problem under a wide variety of conditions [1]. Thus there were some cases

where a binary polynomial of prescribed form fails for any choice of points (xi( y{),

and in other cases where it may fail for just certain special configurations of the

points (Xi, jj).* To obtain solutions in the former cases, it was necessary to slightly

distort a natural looking choice of a binary polynomial, by leaving out a lower

degree term and adding one of higher degree. For binary polynomials that were

not generally insoluble, it was often found that the closest and most symmetrical

configurations of (*<, y¡), e.g., ; . for three points, or '. ; for four points, did not

have a solution, and a considerable amount of searching was necessary in order to

find the closest configurations that were soluble. But for the present problem of

bivariate hyperosculatory interpolation, it turns out that these difficulties of finding

a suitable binary polynomial, and also configurations of (xt, yt) that have a solution,

are so magnified that there is much less leeway in the selection of workable formulas.

The foregoing discussion indicates how we may be misled in expecting certain

properties in univariate interpolation to hold in multivariate interpolation. Thus

all the standard forms of the interpolation polynomial in one variable, e.g.,

Lagrangian, Gregory-Newton, Newton-Bessel, Everett, and even Newton's general

divided difference formula, have mixed confluent forms of every variety. But for

bivariate interpolation, there is no unambiguous definition of a formula for pre-

assigned confluent points of specified multiplicity, since in the process of the confluence

of points in the two-dimensional plane, the direction of approach determines the

form of the result. Furthermore, even when the direction of approach in the confluence

of points is specified, in general certain limiting confluent forms may not exist.**

In connection with bivariate interpolation, the terminology "irregularly-spaced

points in two dimensions" in most books on classical numerical analysis, is restricted

to refer to points (x¡, y¡) that are irregularly spaced in the x- and j-directions con-

sidered separately, but not completely irregularly in the x,j>-plane. Consequently,

interpolation formulas given for those so-called irregularly-spaced points are usually

restricted to arguments (*,, y¡) that lie in a rectangular grid formed by rectangles

of different sizes. For attempts to give suitable definitions of confluent forms, in

connection with several suggested new divided difference formulas for functions

of two variables where the arguments (x¿, y i) are spaced in a completely irregular

manner, see [2] and [3].

The wide restrictions on the composition of the binary polynomials and the

arrangement of the points (x¿, y,), when there does exist a solution to a bivariate

osculatory or hyperosculatory interpolation problem, is indicated in the structure of

* In [1] there are many illustrations for both cases, e.g., the simplest, for the former, being

the general impossibility of fitting a + bx + cy + dx2 + exy + fyl to /<, fmi and /„¡, i = 0, 1.

** E.g., while we may fit a binary quadratic to any /(*, y) specified at the 6 points (0, 0), (1, 0),

(0, 1), (1, 1), (2, 1) and (1, 2), there is no limiting confluent form as (1, 0), (0, 1) -» (0, 0) and (2, 1),
(1, 2) —> (1, 1) (see previous footnote).
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the relevant determinant. It seems from experience that we must, in the confluent

cases, avoid a binary polynomial whose general functional appearance is too sym-

metrical in x and v, and a configuration of the points (x¿, y¡) that is too regular.

Apparently, for the confluent cases in one variable, this problem does not arise

because the determinants are closely related to the nonvanishing Vandermondian.

But it appears that in the confluent cases for two variables over a Cartesian grid, where

the binary polynomial does not lack solutions for every configuration of the points

(xt, yx), there are still a number of ways in which the horizontal or vertical alignment

of even some of the points (*,, y,) may cause the determinant to vanish for many

configurations of all the points (*,, yt).

3. Change of Variables. Now it is convenient to shift variables from x, y to

p, q, where p = (x — x0)/h and q = (y — y0)/k. Then /(*, y) will be denoted by

F(p, q), and /,- = f(xit y,) = F(pi, qt) a Ft. The partial derivatives of F(p, q) with
respect to p and q at p = p, and q = qi; namely Fp¡ = Fp(pi, q¡), Fqi = F0Q\, q{),

Fppi = FJjpt, q,), FPQi = Fpa(pi, qt) and F„,. = FM(p„ q,) are related to the partial

derivatives of j(x, y) with respect to * and y at x — x¡ and y = y,- by FPI = hfXi,

Pci = kfvi, F^, = h2jXXi, FPQi = hkfxui and FQ<¡¡ = k2fyvi. In general,

"p • • 'p    q • • 'Q       ■   fi K  jx-'-x    y*j/9

(r times) (s times) (r times) (s times)

so that for small h and k, as r + s increases, the

F
(r times) (« times)

becomes very much smaller than the corresponding

¡X*"X      V'V

(r times) (s times)

The interpolating binary zzic pn(x, y) is denoted by Pn(p, q).

4. Remainder Terms. To estimate the accuracy of bivariate hyperosculatory

interpolation of F(p, q) by a uniquely determined Pn(p, q), in the absence of an exact

expression for the remainder F(p, q) — Pn(p, q), we obtain its dominant terms from

its Taylor expansion about (p0, q0) = (0, 0), just as in [1]. One straightforward way

to find those dominant terms (which is not the most convenient way in view of IV

below) is to expand each

FP...P  ,...„, r + 5 = 0, 1,2,    / í¿ 0,
(r times) (s times)

that occurs in Pn(p, q), about (0, 0), and to subtract that form of Pn(p, q) from the

Taylor series for F(p, q) about (0, 0). The remainder is then seen to be given by

(1) F(p, q) — Pn(p, q) =  2   Fv-v  «•••«. Kr,,(j>, a),
r,8    (r times) (a times)

where Kr,(p, q) are polynomials in p and q. From the uniqueness of both Pn(p, q)

and the Taylor series, we obtain immediately the following four guiding rules as to

which (r, s) terms are to be found in the right member of (1), and also how to find

the polynomials KT¡,(p, q) most conveniently:
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I. If Pn(p, q) contains a term Kp'q', there will be no (r, s) term in the right mem-

ber of (1).
II. If Pn(p, q) lacks a term Kprq', there will be an (r, s) term in the right mem-

ber of (1).
III. If Pn(p, q) has a term of the form K(prq' + p'q'), then in (1), K,,r(p, q) =

-Kr,,(p, q).

IV. The application of (1) to F(p, q) = p'q', for which the right member has

just a single term, yields for Kr,,(p, q) the explicit formula

(2) Kr,,(p, q) = (l/r!5!)   [p'q' - PJip, q) for the function p'q'}.

5. Determination of Formulas. All formulas have the same quadratic part, the

first six terms of the Taylor series about (p0, q0) = (0, 0), namely,

(3) F{p, q) =  F„ + pF„, + qFQa + | FPP, + pqFPQ. + y Faa„ + • • •  .

Those six terms also constitute the optimal hyperosculatory formula for m = 1.

For zzz = 2, say (0, 0) and (plt q,), we must solve a 6 X 6 linear system for the

coefficients of the higher degree terms in Pn(p, q), to meet the interpolation con-

ditions at (j>i, q¡). In view of I—III above, those six terms should be of the lowest

possible degree. Consider the 6 X 9 matrix of p'q' with its first two partial derivatives,

i + j =" 3 and 4, for every (p„ qL). We may drop the subscript 1 and refer to that

matrix as P. No polynomial Pn(p, q) can have four independent cubic terms because

the four cubic columns in P are linearly dependent, as seen from the multipliers 1,

—3p/q, 3p2/q2 and —p3/q3 for q ^ 0, and a vanishing q3 column for q = 0. The

author conjectured, and T. N. E. Greville proved in 1960, that rank P < 6. Greville

showed the linear dependence of the rows of P by verifying that for any polynomial

P(P> q) consisting only of cubic and quartic terms,

p(p, q) m ïpp, + hP, - hp2P„» - IpqPv, - iW-P«..***

These properties of P show that no two-point formula can have more than five

independent cubic and quartic terms, of which there cannot be more than three

cubic terms. Thus an optimal formula, from the standpoint of highest degree dominant

zzrzc* terms in the remainder, should have three cubic, two quartic and one quintic

terms. The closest configuration of two points is (p0, q0) = (0,0) and (px, qx) = (1,0).f

It has the drawback of not being symmetrical with respect to the p, q-grid. At this

point, we introduce the notation "A" for the determinant of the linear system of

equations for the coefficients in any formula under consideration throughout this

article. For (0,0) and (1,0), the nonquadratic part of the interpolating quintic Pà(p, 4),

subject to the conditions of A t¿ 0 and Pf(p, q) being symmetrical in p and q,% can

be only of the form a(p3 + q3) + bp2q + cpq2 + d(p* + q4) + e(p3q + pq3)

*** The result in [1] on the impossibility of finding a binary quadratic for two-point osculatory

interpolation is expressible as the simplest Greville-type identity: If P(j>, q) has only quadratic

terms, P(p, q) =  %pPp + \qP,.
t For (0, 0) and (0, 1) just interchange p and q in the formula for (0, 0) and (1, 0).

% Here symmetrical means not unchanged in value on interchanging p and q\ but unchanged

in general functional form.
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+ f(pb + q5). For the corresponding formula, with remainder terms through the

5th order, see AI in Section 6 below. The points (p0, q0) = (0, 0) and (pu q,) =

(1, 1) are situated symmetrically with respect to the/z, zj-grid, though their distance

apart is nearly 1£ times that for (0, 0) and (1,0). There are altogether 30 symmetrical

forms for P&(p, q), of which 18 have A = 0 and 12 have A j¿ 0 for that configuration.

Of the permissible 12, two representative choices of Pb(p, q) are P5(p, q) = quadratic

part + ap3 + btfq + pq2) + cq3 + dp* + eq* + f(p* + «/) ("extreme"

power weighted), and P¡,(p, q) = quadratic part + a(p3 + q3) + bp2q + cpq2 +

dp3q + epq3 + /(pV + />V) ("central" power weighted). For the corresponding

formulas, with remainder terms through the 5th order, see All and AIII in Section 6

below.

For m = 3, say for points (0, 0), (pu qx) and (p2, q2), it is natural to meet the

18 interpolation conditions with a polynomial P5(p, q) having the 15 terms of the

complete quartic and which preserves its symmetrical form with the three quintic terms

°(PS + q6) + h(p*q + pq*) + cfjfq2 + p2q3). Obtaining P5(p, q) requires the solution

of a 12 X 12 linear system. It was found that A = 0 for these 14 configurations of

base points (heavier dot for (0, 0)):

■ t • •   • •

and A ^ 0 for these four configurations:

•   • •       • •

The scarcity of configurations where A ^ 0 is underscored by noting that the last

three are variations of just

under one of or both the transformations (p, q) —> (q, p) and (p, q) —» (2 — p, 1 — q)

which leave the above selected P5(p, q) unchanged in its symmetrical form. For the

formula corresponding to the configuration

with remainder terms through the 6th order, see BI in Section 6 below. We may

use BI for any other "knight's move" configuration of three points, with the proper

definition of p and q. E.g., for (0, 1), (1, 1) and (2, 0) replace (p, q) by (p, 1 — q),
remembering not to overlook the changes of sign in

F
(r times) (s times)

A different nonsymmetrical P5(p, q) was employed for the very nice-looking sym-

metrical  configuration
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having the least diameter of 2,/2 = 1.41 ... (cf. with diameter of 5I/2 = 2.24 ... for

Of the 20 possible combinations of three terms in p'q', i + j = 5, to add to the

complete quartic part of Pb(p, q), A ^ 0 for just these 4: pb, p4q, </; /, pq4, qb; ps,

P3q2> q5> P** P2Q3> 4- The second and fourth combinations are essentially the same

as the first and third resp. because of the symmetrical form of both the

configuration and the complete quartic part of P5(p, q). The ps, p3tf, q5 combination

was chosen because it appears more balanced in p and q than p5, p4q, q6. For the

corresponding formula, with remainder terms through the 6th order, see BII in

Section 6 below. As a rule, BII is preferable to BI because it has fewer terms, smaller

coefficients, a generally smaller remainder,ftt is easier to compute, and the

configuration is more convenient and adaptable than

(e.g., in interpolating for the solution to a problem in a region that is bounded

naturally by a square, where the

configuration might be inapplicable or less convenient).

For m = 4, for points (0, 0), (p,, q,), (p2, q2) and (/z3, q3), there is the very natural

and attractive-looking

configuration. The 24 interpolation conditions are satisfied by a symmetrical sextic

PÁP, q) that has the 21 terms of a complete binary quintic and three terms in p'q', i +

/ = 6, which must include p3q3 to have symmetry. Of the combinations pa, qa, or

pbq, pq\ or />V, p'q4, A ^ 0 only for p*q, pqb. For the corresponding formula, with

remainder terms through the 7th order, see CI in Section 6 below.

To go beyond m = 4 for second derivative formulas, or to find formulas for

m Ïï 2 involving third- or higher-order derivatives, it is recommended that one develop

■fît Exceptions may occur when

Fp...p «...«„
(r times) (« times)

is practically the same as

Fp...p    j...o„,       r + s = 5,
(s times) (r times)

for h and k sufficiently small.
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a single comprehensive machine program for eliminating Pn(p, q) and configurations

of (p„ q,) where A = 0, and then solving for the coefficients of PJjp, q) and the

dominant remainder terms in cases where A ^ 0. It may be anticipated, on the basis

of [1] and this present work, that one will discover an even greater scarcity of satis-

factory interpolating polynomials Pn(p, q) and sufficiently close configurations of

points (p„ q,) for which A^O. For instance, in two-point hyperosculatory interpola-

tion involving third derivatives, we might wish to satisfy the 10 interpolation con-

ditions at (/>i, c7i) with a P5(p, q) having, beyond a complete cubic part for the 10

conditions at (0, 0), 10 of the 11 possible quartic and quintic terms p'q', i + j = 4

and 5. But that is impossible because rank R < 10, where R is the 10 X 11 matrix

of p'q' and its first three partial derivatives. In fact, the rows of R satisfy a very

strong Greville-type identity, since the first six alone are linearly dependent, the

multipliers being 1, —2p/5, —2q/5, p2/20, pq/10 and i//20. This implies that if
we replace the four third derivative conditions at (pu q,) by any other four conditions,

not necessarily involving derivatives, or even the point (pu q,), the corresponding A

will still vanish.

6. Schedule of Formulas. Every formula is given in matrix form

(4) F(p,q) = aAßT + yBÔT +

where aAßT is the interpolating polynomial P„(p, q) and yBôT is the sum of the

dominant remainder terms. The matrix form has the advantage (besides its obvious

compactness and convenience) of providing either the coefficients a, b, c, ... etc.,

by first taking the product aA, or the polynomial coefficients of

Fp...„  ,...„, r + i = 0, 1, 2
(r times) (8 times)

(analogous to Lagrange interpolation coefficients), by first taking the product AßT.

Obtaining aA (AßT) first might be preferable for machine storage when there are

fewer (many) sets of

Fp...p ,...„,        r + s = 0, 1, 2,
(r times) (s times)

and many (fewer) arguments p and q.

Every formula given below, including all the dominant remainder terms, was

checked by having it reproduce exactly a function F(p, q) that was chosen to be a

polynomial with integral coefficients and of such degree that the dominant remainder

terms constituted the entire remainder.
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Two-Point Formulas.

AI.   Oo, ?o) =  (0, 0), (pu q,)  =  (1, 0).
a is the 1 X 12 matrix \\F0, F», Ft„ FPP„ FP<¡„ F„., Fu Fp„ F.„ FPP„ FMl, FfJ|,

^ is the 12 X 12 matrix

1 0 0 0 0 0 -10 0

010000-6 0

001000   0-3

0 0 0^-00

0 0 0 0 10

o o o o o i

I o
0 -2

0 o-l
100 0 0 0 0 0

000000-4

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2- 0

0 -1

0  0

15

8

0

3
e

0

0

-15

7

0

-1

0

0

0 -6

0 -3

2  0

o-i

ß is the 1 X 12 matrix \\l,p,q, p2, pq, q2, p3 + q3, p2q, pq2, p* + q\ fq + pq\

P  +9 ii»
7 is the 1 X 9 matrix \\(Fmp, - F,„.)/6, (F^ - F„„.)/24, (F,

B is the 9 X  12 matrix

0-100

PPPQo * POQffo,)/6,
/24||,

o o

0 0

0 1

0 0

0      0    0    0    0    0

0-10000

-1      0    0    0    0    0

0-2    0-2

0 0 0

0 0 0

0      0    0

0 0    0    0    0

0 0    0    0    0

0 10    0    0

0 0    10    0

0 0    0    10

0 0    0    0    1

and S is the 1 X 12 matrix | \p2q, pq2, q3, p3q, p'q2, pq3, q\ p'q, p3<f, p2q\ pq\ f\\.

AIL   (p0, q0) = (0, 0), (plt qx) = (1, 1).
a has the same form as in AI above, but a different value, since (pu qL) = (1, 1)

instead of (1, 0).
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A is the 12 X  12 matrix

7" 2

5" 2

13

12

5' 4

_5_
'l2

0

0

0

0

1"4

0

0

0

0

0

1

4

0

15

2

17.

4

15

4

7

3

3

2

8
8

15

2

4

15
4

Z

"a

-i

5

- 5

5" 2

7" 2

J5_
'l2

5" 4

13

12

5 -TT

5* 2

3" 2

_5_
12

1

4

1_
12

15

2

15
4

17
4

8

S

2

8

15' 2

15
4

13
4

5~8

■1   -

ß is the 1 X 12 matrix 111, p, q, p2, pq, q2, p3, p2q + pq2, q3,p4, q4,ps + q6\\,

7  is  the   1   X   9  matrix  ||(F„„„   -   Fpaa.)/2,  FpppaJ6,  FppaQjA,  FP,„J6,

\"ppppp0 FqqqQQo)/ i^v,    *VVVVQa/JA)    "ppPQQo/ *A    "PPQQQo/ *¿i    "pcoo«o/j^í+||>

B is the 9 X 15 matrix

.111-6      2   ~2
£0000o

0    0    0    0    0

3 3

4 ~4T   -T  -T      T   -T    1     0     0    -i

1 -1 -1

3 _3 _3

4 "4 ~4

f     °

1  -- 0   1

i-I  0   0
4    4

0 -i -I 0   0

1 I -i 0   0

0 -I
2

3 s
2 _2

3 3

2 ~2

i -I  0   0   0

0    0

0    0 0

0    0 0

0 0

0

-   0    0    0   ---•=•   0    0

i-»
i   Î  0
2      4

0   o-t

0    0    0   -•=■
2
X"S

o   o -i

1 o -I

0    o   -- --   0    0    O    1  -i
4      2 2

and 5 is the 1 X 15 matrix \\p3, p2q, pq2, q3, p4, p3q, p*<f, pq3, q4, ps, p*q, pq2, p2q\

pq\ q5\

AIII.   (p0, q0) = (0, 0), (pu 9l) = (1, 1).
a is identical with that in All.
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A is the 12 X  12 matrix

1-1    il
4      " 4 2

3 O i
2

O      -3 I
2

_ü        1 1

T      - 1

5_

8

£
4

3

4

9

4

1_

Z

I
4

1
2

- 1

11

_ _     _ _ _ 4

15

2

l_
2

2

1
2

£
2

1    -i

1    i

0 is the 1 X 12 matrix \\l,p,q, p2, pq, q2, p3 + q3, p2q, pq2, p3q, pq3, p3q2 + p2q3\\,

7 is the 1 X 9 matrix \\(FPVPo - F„J/6, FPPPPJ2A, FmJA, F^J2\, F^J \20,

"vvppqq/ ¿^>   v-*w *PP<JQQo)/ *~¿">     " PQQQQo / ¿^ >    *QQQQQt>/ * *• " j

B is the 9 X 15 matrix

Í.1   I .1 0
2

O    O

3    .

1      1    „      l    ,

1°

■fo
2-1-^0

1
0      Z

-i-

"I-

0    0

1°
-fo

-f  o

2-i0 TT   o   --   0
2 2

0     JO-JO

-1-2-

-1-1°

and 5 is identical with that in AIL
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Three-Point Formulas.

BI. (/>„, io) = (0, 0), (pu ?1) = (1, 0), (p2, q2) = (2, 1).
a is the 1 X 18 matrix \\F0, FP„ FQ„ FOTo, FOTo, F,,., Fu FP„ Fq„ FPP„ Fpq„ Fqq¡,

*2»    *Pi>    * Qa»     "pp*1    *PCa»    *aasll»

y4 is the 18 X 18 matrix

-10  20i o

0 1

0 0

0 0

0 0

0 0

0 0 0

0 0 0

4-2

6  ü  ¿ -3
2   2

15 -40

8 -19

18

6

16 9 -6  20 -14

n . 6 _, ä „a
2   2

10 0 0 o -l
2

11

2
3-6

17

12

17

6

11
«6

0 -I
2

17

12

0 -1  £
3   3

o .¿.a
12  12

0  10 -15

27
0 -4  _

21

15

2

0

1

-62

-37

i« 1   »
0  -  r

«"I
0 -i

12

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 -30

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

- 5

2

2!
4

2

-17

5

21

2

-18

64

-26

-15

7

0

- 1

30

-27

-27

9

2

66 -24

55 -24

•   1

0   -

-i   3
6

0 0 0 0

0 0 0 0

0 - i - r-

o -A .11
12  12

5_ _

2

- 1 -

- 1 -

10

- 4 -

36

27

2

24

-14

- 6

-10

8-3

-82  33

32 -12

-15

2

I
2

u
'l2

3^

3

J_
12

6

-12

3 - s

1 - T

8 - r «

10

3

31

3

41' 6

-17

1

4

3

0   - - 4

0 - -  —

0 - í   ~

o --5-  |
12   3

ß is the 1 X 18 matrix 111, p, q, p2, pq, q2, p3, p2q, pq2, q3, p4, p3q, p2tf, pq3, q4, p* +

q\ A + pq\ H + fVII,
7  is the  1   X   10 matrix  \\(FPPPPPa   -   Fqqqqqa)/120, (Fppppq,   —   Fpqqqq,)/24,

\*pppQQo *   PPQQQd)/ *■*•)   *   PPPPPPo/   ' ¿V)   r pppppQe/ »¿U, F ppppqqf,/ ^O)   " PPPQQQo/ 3V, r ppqqqq0/^O,

r PQQQqqo/ AZU,   tQQQQQ(l0/ I Z\)\\,
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B is the 10 X 22 matrix

o -£ -¿1
6  6

o-l-l
25  61" 2 " 2

9 0

6 0

2 0

55 3

5
3

4

3

8
3

25

3 _41

2 * 3

1 Si
2 " 3

. I - £* 2 - 3

39 „„

T "97

0-6-16  24 0

1 - 5 - 2 0

13  12 -44

2 a   o

8

6

2

60

32

6

2 -20 0 - 4

7 -30 0 - 6

9 -32 0 - 6

17a -88 o - 5

°-f
»"I

28 -12

44 -22

47 -24

41 -21

4

S

7

6

5_

6

11

4

"I

£-£-10000000

£-£  00000000

- - -  00000000
3

25' 2

■i-1

2-5-5

.  11  113 -T"T

3-5

z  -4 -«

-3 1000000

00100000

00010000

00001000

00000100

00000010

00000001

and Ô is the 1 X 22 matrix ||/, p2q, pq2, q3, p\ P% fq>, pq3, q\ p\ p% ff, fq3,
pq4, q\ p\ p% pW, fa3, p2q4, pqb, qe\\.

BII.   (po, ?o) = (0, 0), (plf ?I) = (1, 0), (p2, ?2) = (0, 1).

a has the same form as in BI above, but a different value, since (p,, t?2) = (0, 1)

instead of (2, 1).
A is the 18 X 18 matrix

1 0 0 0 0 0 -10

010000-6

0 0 10 0 0

0 0 0-00

0 0 0 0 10

o o o o o ¿

3" 2

0

0

100 0 0 0 0 0

000000-4

0 0 0 0 0 0 0

0 0 0 0 0 0  i

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 -10

-S   o

0-6

o  o

0 -1

o o

O -1

O  o

o

_ 3" 2

o

o

o

o

O

o

10

o

- 4

o

o

1

15

8

O

3

2

o

o

-15

7

0 -2

1 O

15 -6

O -3

8  O

O"!

-6

O

-3 -3

1  «

o -I-I
2  2

O  6

O -3

O  1

O -15  O

O -3

O  O

o-l
O  1

O  O
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ß is the 1 X 18 matrix 111, p, q, p2, pq, q2, p3, p2q, pq2, q3, p4, p3q, p2(f, pq3, q4, p5,

PV, q°\\,
7 is the 1 X 10 matrix \\Fmrt./2A, Fm„./12, FpaqqqJ24, FPPPPpPJ720, F^^/120,

"pPPPQQù/^O)     "pPPQQQo/ ^"»     * PPQ.QQQ* / ^V ,      "pqqqqq0 / A -¿v,    ^ qqqQQQo /   '¿" | | J

£ is the 10 X 22 matrix

010 00-2-1  00  01  100 00000000

000 00  0-1  00  00  110 00000000

001 00  0  0-2 0  00-101 00000000

-100 03  0  0  00-3 0  000 01000000

020  00-3-2  00 00  200  00100000

000  00  0  0  00 00-100  00010000

000  00  0  0  00 00  000  00001000

000  00  0-1  00 00  100  00000100

002 00  0  0-3 0 00-2 00  00000010

000-10  0  0  03 00  000-3 0000001

and ô is identical with that in BI.

Four-Point Formula.

CI. (p0, q0) = (0, 0), (p!, qO = (1, 0), (p2, q2) = (0, 1), (p„ <?.,) = (1, 1).
a is the 1 X 24 matrix ||F0, FPo, F„0, FPPt, FMo, Fui0, F„ F„„ F,„ F„„„ F„„, F„

F    F      F      F       F       F       F    F      F      F       F       F    II
* 2>   -*ps)   * a»)   * PP«>   * Plaî   * OOa»   ■* 3)   *p35   *Q3î   * PPsî   ■* p«3)    "oa* I |î
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A is the 24 X 24 matrix

1    0    0    0    0    0    -10    -3    -3    -10 16      12      9      12 15    -6    -15    -6    -6-15-6      6      4      6

010000-6-E-3        0 8        7      6        2 0-3-8-3-4        003      20

001000        0-3-2-6 0        2      6        7 8      0        0-4-3-8-3      0      23

oooioo-£-£o     o £     £o      o o-£-£oo      0    0    £    0    0
222 22 22                                         2

000010        0-2-2        0 0        14        1 00        0-2-2        00010

1 13 33 31                        1
OOOOOx       OO-r-T 0        0      0       - -     O        0      0      0----0      0¿2 22 22 22                      2

0    0    0    0    0    0      10      3      S        0-15-12-9-12 O      6      15      6      6      15      O    -6    -4   -6

000000-4-10        O 7        5      3        O 0-3-7-3-2        0      0      320

000000        03      2       O 0-2-6-7 0      0        043        8      0      0-2-3

oooooo     £oo     o -1  - £   o     o o    £     íoo     o    o -£   o    o
2 2 2                                                  2

000000        0-10        O O        12        O 00        0-2-1        00010

oooooo      oo£     o o      oo-£ 00      000     £-000 -£
2 2 2                              2

OOOOOO        O      3     S      10 O    -12    -9    -12 -15      O      15      6      6      15      6    -6    -4   -6

OOOOOO        023        O 0-7-6-2 00        834        00-3-2      0

OOOOOO        00-1-4 O        03        5 70        0-2-3-7-3     023

OOOOOO        o£o        O 0-£o        O 00       £oO        00 --00
2 2 2                                        2

OOOOOO        00-1        O O        02        1 00        0-1-2        00010

OOOOOO      ooo      £ o      o     o   -£ - 1     O      0     00      1    ï    o     o -£
2 m z                      K

OOOOOO        0-3-3        O O      12      9      12 00-15-6-6-150      64      6

OOOOOO        010        O 0-5-3        O 00        732        00-3-2      0

OOOOOO        001        O O        0-3-5 00        023        700-2-3

OOOOOO        000        O O       £o        O 00-100        00     —     00
2 2

OOOOOO        000        O        O        01        O        00        0-1-1        0001

£        00        000-1000
2 2

OOOOOO        000        O        O        00       -       00        000-1000-i-

ß is the 1 X 24 matrix 111, p, q, p2, pq, q2, p3, p2q, pq2, q3, p4, p3q, p2q2, pq3, q4, p8,
4 3   2        23 4        5        5 33 5(1

pq, pq, pq, pq, q , p q, p q , pq \\,

7 is the 1   X   12 matrix \\FPPPPPPJ120, FppppaqJ48, FppqqqqJAi, FqqqqqqJ120,

"PPPPPPPof^^""? *   PPPPPPffo/   '-¿"j  *   PPPVPQQof *^HJ, VppppqQQaf   lT^T, Fpppqqqq0/ l^^j ^ PPQQQQQ o/ ^-^^9

"PflffdOCffo/ ' ¿V,   "qqqqQaqo/JV^yJWy
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B is the 12 X 30 matrix

-100030000-3 00000100000000000000

0-100021000-1-2 000001000000000000

00-1000120000-2-10000010000000000

000-10000300000-3 000000100000000

-3 00080000-6 00000000000010000000

00000-10000300000-3 0000001000000

0-2 000320000 -3 0000 -10000000100000

0-100020000-10100000-2 00000010000

00-10000200010-10000-2 00000001000

00-2 000230000-3 0000000-1000000100

0000000-1000003000000-3 000000010

000-3 0000800000-6 000000000000001

and 5 is the 1 X 30 matrix | |p3, p2q, pq2, q3, p4, p3q, pW, pq3, q4, p\ p% p3<?, p2q3, pq4,

q\ P\ p% pV, pV, pV, pq5, ?', p\ A, pV» pV, A*, A*. P<A <*7|l-

941 Washington Avenue
Brooklyn, New York 11225
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