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On Hadamard Matrices Constructible by

Circulant Submatrices

By C. H. Yang

Abstract. Let K2„ be an //-matrix of order 2« constructible by using circulant n X n sub-

matrices. A recursive method has been found to construct K4„ by using circulant 2n X 2zz

submatrices which are derived from n X n submatrices of a given Vïn. A similar method can

be applied to a given Win, an //-matrix of Williamson type with odd n, to construct WSn.

All K2„ constructible by the standard type, for 1 ¿ k g 16, and some V2„, for n ä 20, are

listed and classified by this method.

Let H„ be an zz X zz Hadamard matrix. Although it is conjectured that no cir-

culant //„„-matrix exists for zz > 1 (see [3]), it is known that many //„„-matrices can

be constructed by using circulant submatrices of order zz or 2zz. (For //-matrices of

Williamson type, see [1], [2], [4].)

Let V2n be an //2n-matrix constructible by using circulant zz X zz submatrices.

Then V2„ can be constructed by the following standard type:

(*) M2„ =
A

-BT

B
where A, B are zz X zz circulant matrices

and CT means the transposed matrix of C.

A recursive method has been found to construct V4n by circulant 2zz X 2zz matrices

which are derived by circulant zz X n submatrices of a given V2n. (See Theorem 1,

below.) Likewise, let Win be an //„„-matrix of Williamson type with odd zz; WSn

can be constructed by using 2zz X 2zz symmetric circulant matrices which are derived

from zz X zz symmetric circulant submatrices of a given Win. (See Theorem 2.)

Let S„ = ((e¡)) be the zz X zz circulant matrix with the first row entries e{, (0 á

i ^ n — 1), all zero except for ex = I. Then zz X « circulant matrices A, B of (*) can

be written as polynomials in S. (We shall omit the suffix zz of Sn and others when there

is no confusion.)

A =  An(S) =  £ «<S\ B Bn(S)   =     £   biS',

with coefficients af, b¡ = 1 or — 1 ; where S° = /„ = the n X zz identity matrix.

A sufficient condition for the matrix M2„ of type (*) being an //-matrix is that

M2„M2Tn = 2zz/2„ which is equivalent to

(0 AAT + BBT = 2zz/„
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Let P = P„(S), Q = Qn(S) be matrices obtained by replacing — 1 by 0 in A, B

respectively. Then the condition (1) is equivalent to

(2) PPT + QQr= 0„ + g„ ~ r„)I + rnJ,

where / = /„ = £7~J S* and pn, qn are, respectively, the numbers of l's in each row

of P, Q. Here, p„, q„ and r„ must be solutions of the following necessary conditions

for existence of V2n.

(3)

(4)

(zz — 2pn)   + (ji — 2qn)   = 2zz,

Pn   +   Qn   —   rn = \n.

Similarly, by taking Q' = J — Q, instead of Q in (2), (3), and (4), which is possible
since whenever A and B satisfy the condition (1), so do A and —B, we obtain the

corresponding conditions:

(5)

(6)

(7)

PPT + Q'Q'T = 0„ + q'n - r'n)I + rnJ,

(zz - 2pn)2 + (n- 2q'n? = 2zz,

Pn + q'n — r'n = h" ■

Since q'n = n — qn, we also obtain from (7) and (4),

(8) r„ = 2pn - rn.

Theorem 1. Let M2m be a given V2m-matrix of type (*) satisfying the conditions

(2), (3), and (A). Then M4m, a Vim-matrix of type (*), cczzz be found as follows:

(**) P2m(s) = Pm(s) + skQm(s2),        Q2m(s) = Pm(s¿) + s'QUs),

where s = S2m, Q„ = /„ — Qm, and k is any odd integer.

Proof. Since p2m = pm + qm, q2m = Pm + (rn - qm), r2m = 2pm are solutions of

the conditions (3) and (4) for zz = 2zzz whenever pm, qm, rm are solutions of (3) and

(4) for zz = zzz, it is sufficient to show that P2m and Q2m satisfy the condition (2), i.e.

■P2«-PL + Q2mQ2m =  zzz/2m + 2p„J2m.(5)

From (**), the left side of (5) equals, (since PT(s) = PCs'1)),

{P(s2)P(s-2) + Q(s2)Q(s-2)) + (P(.s2)P(s~2) + Q'(s2)Q'(s-2))

+ [skP(S-2) + s-"P(s2)]Jm(s2),        [since Q(s2) + Q'(s2) =  Jm(s2) =  /„(r1)]

1 m—1 | m—1 m—1

= \ml + rm E s2i + \ml + (2pm - rj £ s2' + 2pm £ s1M
Z i-o Z. ¿_o i-o

= zzz/+ 2pmJ.

Let Nin be a 4zz X 4« matrix such that

A,        B,

Nin   =

-B,

-c,

-D,

C,

A, -D,

D, A,

C, B,

D

C

-B

A
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where A, B, C, D are n X zz symmetric circulant (+1, — l)-matrices. Then a suificient

condition for N4n being a ¡^„„-matrix is that

NinNl = 4zz/„„.

Let P, Q, K, and G be matrices obtained by replacing — 1 by 0 in A, B, C, and D,

respectively. Then, corresponding to the conditions (2)-(4), we obtain

(2') P2 + Ö2 + K2 + G2 = (r. - ra)I + rnJ,

where t„ = p -f- q -f- k + g; p, q, k, and g are the numbers of l's in each row of

A, B, C, and D, respectively.

(3') (zz - 2p)2 + (n- 2q)2 + (n- 2k)2 + (zz - 2¿r)2 = 4zz.

(4') /„ - r„ = zz.

Similarly, corresponding to the conditions (5)-(8), we obtain

(5') P2 + Q'2+ K2 + G'2= (t'n-r'n)I + rnJ,

where Q' = J — Q, G' = J — G, and t'n= p + q' + k + g'; q' and g' are, respectively,

the numbers of l's in each row of Q' and C7'.

(6') (zz - 2p)2 + (zz - 2c/)2 + (zz - 2zc)2 + (zz - 2g'f = 4«.

(70 t'n- r„ = n.

(80 r'n = 2(j> + k) - rn.

Theorem 2. Let N4m be a given Wim-matrix with odd m satisfying the conditions

(2'), (3') and (4'). 77zezz N8m, a WSm-matrix, can be found as follows:

Ptmis) =  P(s2) + smQ(s2),        Q2m(s) = P(s2) + smQ'(s2),

K2m(s) =  K(s2) + smG(s2),        G2m(s) =  K(s2) + s"G'(s2);

where s = S2m, Q' = Jm - Q, and G' = Jm - G.

Proof. We know that P2m, Q2m, K2m, and G2m are also symmetric circulant and,

as in the proof of Theorem 1, that p2m — p + q, q2m = p + (zz — q), k2m = k + g,

and g2m = k + (zz — g); r2m = 2(p + k) are solutions of (3') and (4') for n = 2m

whenever p, q, k, g, and rm are solutions of (3') and (40 for n = m. Therefore, it is

sufficient to prove that the condition (2') is also satisfied, i.e.

(2'0 P\m + Qlm + K22m + G22m = 2ml + 2(p + k)J.

The condition (2") can be checked easily since the process of proof is exactly similar

to that of Theorem 1.

Let {w,} and {i;,} be two finite sequences respectively of

n-l n-1

Pi'r=£«,Si        and       QQT =  £^5'',
i-0 i-0

where P, Q are zz X zz circulant (0, l)-matrices; in this case, we also obtain w„_, = m>,-

for w = u or v.

The following Table I, of all constructible V2n (1 |zi^ 16) of type (*) with the

restriction pn è 9» â è«> is obtained by matching two finite sequences jz/,j  and
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¡Vi], respectively of PPT and QQT, such that w¡ + v¡ = r„ for 1 ^ i ^ |zz. Here,

Theorem 1 serves as a tool of classifying these finite sequences.

Note. 1. s = S*, where k is any integer relatively prime to zz.

2. When qn = \n, ß„(s) and Q'„(s) produce the same finite sequence.

3. * indicates the class of Pn(s) and Qn(s) unobtainable by Theorem 1.

It should also be noted that for a given zi X zz circulant matrix K(S), all matrices

M(i, j) = S*K(S'), for any integers i and j with (zz, j) = 1, produce the same finite

sequence corresponding to M(i, j)MT(i, j). Among all M(i, j) regarded as polynomials

in S, there is a polynomial, say /?, of least nonnegative degree ; we list R, as the rep-

resentative of all matrices M(i, j) producing the same finite sequence, as Rn(s) in the

Table I.
In Table I, Classes I and II of n = 16 are respectively derived from the corre-

sponding classes of zz = 8. Although Ps and Qs of Class II cannot be derived from

P„ and g4, they produce Pxt and Qxs of Class II, by Theorem 1. In this case, P,6 and

Qxe are interchangeable since p = q = 6, and we have

Table I

n Pn(s) Q„(s)

8-1 1+ s I + s + s3 + s5

II* 1+ s2 1+ s + s3 + s4

10 I+s + s3 I + s + s4 + s6

16-1 / + s + s2 + s3 + s6 + s10 I + s + s3 + s6 + s8 + s'2

or or

/ + s + s2 + s4 + s7 + s8 / + s + s4 + s6 -f s8 + s*1

II / + s + s2 + s4 + / + s10 / + .v + s3 + s7 + s» + s'2

or or

/ + s + s2 + s5 + / + s8 / + s + s4 + s7 + s9 + s11

III* / + s + s2 + s4 + s6 + s9 I + s + s5 + s7 + ss + sn

or or

/ + s2 + s3 + s4 + s6 + s11 I + s + s2 + s6 + s9 -h s12

or or

/ + s + s3 + s" + s7 + / / + s + s4 + s6 + s9 + s10
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P(S, k) = Ps(s2) + skQs(s2) - / + S* + s\l +s2   + s*   + ss),

Q(s, k) = Pa(s2) + skQ's(s2) = I + s4 + sk(s4 + s10 + s12 + s14).

We obtain

PI8(i) = / + s + s2 + s4 + s" + s™ = s Q{s, 5)

or

= / + s + s2 + s5 + s6 + ss   = s P(s, -1),

since these two polynomials are of distinct type (in the sense of [5]) and of least

positive degree in s = S producing the same finite sequence among all P(s, k) and

Q(s, k) for this case.

When n = 20, we obtain two subclasses of matrices P and Q by Theorem 1. We

have the following cases :

Subclass-1:

P(i, *) = P10(/) + s-kQX0(s2) =  / + /+/+ r*(/ + s2 + ss + s12)

and

0(5, k) = />,„(/) + s-kQ'xo(s2)

= / + s2 + s'   -\- s~ (s  +s   +51   -f-i1   +5    +s');

Subclass-2 :

P(s, k) = Px0(s2) + s-kQX0(s'2)

=  / + / + / + s'k(I + s'2 + s~s + s~12)

and

Q(s, k) = Pl0(s2) + s~kQUs2)

r     i 2      i        6      i -k,  4      i        6      i 10      i 14      i 16      | 18-,
= / + í-1-í+í(í+í+5    -j- s    -j- s    -\- s  );

Each one of the subclasses produces five distinct designs corresponding to k = 1,3,

5, 7, and 9. For example, the finite sequence {zz2«+i} of odd components (since the

even components zz2, = r = 2 for all i, it is sufficient to consider only odd components

of {u,}) corresponding to P(S, k) are: (ux, u3, us, u7, iz») = (4, 1, 3, 2, 2), (2, 4, 2, 2, 2),

(2, 3, 3, 2, 2), (3, 1, 3, 3, 2), and (2, 3, 1, 3, 3) for Subclass-1 respectively of k = 1,3,
5, 7, and 9; and (2, 2, 3, 2, 3), (1, 3, 3, 2, 3), (2, 2, 2, 4, 2), (3, 1, 3, 3, 2), (2, 4, 1, 2, 3)
for Subclass-2.

The following Table II is obtained by taking s = Sk with k, an integer relatively

prime to zz = 20 for P20 = P(s, 9) of Subclass-2, i.e. P20(Sk) = I + S2k + S3k + S°k +
S9k + Suk + si»k

Starting from P = Q = I for zz = 4, and repeating applications of Theorem 1, we

obtain, for example, the following P„, Qn for zz = 32 and 64:

P32 =  £i",    where« G {0, 1, 2, 3, 4, 8, 9, 13, 14, 16, 17, 23}
a

and

Ö32 =  Z)/,    where jS G {0, 2, 4, 5, 7, 8, 11, 14, 15, 16, 19, 21, 25, 27, 29, 31};

pai = Ei',     öm = ZA
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Table II

(+1, —X)-matrix A corresponding to P20 ÍW2,+i}

+ - + + -    - +-+    - +-+ 2,4,1,2,3

+-- + + -+-+ -    --++- 2,2,1,3,4

+ + + + --+ +-+- 4,3,1,2,2

+ +-+-- +-+-+ + 3,2,1,4,2

where a G {O, 1, 2, 4, 5, 6, 8, 9, 11, 15, 16, 17, 18, 23, 26, 28, 29, 31, 32, 33, 34, 39,
43, 46, 51, 55, 59, 63} and ß G ¡O, 2, 3, 4, 6, 7, 8, 13, 16, 18, 19, 21, 25, 26, 27, 28, 32,
34, 35, 37, 41, 45, 46, 47, 49, 53, 57, 61}.

It should be noted that Theorem 3 of Williamson [4] produces Williamson type

matrices of the same order, but of different construction, as given by Theorem 2 of

this paper. When zz = 29, we obtain a W4„-matrix (see [7]) with submatrices

^29    =     ¿^,   ta, Q2S,    =     ¿_1   tfi' ^29    =     2-1   fT> G29    =      ),   Zl,
a ß y i

where tk = Sk + S29-k;aG {2, 3, 5, 6, 8, 12}, ß G {4, 7,9, 10, 11}, 7 G {3,4,5,8,

9, 11, 13, 14}, and 5 G {1, 3, 4, 5, 8, 9, 11}. By applying Theorem 2, we obtain WKn-
matrix with submatrices

Pss =   Z *<*, Ö58 =   Z *ßy ^58 =   Z 'y     and     G58 =   Z h,
aßy I

where tt = sk + s58-* for k ^ 29 and z29 = s29; and a G {4, 6, 7, 9, 10, 11, 12, 15,

16, 21, 24}, ß G í 1, 3, 4, 5, 6, 10, 12, 13, 16, 17, 19, 23, 24, 25, 27, 29}, y G {6, 7, 8
10, 11, 13, 16, 18, 19, 21, 22, 23, 26, 27, 28}, and 8 G j 1, 3, 5, 6, 8, 9, 10, 15, 16, 17,

18,22,25,26,28,29}.
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