On Hadamard Matrices Constructible by Circulant Submatrices

By C. H. Yang

Abstract. Let V_{2n} be an *H*-matrix of order 2n constructible by using circulant $n \times n$ submatrices. A recursive method has been found to construct V_{4n} by using circulant $2n \times 2n$ submatrices which are derived from $n \times n$ submatrices of a given V_{2n} . A similar method can be applied to a given W_{4n} , an *H*-matrix of Williamson type with odd n, to construct W_{8n} . All V_{2n} constructible by the standard type, for $1 \le n \le 16$, and some V_{2n} , for $n \ge 20$, are listed and classified by this method.

Let H_n be an $n \times n$ Hadamard matrix. Although it is conjectured that no circulant H_{4n} -matrix exists for n > 1 (see [3]), it is known that many H_{4n} -matrices can be constructed by using circulant submatrices of order n or 2n. (For H-matrices of Williamson type, see [1], [2], [4].)

Let V_{2n} be an H_{2n} -matrix constructible by using circulant $n \times n$ submatrices. Then V_{2n} can be constructed by the following standard type:

(*)
$$M_{2n} = \begin{bmatrix} A & B \\ -B^T & A^T \end{bmatrix}$$
, where A, B are $n \times n$ circulant matrices

and C^T means the transposed matrix of C.

A recursive method has been found to construct V_{4n} by circulant $2n \times 2n$ matrices which are derived by circulant $n \times n$ submatrices of a given V_{2n} . (See Theorem 1, below.) Likewise, let W_{4n} be an H_{4n} -matrix of Williamson type with odd n; W_{8n} can be constructed by using $2n \times 2n$ symmetric circulant matrices which are derived from $n \times n$ symmetric circulant submatrices of a given W_{4n} . (See Theorem 2.)

Let $S_n = ((e_i))$ be the $n \times n$ circulant matrix with the first row entries e_i , $(0 \le i \le n-1)$, all zero except for $e_1 = 1$. Then $n \times n$ circulant matrices A, B of (*) can be written as polynomials in S. (We shall omit the suffix n of S_n and others when there is no confusion.)

$$A = A_n(S) = \sum_{i=0}^{n-1} a_i S^i, \qquad B = B_n(S) = \sum_{i=0}^{n-1} b_i S^i,$$

with coefficients a_i , $b_i = 1$ or -1; where $S^0 = I_n =$ the $n \times n$ identity matrix.

A sufficient condition for the matrix M_{2n} of type (*) being an *H*-matrix is that $M_{2n}M_{2n}^T = 2nI_{2n}$ which is equivalent to

$$AA^T + BB^T = 2nI_n.$$

Received March 31, 1970.

AMS 1970 subject classifications. Primary 05B20, 62K05, 05A19; Secondary 15A36, 0504, 1504. Key words and phrases. Construction of Hadamard matrices, circulant matrices, standard type H-matrices, Williamson type H-matrices, recursive method for H-matrices, table for some H-matrices.

182 C. H. YANG

Let $P = P_n(S)$, $Q = Q_n(S)$ be matrices obtained by replacing -1 by 0 in A, B respectively. Then the condition (1) is equivalent to

(2)
$$PP^{T} + QQ^{T} = (p_{n} + q_{n} - r_{n})I + r_{n}J,$$

where $J = J_n = \sum_{i=0}^{n-1} S^i$ and p_n , q_n are, respectively, the numbers of 1's in each row of P, Q. Here, p_n , q_n and r_n must be solutions of the following necessary conditions for existence of V_{2n} .

(3)
$$(n-2p_n)^2 + (n-2q_n)^2 = 2n,$$

$$(4) p_n + q_n - r_n = \frac{1}{2}n.$$

Similarly, by taking Q' = J - Q, instead of Q in (2), (3), and (4), which is possible since whenever A and B satisfy the condition (1), so do A and B, we obtain the corresponding conditions:

(5)
$$PP^{T} + Q'Q'^{T} = (p_{n} + q'_{n} - r'_{n})I + r'_{n}J,$$

(6)
$$(n-2p_n)^2 + (n-2q_n')^2 = 2n,$$

(7)
$$p_n + q'_n - r'_n = \frac{1}{2}n.$$

Since $q'_n = n - q_n$, we also obtain from (7) and (4),

$$(8) r_n' = 2p_n - r_n.$$

THEOREM 1. Let M_{2m} be a given V_{2m} -matrix of type (*) satisfying the conditions (2), (3), and (4). Then M_{4m} , a V_{4m} -matrix of type (*), can be found as follows:

(**)
$$P_{2m}(s) = P_m(s^2) + s^k Q_m(s^2), \qquad Q_{2m}(s) = P_m(s^2) + s^k Q'_m(s^2),$$

where $s = S_{2m}$, $Q'_m = J_m - Q_m$, and k is any odd integer.

Proof. Since $p_{2m} = p_m + q_m$, $q_{2m} = p_m + (m - q_m)$, $r_{2m} = 2p_m$ are solutions of the conditions (3) and (4) for n = 2m whenever p_m , q_m , r_m are solutions of (3) and (4) for n = m, it is sufficient to show that P_{2m} and Q_{2m} satisfy the condition (2), i.e.

(5)
$$P_{2m}P_{2m}^T + Q_{2m}Q_{2m}^T = mI_{2m} + 2p_mJ_{2m}.$$

From (**), the left side of (5) equals, (since $P^{T}(s) = P(s^{-1})$),

$$(P(s^{2})P(s^{-2}) + Q(s^{2})Q(s^{-2})) + (P(s^{2})P(s^{-2}) + Q'(s^{2})Q'(s^{-2}))$$

$$+ [s^{k}P(s^{-2}) + s^{-k}P(s^{2})]J_{m}(s^{2}), \quad [since Q(s^{2}) + Q'(s^{2}) = J_{m}(s^{2}) = J_{m}(s^{-2})]$$

$$= \frac{1}{2}mI + r_{m} \sum_{i=0}^{m-1} s^{2i} + \frac{1}{2}mI + (2p_{m} - r_{m}) \sum_{i=0}^{m-1} s^{2i} + 2p_{m} \sum_{i=0}^{m-1} s^{2i+1}$$

$$= mI + 2p_{m}J.$$

Let N_{4n} be a $4n \times 4n$ matrix such that

$$N_{4n} = \begin{bmatrix} A, & B, & C, & D \\ -B, & A, & -D, & C \\ -C, & D, & A, & -B \\ -D, & -C, & B, & A \end{bmatrix}$$

where A, B, C, D are $n \times n$ symmetric circulant (+1, -1)-matrices. Then a sufficient condition for N_{4n} being a W_{4n} -matrix is that

$$N_{4n}N_{4n}^T = 4nI_{4n}$$
.

Let P, Q, K, and G be matrices obtained by replacing -1 by 0 in A, B, C, and D, respectively. Then, corresponding to the conditions (2)–(4), we obtain

$$(2') P^2 + Q^2 + K^2 + G^2 = (t_n - r_n)I + r_n J,$$

where $t_n = p + q + k + g$; p, q, k, and g are the numbers of 1's in each row of A, B, C, and D, respectively.

$$(3') (n-2p)^2 + (n-2q)^2 + (n-2k)^2 + (n-2g)^2 = 4n.$$

$$(4') t_n - r_n = n.$$

Similarly, corresponding to the conditions (5)-(8), we obtain

(5')
$$P^2 + Q'^2 + K^2 + G'^2 = (t'_n - r'_n)I + r'_n J,$$

where Q' = J - Q, G' = J - G, and $t'_n = p + q' + k + g'$; q' and g' are, respectively, the numbers of 1's in each row of Q' and G'.

(6')
$$(n-2p)^2 + (n-2q')^2 + (n-2k)^2 + (n-2g')^2 = 4n.$$

$$(7') t'_n - r'_n = n.$$

(8')
$$r'_n = 2(p+k) - r_n.$$

THEOREM 2. Let N_{4m} be a given W_{4m} -matrix with odd m satisfying the conditions (2'), (3') and (4'). Then N_{8m} , a W_{8m} -matrix, can be found as follows:

$$P_{2m}(s) = P(s^2) + s^m Q(s^2),$$
 $Q_{2m}(s) = P(s^2) + s^m Q'(s^2),$
 $K_{2m}(s) = K(s^2) + s^m G(s^2),$ $G_{2m}(s) = K(s^2) + s^m G'(s^2);$

where
$$s = S_{2m}$$
, $Q' = J_m - Q$, and $G' = J_m - G$.

Proof. We know that P_{2m} , Q_{2m} , K_{2m} , and G_{2m} are also symmetric circulant and, as in the proof of Theorem 1, that $p_{2m} = p + q$, $q_{2m} = p + (n - q)$, $k_{2m} = k + g$, and $g_{2m} = k + (n - g)$; $r_{2m} = 2(p + k)$ are solutions of (3') and (4') for n = 2m whenever p, q, k, g, and r_m are solutions of (3') and (4') for n = m. Therefore, it is sufficient to prove that the condition (2') is also satisfied, i.e.

$$(2'') P_{2m}^2 + Q_{2m}^2 + K_{2m}^2 + G_{2m}^2 = 2mI + 2(p+k)J.$$

The condition (2") can be checked easily since the process of proof is exactly similar to that of Theorem 1.

Let $\{u_i\}$ and $\{v_i\}$ be two finite sequences respectively of

$$PP^{T} = \sum_{i=0}^{n-1} u_{i}S^{i}$$
 and $QQ^{T} = \sum_{i=0}^{n-1} v_{i}S^{i}$,

where P, Q are $n \times n$ circulant (0, 1)-matrices; in this case, we also obtain $w_{n-i} = w_i$ for w = u or v.

The following Table I, of all constructible V_{2n} ($1 \le n \le 16$) of type (*) with the restriction $p_n \le q_n \le \frac{1}{2}n$, is obtained by matching two finite sequences $\{u_i\}$ and

184 C. H. YANG

 $\{v_i\}$, respectively of PP^T and QQ^T , such that $u_i + v_i = r_n$ for $1 \le i \le \frac{1}{2}n$. Here, Theorem 1 serves as a tool of classifying these finite sequences.

Note. 1. $s = S_n^k$, where k is any integer relatively prime to n.

- 2. When $q_n = \frac{1}{2}n$, $Q_n(s)$ and $Q'_n(s)$ produce the same finite sequence.
- 3. * indicates the class of $P_n(s)$ and $Q_n(s)$ unobtainable by Theorem 1.

It should also be noted that for a given $n \times n$ circulant matrix K(S), all matrices $M(i, j) = S^i K(S^i)$, for any integers i and j with (n, j) = 1, produce the same finite sequence corresponding to $M(i, j)M^T(i, j)$. Among all M(i, j) regarded as polynomials in S, there is a polynomial, say R, of least nonnegative degree; we list R, as the representative of all matrices M(i, j) producing the same finite sequence, as $R_n(s)$ in the Table I.

In Table I, Classes I and II of n=16 are respectively derived from the corresponding classes of n=8. Although P_8 and Q_8 of Class II cannot be derived from P_4 and Q_4 , they produce P_{16} and Q_{16} of Class II, by Theorem 1. In this case, P_{16} and Q_{16} are interchangeable since p=q=6, and we have

TABLE I

n	$P_n(s)$	$Q_n(s)$
1	0	0
2	0	I
4	I	I
8-I	I + s	$I+s+s^3+s^5$
II*	$I+s^2$	$I+s+s^3+s^4$
10	$I+s+s^3$	$I+s+s^4+s^6$
16-I	$I + s + s^2 + s^3 + s^6 + s^{10}$	$I + s + s^3 + s^6 + s^8 + s^{12}$
	or $I + s + s^2 + s^4 + s^7 + s^8$	or $I + s + s^4 + s^6 + s^8 + s^{11}$
II	$I + s + s^2 + s^4 + s^5 + s^{10}$	$1 + s + s^3 + s^7 + s^9 + s^{12}$
	or $I + s + s^2 + s^5 + s^6 + s^8$	or $I + s + s^4 + s^7 + s^9 + s^{11}$
III*	$I + s + s^2 + s^4 + s^6 + s^9$	$I + s + s^5 + s^7 + s^8 + s^{11}$
	or $I + s^2 + s^3 + s^4 + s^6 + s^{11}$	or $I + s + s^2 + s^6 + s^9 + s^{12}$
	or $I + s + s^3 + s^5 + s^7 + s^8$	or $I + s + s^4 + s^6 + s^9 + s^{10}$

$$P(s, k) = P_8(s^2) + s^k Q_8(s^2) = I + s^4 + s^k (I + s^2 + s^6 + s^8),$$

$$Q(s, k) = P_8(s^2) + s^k Q_8'(s^2) = I + s^4 + s^k (s^4 + s^{10} + s^{12} + s^{14}).$$

We obtain

$$P_{16}(s) = I + s + s^2 + s^4 + s^5 + s^{10} = s Q(s, 5)$$

or

$$= I + s + s^2 + s^5 + s^6 + s^8 = s P(s, -1).$$

since these two polynomials are of distinct type (in the sense of [5]) and of least positive degree in s = S producing the same finite sequence among all P(s, k) and Q(s, k) for this case.

When n = 20, we obtain two subclasses of matrices P and Q by Theorem 1. We have the following cases:

Subclass-1:

$$P(s, k) = P_{10}(s^2) + s^{-k}Q_{10}(s^2) = I + s^2 + s^6 + s^{-k}(I + s^2 + s^8 + s^{12})$$

and

$$Q(s, k) = P_{10}(s^2) + s^{-k}Q'_{10}(s^2)$$

= $I + s^2 + s^6 + s^{-k}(s^4 + s^6 + s^{10} + s^{14} + s^{16} + s^{18});$

Subclass-2:

$$P(s, k) = P_{10}(s^{2}) + s^{-k}Q_{10}(s^{-2})$$

= $I + s^{2} + s^{6} + s^{-k}(I + s^{-2} + s^{-8} + s^{-12})$

and

$$Q(s, k) = P_{10}(s^{2}) + s^{-k}Q'_{10}(s^{2})$$

= $I + s^{2} + s^{6} + s^{-k}(s^{4} + s^{6} + s^{10} + s^{14} + s^{16} + s^{18})$:

Each one of the subclasses produces five distinct designs corresponding to k = 1, 3, 5, 7, and 9. For example, the finite sequence $\{u_{2i+1}\}$ of odd components (since the even components $u_{2i} = r = 2$ for all i, it is sufficient to consider only odd components of $\{u_i\}$) corresponding to P(S, k) are: $(u_1, u_3, u_5, u_7, u_9) = (4, 1, 3, 2, 2), (2, 4, 2, 2, 2), (2, 3, 3, 2, 2), (3, 1, 3, 3, 2), and (2, 3, 1, 3, 3) for Subclass-1 respectively of <math>k = 1, 3, 5, 7, 3$, and 9; and (2, 2, 3, 2, 3), (1, 3, 3, 2, 3), (2, 2, 2, 4, 2), (3, 1, 3, 3, 2), (2, 4, 1, 2, 3) for Subclass-2.

The following Table II is obtained by taking $s = S^k$ with k, an integer relatively prime to n = 20 for $P_{20} = P(s, 9)$ of Subclass-2, i.e. $P_{20}(S^k) = I + S^{2k} + S^{3k} + S^{6k} + S^{9k} + S^{11k} + S^{19k}$.

Starting from P = Q = I for n = 4, and repeating applications of Theorem 1, we obtain, for example, the following P_n , Q_n for n = 32 and 64:

$$P_{32} = \sum_{\alpha} s^{\alpha}$$
, where $\alpha \in \{0, 1, 2, 3, 4, 8, 9, 13, 14, 16, 17, 23\}$

and

$$Q_{32} = \sum_{\beta} s^{\beta}$$
, where $\beta \in \{0, 2, 4, 5, 7, 8, 11, 14, 15, 16, 19, 21, 25, 27, 29, 31\};
$$P_{64} = \sum_{\alpha} s^{\alpha}, \qquad Q_{64} = \sum_{\beta} s^{\beta},$$$

186 C. H. YANG

TABLE II

k	$(+1, -1)$ -matrix A corresponding to P_{20}	$\frac{\{u_{2i+1}\}}{2, 4, 1, 2, 3}$
1	+-++++ -++	
3	+++-++-	2, 2, 1, 3, 4
7	+++++++	4, 3, 1, 2, 2
9	+++	3, 2, 1, 4, 2

34, 35, 37, 41, 45, 46, 47, 49, 53, 57, 61}.

It should be noted that Theorem 3 of Williamson [4] produces Williamson type matrices of the same order, but of different construction, as given by Theorem 2 of this paper. When n = 29, we obtain a W_{4n} -matrix (see [7]) with submatrices

$$P_{29} = \sum_{\alpha} t_{\alpha}, \qquad Q_{29} = \sum_{\beta} t_{\beta}, \qquad K_{29} = \sum_{\gamma} t_{\gamma}, \qquad G_{29} = \sum_{\delta} t_{\delta},$$

where $t_k = S^k + S^{29-k}$; $\alpha \in \{2, 3, 5, 6, 8, 12\}$, $\beta \in \{4, 7, 9, 10, 11\}$, $\gamma \in \{3, 4, 5, 8, 9, 11, 13, 14\}$, and $\delta \in \{1, 3, 4, 5, 8, 9, 11\}$. By applying Theorem 2, we obtain W_{8n} matrix with submatrices

$$P_{58} = \sum_{\alpha} t_{\alpha}, \qquad Q_{58} = \sum_{\beta} t_{\beta}, \qquad K_{58} = \sum_{\gamma} t_{\gamma} \text{ and } G_{58} = \sum_{\delta} t_{\delta},$$

18, 22, 25, 26, 28, 29}.

State University College Oneonta, New York 13820

1. L. D. BAUMERT & MARSHALL HALL, JR., "Hadamard matrices of the Williamson type," Math. Comp., v. 19, 1965, pp. 442-447. MR 31 #3344.

2. MARSHALL HALL, JR., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967. MR

37 #80.

- 3. H. J. RYSER, Combinatorial Mathematics, Carus Math. Monographs, no. 14, Math. Assoc. Amer., distributed by Wiley, New York, 1963. MR 27 #51.
 4. J. WILLIAMSON, "Hadamard's determinant theorem and the sum of four squares,"

- 4. J. WILLIAMSON, "Hadamard's determinant theorem and the sum of four squares," Duke Math. J., v. 11, 1944, pp. 65–81. MR 5, 169.
 5. C. H. YANG, "On designs of maximal (+1, -1)-matrices of order $n \equiv 2 \pmod{4}$," Math. Comp., v. 22, 1968, pp. 174–180. MR 37 #1069.
 6. C. H. YANG, "On designs of maximal (+1, -1)-matrices of order $n \equiv 2 \pmod{4}$. II," Math. Comp., v. 23, 1969, pp. 201–205. MR 39 #1105.
 7. L. D. BAUMERT, "Hadamard matrices of orders 116 and 232," Bull. Amer. Math. Soc., v. 72, 1966, p. 237. MR 32 #4026.