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Adjusted Forms of the Fourier Coefficient Asymptotic
Expansion and Applications in Numerical Quadrature*

By J. N. Lyness

Abstract. The conventional Fourier coefficient asymptotic expansion is derived by means

of a specific contour integration. An adjusted expansion is obtained by deforming this

contour. A corresponding adjustment to the Euler-Maclaurin expansion exists. The effect

of this adjustment in the error functional for a general quadrature rule is investigated. It

is the same as the effect of subtracting out a pair of complex poles from the integrand, using

an unconventional subtraction function. In certain applications, the use of this subtraction

function is of practical value.

An incidental result is a direct proof of Erdélyi's formula for the Fourier coefficient

asymptotic expansion, valid when f(x) has algebraic or logarithmic singularities, but is

otherwise analytic.

1. The Fourier Coefficient Asymptotic Expansion. The Fourier coefficient

asymptotic expansion (F.C.A.E.) (1.3) below is a classical formula which is elementary

to derive using a standard application of the formula for integration by parts, namely,

dx.
/i i\ Í  u ^ <*• -v       e'   f(b) — g' 7(g)       1   f   ,„, ikx(1.1) J    j(x)e     dx =-— J   f(x)e

The integral on the right is almost the same as that on the left; the only difference

is that f(x) replaces j(x). Consequently, the formula may be applied iteratively.

So long as

(1.2) Kx)ECM[a,b],

this leads to the following series:

f* Kx)e'kl dx =  -e<tb\i Kb) + p f(b) + ■ ■ ■ + p f*-"(by>

(1 -3) + e"'\i /(a) + p f(a) +...+£ /'"""(a)}

+ p £/"W A.

This series is equally familiar in the form it takes for a Fourier coefficient. If we

set a = 0, b = 1, k = 2-wm, collect the final terms in the series in the remainder, and

separate real and imaginary parts, we find

(1.4) 2C,m)f = 2  f  fix) cos lirmx dx -      £     ■% + 2C¿m 7,
Jo ÍIÍ      m
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(1.5) 2S(m)/ = 2  [   /(*)sin lirmx dx =      £     ^%} + 2ä£">/,
Jo (7 = 0 ^

where

(1 *2o = 2(-l)°-1(/(2a-1,(l) - /(2a-u(0))/(27r)2a,

^2«+1 = 2(-l)°-1(/(20,(l) - /(2"(0))/(27r)2o+1,

and the remainder terms 2Clpm)j and 2S¿ra)/ are of order m" for large m.

By allowing /> to become infinite in series such as (1.3), (1.4), and (1.5), we obtain

expansions that we refer to as Fourier coefficient asymptotic expansions. When j(x)

is a specified polynomial, these expansions terminate, leaving a closed expression

for the trigonometric integral. More generally, when j(x) is a function which is

simple to differentiate, these expansions appear at first sight to provide a reasonable

basis for the numerical evaluation of the integral. In practice, this appearance is

most deceptive. In Lyness [4, Section 4], several illustrations are given in which the

most inconvenient behavior is manifest. Perhaps the most flamboyant example is

(1.7) /(*) = eax +e°°a2TX,        \a\ < m,

for which the expansion converges to a result different from 2Cim)f. However, the

F.C.A.E. is generally divergent. For large values of m, the early terms in the series

have the numerical appearance of a convergent series, but later terms increase in

magnitude. Here again, the situation may be deceptive. In the example with m = 6 and

(1.8) j(x) = l/(x2 - x + 0.26),

the magnitude of the terms in (1.4) initially decreases but then increases. The smallest

term is the eighth, which is about —10"9. Terminating the series after the <¡rth term,

5 á q Ú 15, results in an approximation of -2.023 X 10"2. The true value of C<6)/

is +0.701.
It is hardly surprising that an asymptotic expansion having such disconcerting

numerical properties is rarely used for numerical calculation. One of the annoying

aspects of the situation is that the elementary derivation of the series given above

does not indicate at all clearly the source of this "unreliability." In Section 2 we

give a different proof of (1.3) based on contour integration. This proof is valid when

j(x) is an analytic function that has an analytic continuation /(z) regular in a region (R

of the complex plane which contains the interval of integration. The proof relates

the remainder term to the analytic properties of /(z) in a manner in which the principal

contributions to the remainder term can be recognized. In very simple cases an

important part of this "error" can be "subtracted out".

The series (1.3) exists so long as j(x) satisfies restriction (1.2), i.e., has continuous

derivatives of orders zero through p. However, if j(x) fails to satisfy (1.2), Eq. (1.3)

is not generally valid. If j(x) has a finite number of algebraic singularities on an

interval but otherwise has continuous derivatives of orders zero through p, a different

analogous series exists. This series may be constructed by treating each interval

between adjacent singularities separately and combining the result. Between two

such singularities, located for convenience at a and b, the function /(x) takes the form

(1.9) /(*) = (x - a)'(b ~ x)ßh(x),       a,ß> - 1,



FOURIER COEFFICIENT ASYMPTOTIC EXPANSION 89

where a and ß are not in general integers, and

h(x)E Cw[a,b].

A result that corresponds to (1.3) was given by Erdélyi [1] in 1954. The derivatives

of f(x) at a and b are replaced by derivatives of \p(x) and 4>(x), the 'regular parts' of

/(x) at a and at b, respectively. These functions are defined by

(1.10) vH*) = (b - xfh(x),        <(>(x) = (x - a)"h(x).

The coefficients in (1.3) and the indices are also adjusted. The resulting asymptotic

expansion is as follows:

Theorem 1.12. Iff(x) is given by (1.9), \p(x) and <¡>(x) are defined by (1.10), and if

(1.11) h(x)E A[a,b],

then for k > 0

f j{x)ekldx~ -y*»-""* £

«-o k q\

+ 0(*-",+i+n) + OC*-""*'*1')        as*

,.    .-, ,        ■■t»+VTa/2 "y^1   ^'"'(g)   ''"""'(g   +   ")■'

+ o(a"(i'+/í+1)) + oí

/or

Pi,/>2 ^ 0.

This result reduces to (1.3) when a and ß are either zero or integers.

The theorem just stated requires that h(x) be analytic in a region (R that contains

the interval [a, b]. In fact, a stronger form of this theorem is valid.

Theorem 1.13. Theorem 1.12 is valid if restriction (1.11) is replaced by

(1.13) h(x)ECiv)[a,b],

under the additional restriction

(1.14) PuPtèp.

Naturally, Theorem 1.12 is a direct corollary of Theorem 1.13.

The author has seen two proofs of this theorem. The first, in 1954 (Erdélyi [1]),

generalizes the technique of integration by parts (1.1) making use of neutralizer

functions. The second (Lighthill [2]) uses the theory of generalized functions. Unless

the reader is familiar with these concepts, it is difficult to acquire from the proofs

any idea about the magnitude of the remainder term, apart, of course, from its order.

For readers interested in the specific case in which /(x) is an analytic function,

Theorem 1.12 is sufficient. In this case, a proof can be based on generally more

familiar concepts. The result is obtained by use of contour integration and the re-

mainder term appears as the sum of specific contour integrals of well-defined functions.

Besides showing the order (for large k) of the remainder term, the proof gives at

least a rough idea of its magnitude for specified finite values of k.

The proof and the theorem may be adjusted to cover the case in which /(x) has

a logarithmic singularity. This is described in the Appendix.
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2. Proof of Theorem 1.12. In this section, we prove Theorem 1.12. Here /(x),

h(x), \¡/(x), and 4>(x) are real functions of a real variable, defined as in (1.9) and (1.10).

In addition, each has an analytic continuation into the complex plane. The function

h(z) is regular (has no singularities) within a region (R that contains the rectangle

with vertices a ± iL, b ± iL where L is a positive constant. If the singularities of h(z)

lie at X, ± ißt, clearly,

(2.1) L < M =   min   |m,| .
aSX¡á¡>

For convenience we subdivide the proof into four lemmas. The proof of each

lemma is straightforward.

Lemma 2.1.
r*b r*a+1L /*b

(2.2) /    j(x)ekz dx =   / j(z)eik* dz +   /        f(z)e'" dz + 0(e~kL)    as k -> <*> .
Ja va •'6 +iL

(Unless stated otherwise, all integrals in this paper are along straight-line contours.)

Since j(z)e'kl is regular within the rectangle mentioned above, the contour between

a and b may be deformed and the integral replaced by the sum of three integrals,

connecting successively a, a + iL, b + iL, b. The right-hand side of (2.2) includes

two of these explicitly. To establish Lemma 2.1, we have to show that the third

integral, that which connects a -f iL and b + iL, is of the stated order 0(e~kL).

We define

(2.3) NL = max \f(x + iL)\ .
aSxíb

Then, using elementary inequalities, we have

(2.4)

/» 6 + i L nb

I ]{z)e'k' dz   =  \e'kL  i   j(x + iL)etkxi dx
Ja+¡L Ja

< (b - a) Nue'
■kL

This establishes Lemma 2.1.
The next lemma deals with the effect of replacing /(z) in the neighborhood of a

by an approximation g(z) based on the first p terms of the Taylor expansion of the

regular part of /(z). We define g(z) as

(2.5)        g(z) = (z - ar(t(a) + (z - a)*'(a) + • • • + (* ~_af     ¿"""(a))-
(p - 1)!

Lemma 2.2.

(2.6)

/»a+ i It /»o+ i L

\ f(z)e'k! dz = g(z)eik! dz + Off""1).
•la ->a

An elementary application of the mean value theorem indicates that at all points

z = a + iy, the value of ^(z) differs from the sum of the first p terms in its Taylor

expansion by an amount whose modulus is less than yv^p)(a + /£)//>! where 0 ^

£ á  V- Consequently, the function

(2.7) r(z) = /(z) - g(z)

satisfies the inequality

(2.8) \r{a + iy)\ g  \y\r+a Mjp\,        0 < y < L,
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where

(2.9) M, = max \^v)(a + iOL)\ .
0S9S1

Thus,

Í        r(z)e<k' dz   =  \eika [   r{a + iy^i dy\
\Ja Jo

(2.10) Ú— l   /+V*" dy û ~ [   /+V*" dy
p\    Jo    ' PI   Jo   '

Mv        r  p+a _, Mp(p + a)!
=  -;   It     e     dt = -;—

/?! k Jo pi k

This establishes Lemma 2.2.

Next, we proceed to the evaluation of the integral on the right-hand side of (2.6).

We now show

Lemma 2.3.
t*a+ i L /»a+ t oo

(2.11) / g(zyk' dz =   \ g(z)eik* dz + OffV").

In view of the definition (2.5) of g(z), the difference between these two integrals

may be expressed as

/»a-M'oo p-l     /(fl)/    \      /»o+ioo

(2.12) g(z)eik> dz=  £ *-¡& (z - «rV" dz.
Ja+iL o-O Ql Ja+iL

Each of the integrals on the right-hand side may be expressed in terms of the in-

complete gamma function Y(ß + 1, x), defined by

(2.13) T(ß + l,x) =   [   tße" dt.
J X

Before doing this, we establish the order of T(ß + 1, x) for large x. When — 1 < ß á 0,

the integrand in (2.13) is less than or equal to xpe~'. Thus

(2.14) T(ß + 1, x) < xß  f   e'1 dt = x*e~\

so that

(2.15) T(ß + 1, x)~ 0{xße~x),        -1 < j3 g 0.

For positive values of ß, integration by parts of the integral in (2.13) leads to

(2.16) r08 + 1, *) - xV1 + ßT(ß, x).

In view of (2.15), it follows that

(2.17) T(ß + l,x)~0(.xße-x),       ß>-l.

If we set z = a + iy and t = ky and use (2.13), expression (2.12) may now be manipu-

lated as follows:

J>-1   .;<o)/
I  \  <*»    J V^   Y       K")     ixa/2 _ika,a+l     I i+a-kv     .

/ g(z)e     dz =   ¿-i-1—e        e    '       \    y     e      dy
Ja+iL o-O Q- Jl

p-l   ,/ÍQ)//,\     ;G + 1
it a/2   ika   X-1   y       \a)      '_ -p/      _j_    _     i      |      ,   j\

™ «       e     2-,       .     TTTTTi r<a + ■? + UkL).
■o      Q\      k
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Since the incomplete gamma function is of order 0((kL)a+qe~kL), the sum in (2.18)

contains p terms, each of order k~1e~kL, and so is itself of order k'1e~kL. This estab-

lishes Lemma 2.3. Finally, we require

Lemma 2.4.

(2.19) g(z)¿k> dz = e'"'V £ ^-f1 —^ T{a + a + 1).
Ja 0-0 Ql k

This lemma follows from (2.18) by setting L = 0 and noting from (2.13) that

T(a + q +  1,0) =  T(a + q +  1).

Proof of Theorem 1.12. The terms of orders 0(e~kL), 0(/c"°-p"1) and 0(/c_1e iL)

that occur in Lemmas 2.1, 2.2, and 2.3 are each of proper order to appear in the

remainder term in (1.12).

Lemmas 2.2, 2.3, and 2.4 successively reduce the first integral on the right in

Lemma 2.1 to the terms in (1.12) involving derivatives of \f/(x) at x = a, together

with contributions to the remainder term. A similar treatment of the second integral

on the right in Lemma 2.1 leads to the other term in (1.12) involving derivatives

of <b(x) at x = b and other proper contributions to the remainder term. This establishes

Theorem 1.12.

We close with two comments on the proof. First, the use of the incomplete gamma

function is a notational convenience only. All we require is that the integral in (2.13)

be of order xße'x for ß > — 1. No other properties are required. Secondly, the re-

mainder term as derived here includes terms of order 0(e~kL) and 0(k~1e~kL). Since,

by (2.1), L may take any value less than M, the entire proof may be repeated with

V = (L + M)/2 instead of L to yield terms of order 0(e"*L') and 0{k~lé'kL').

Thus, these remainder terms are in fact o(e~kL) and o(k~1e~kL). However, the principal

part of the remainder term is generally either 0(ka+'i+1) or 0(ka+p°+1), as stated

3. The Remainder Term. In this section we discuss the Fourier coefficient asymp-

totic expansion with a view to its possible application with finite k. To this end,

we take a closer look at some of the features of the proof just presented. In the proof,

the integral of /(x)e**1 along the real axis is replaced by a contour integral of f(z)e,!".

The contour is arranged in such a way that, except for the terminal points a and b,

it lies in the upper half-plane At any point x + iy on this contour, the contribution

to the integral is proportional to

(3.1) f(x + iy)eikxe~k\

For all points, except a and b, y is positive and (3.1) is of order e~k" and so may

be relegated to the remainder term. To obtain the terms in the series, one considers

only the parts of the contour immediately adjacent to a and to b.

The first three lemmas may be restated as follows:

Lemma 3.1.
pb+iL

/ ](z)eik' dz = h ~ 0(e~kL).
J a+iL

Lemma 3.2.
rtfl+»'L

/ r(z)e"" dz =  h ~ Oik-"-''1).
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Lemma 3.3.

pa+i<*>

I        g(z)e'k' dz = 73 ~ 0(k~1e~kL).
J a+iL

Theorem 1.12 follows because the remainder term is equal to 7", + 72 + h +

I i + 76, and all these contributions are of appropriate order. (74 and 75 correspond

to 12 and 73 and arise from the other terminal point b.)

For finite values of k, it is the magnitude rather than the order of these con-

tributions that is significant. Obviously, it is not feasible to evaluate these integrals.

And the situation is further complicated by the fact that contours can be deformed,

leading to different but analogous expressions. Contour deformations do not alter

the value of the remainder term, but do redistribute the contributions among the

components.

Rather than continue this discussion in general terms, we look at the two examples

(1.7) and (1.8) mentioned in Section 1. In the case of (1.8), /(z) has a pole at z =

0.5 + (0.1)/. Consequently, 7, involves an integral whose contour passes within a

distance 0.1 of the real axis. It follows that, at some point on this contour, |/(z)| >

/(0.5) = 100. From (2.4), we see that we have estimated L using L < NLe~kL, where

NL > 100. The numerical results mentioned after (1.8) refer to the case with m = 6.

With k = 12tt, L < 0.1 and NL > 100, this estimate gives very roughly that |7j| ~

100e"1'2' ~ 2.5. This estimate is very poor. Actually, L as defined in (3.1) is about 0.7.

The true value of the Fourier coefficient is also about 0.7. The relegation of the

term 7, to the remainder leads to an estimate of —0.02 instead of 0.7 for the Fourier

coefficient.

In example (1.7), it is the contribution of the function e°°*2TX which causes the

numerical difficulty. For this function, 72 + h + h + h = 0 and L is identical

with the original integral these being of order 0(e~kL). To treat L as a remainder

term renders the calculation meaningless.

In other examples investigated by the author, it is the neglect of the contribution

from L—or the main part of the contour—which accounts mainly for misleading

numerical results. This, unfortunately, cannot be rectified by including an additional

term in the series, since I, is independent of p, the number of included terms. The

effect of adding additional terms is to alter the definitions in 72 and 73, essentially

reducing the order of 72 from Oik'"'"'1) to 0(k~"~v~2) and introducing into 73

an extra term of the same order 0(k~le~kL) as the others.

In general, the use of any truncated series for numerical calculation should be

undertaken only if evidence is available that the numerical value of the remainder

term is smaller than the required tolerance. These examples show that for the truncated

F.C.A.E., a knowledge of the order of the remainder term is not sufficient.

The foregoing discussion is set in terms of numerical calculation. In practice,

this expansion is rarely used for numerical calculation directly. It is, however, used

indirectly. The Euler-Maclaurin summation formula (5.3) below is an asymptotic

expansion of the same nature, and may be derived by taking an infinite sum of

different Fourier coefficient asymptotic expansions. And the derivation of numerical

quadrature rules may be based on the Euler-Maclaurin summation formula. Thus,

inconvenient behavior of the type mentioned above occurs also (but in a less critical

manner) in numerical quadrature.
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4. The F.C.A.E. Adjusted for a Single Pole. In the rest of this paper we develop

a single theme. We suppose that the function /(z) has a pole at z = c = X ± iß,

where 0 < X < 1 : u may be thought of as being small. In this case, L is small also,

and for moderate values of k the expansion is unreliable. However, the proof could

have been carried through using a larger value of L. The contour would then enclose

the pole and an additional contribution, arising from the residue of j(z)exk' at the

pole, would appear in the remainder term. Since the precise value of this term is

known, it can be included in the series to yield to an "adjusted" Fourier coefficient

asymptotic expansion.

In this section we derive this expansion. In the subsequent section we derive

the corresponding "adjusted" Euler-Maclaurin expansion. Then, in the final section,

we note the effect of this adjustment in the error functional for quadrature rules.

It corresponds there to an unconventional method of subtracting out complex

singularities.

The behavior of this term is independent of whether or not /(z) has algebraic

singularities at the end points a and b. It is convenient from this point on to consider

only the regular case for the unit interval. We set

(4.1) a = 0;        6=1;        a = ß = 0;        k = lirm;        ^(x) = <¡>(x) = /(x).

In this section, we use both k and 2?rm as may be notationally convenient. The results

apply in trivially modified form to the more general case.

The configuration is then as follows. The function /(z) is regular in a region (R

that contains the rectangle with vertices ±i'L, 1 ±/L. There are poles of order a> at

z = c and at z = c, where

(4.2) c = X + iß,        0 < X < 1,    ß > 0.

With the exception of these poles, /(z) is regular in a larger region, which contains

the rectangle having vertices ±zX', 1 ± iV. There is a further singularity at

(4.3) z = C" = A' + iM',        0 < A' < 1,    M' > 0.

Apart from the poles at z = c and at z = c, C" is the nearest singularity to the real

axis having a real part in the interval [0, 1]. We take L' > u. Thus

(4.4) 0 < L < M = ß < L' < M',

The derivation of the expansion in Section 2 gives a specific representation for the

remainder term as a sum of contour integrals. This remainder term coincides with

C"/ + iS£*f introduced in (1.3) and (1.4).
In view of (4.1), we have

(4.5) /(z) = g(z) + r(z) = h(z) + s(z),

where

(4.6) g(z)= £/la,(0)zV9!,
0-0

(4.7) h(z) =   £/<a)(l)(z -   \f/q\.
a-o
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We define Cpm)(L)f and Spm)(L)j as real numbers by

Cpm)(L)f + iS'pm)(L)f =   f   g(z)eik' dz+  f   r(z)e"" dz
jx J ita Jo

/•1 + iL |»0 /.1 + ico

+ /        /(*>"* dz +  /       s(z)eik' dz +  /        h(z)eik' dz,
JiL Jl+iL Jl+iL

and then it follows from Section 2 that

(4.9) Cpmf + iS(pmf = Cpm\L)f + iSpm\L)f,        0 < L < M.

The function of L defined by (4.8) takes the same value for all values of L in the

interval (0, M), though, of course, the individual components on the right-hand

side are generally different for different values of L. In fact, it is elementary to verify

from (4.8) and (4.5) that

(4.10) C¿""(I2)/ + iSlm)(L2)f - ^"»(L,)/ - iS¡T\Lut = <f   Kzy1" dz,
J  R

the contour 7? being the rectangle connecting the points iLu iL2, 1 + zX2,1 + iLu iL!

in that order, or, of course, any allowable deformation of this contour. If we choose

L2 = L and L¡ = L', where L and 7/ satisfy inequalities (4.4), the closed contour

integral includes the pole at z = c. In view of (4.10), we find that

(4.11) C'm>/ + ''^""^ = C»m)(L')} + ''^m>(L')/ + 2r/ Res O/n),

M < V < M',

where we have denoted by Res (/c) the residue of f(z)e,k' at the pole at z = c.

The value of Res (k) is determined as follows. If /(z) has a pole of order w at

z = c, then there exists an expansion

co

(4.12) /(z) =   £   ar(z -c)r.
r —— a)

Similarly,

(4.13) e"" = e"" £ {ik)\z - c)'/s\.
«-0

Res (k) is the coefficient of (z — c)_1 in the product of these expressions, namely,

(4.14) Res (k) = eikc £ a-Áik)*-1/(r - 1)!.
r-l

If /(z) has a simple pole (co =  1) and is of the form

(4.15) f(z) = d(z)/(z - c)(z - c),

then

(4.16) Res (k) = a-xeik° = 6(c)eike/2iß.

We intend to adjust the asymptotic expansion by taking the term 27rz Res (2?™)

out of the remainder term and treating it as part of the expansion. It must be empha-

sized, however, that what we are doing is making an adjustment which has the effect
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of removing terms of order 0(e~kL), L < M, from the remainder and replacing

these by terms of order 0(e'kL'), L' < M', which are ultimately smaller. But the

order of the remainder term, which is 0(k~*), remains unaltered. No justification

is required for this procedure: in general, the addition of a term Ae~Bk to this asymp-

totic expansion does not affect the expansion's validity. Our motivation for adding

the particular term 27r/ Res (27rm) is simply that it appears that for finite k, the nu-

merical value of the remainder will be reduced. Thus we conclude this section with

a definition rather than a theorem. In fact, we need two definitions.

Definition 4.17. A Fourier coefficient asymptotic expansion is denoted as standard

if the order of the remainder term is higher than the order of any terms occurring

in the expansion.

Expansions (1.12), (1.4), and (1.5) are standard; expansion (1.3) fails to be

standard, but would be if the final terms were taken into the remainder term.

Definition 4.18. A Fourier coefficient asymptotic expansion is said to be adjusted

for a pole of /(z) at z = c if a single term 2-kí Res (k) is added into a standard ex-

pansion for Sí 1(.x)e'kx dx.

Both definitions presuppose the conditions of Theorem 1.12. These are essentially

that /(x) must be a real function of x, and that k must be real and positive.

Adjusted forms of (1.4) and (1.5) are

Kp-D/2]     „

(4.19) 2C(m>/ =      £     -^ + Re 47ri Res (2*m) + 2Cpm\L')j,
t-\      rn

l(p-2)/2]     „

(4.20) 2S™f =      £     -22fir + Im 4wi Res (2wm) + 2Spm)(L')f.
o-o      m

It is possible, under these definitions, to adjust a standard expansion to obtain

another standard expansion. This may happen in (4.19) if /(x) is periodic with period 1,

in which case K2g = 0 and the order of Cpm) is o(m~k) for all k.

One may adjust the expansion for more than one pole by simply adding several

separate residue terms instead of one.

Example. The following example, which was briefly mentioned in Section 3,

illustrates the numerical effect of including the adjustment term in the F.C.A.E.

This uses the function (1.8), namely

(4.21) /(*) = \/(x   - x + 0.26).

Here, a simple pole, having residue a_x  =  \iß, is located at

(4.22) c = \+ ip = 0.5 + (0.1)i

and, in view of (4.16), we find the adjustment term to be

(4.23) Re Of Res (2*ffi)) = (*•//*)(-l)"c"""/S.

The numbers below show the results obtained when a user attempts to calculate

C<6)/ by evaluating partial sums of the F.C.A.E. using on one hand the standard

series (1.4) and on the other hand the adjusted series (4.19).

The correct result is

(4.24) C(6)/ = 0.704033694
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Table 1

qth term in (1.4)

or in (4.19)

qth partial sum

m (1.4)

qth partial sum

in (4.19)

1
2

3

4
5
6

7
S

9

10

11

12

13

14

15
16

17

18
19

20

-2.081713996537

6.240287755500
-4.405942671467

5.406335388194
-9.689934463007

2.189459081506
-4.886759442277
-1.259169531957

2.215382693859
-3.699575480714

5.432548918994
-7.975547956536

1.182895543519
-1.688494712958

1.911763558659
4.555025903741

-1.615341149154

9.184600203531
-4.237003493705

1.809352162352

002
004
005
006
007
007
008
009
008
008
008
008
007
007
007
008
006
006
005
004

-2.081713996537
-2.019311118929
-2.023717061616
-2.023176428105
-2.023273327446
-2.023251432867
-2.023256319633
-2.023256445536
-2.023254230153
-2.023257929715
-2.023252497194
-2.023260472750
-2.023248643789
-2.023265528725
-2.023246411118
-2.023241856077
-2.023403390252
-2.022484930232
-2.026721933740
-2.008628412092

002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002

7.034491100931
7.040731388726
7.040290794568
7.040344857844
7.040335167781
7.040337357321
7.040336868609
7.040336856153
7.O4O337077575
7.040336707723
7.040337250917
7.040336453356
7.040337636252
7.040335947764
7.040337859537
7.040338314953
7.040322161629
7.040414007613
7.039990307181
7.041799659492

001
001
001
001
001
001
001
001
001

001
001
001
001
001
001
001
001
001
001
001

The elements and partial sums in two asymptotic expansions for the sixth (m = 6) cosine Fourier

coefficient C<6)/ of/(x) = l/(x2 — x + 0.26). The numbers have an absolute accuracy of about 10-11.

and the closest approximation in the final column (q = 7) differs from this by only

6 X 10~9. These results should be treated only as a qualitative illustration. The

problem of placing some bound on the validity of such results remains and, unless

the user carries out some analytical or numerical investigation of the remainder

term, he has no way of knowing how good or bad any particular result might be.

5. The Euler-Maclaurin Expansion. One application of the Fourier coefficient

asymptotic expansion is to derive the Euler-Maclaurin summation formula. This is

described in Lyness and Ninham [3] for the case in which the singularities mentioned

in Section 1 occur. It is described again in Lyness [4] using the same notation as

used here in the regular case. Briefly, the displaced trapezoidal rule

(5.1)       *"••<"/ = - £ /(^-^--) ,       ta = (1 + «)/2.
m ¡Ti   \        m I \a\ < 1,

may be expressed in terms of the Fourier coefficients of /(x) by means of the Poisson

summation formula
co co

(5.2) A1"-"1/ - 7/ = 2 £ cos 2wtaC{,m)f + 2 £ sin 2wrtaSirm)f.
r-l r-1

If we substitute expressions (1.4) and (1.5) for the Fourier coefficients, the summation

over index r may be carried out in terms of Bernoulli functions, leaving

(5.3) R<-«>;-   7/=   g  *«('«> /"""W-/"""
frí     a\ m" ^+4-""/.
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where the remainder term is given by

CO 03

(5.4) Ep""a]j = 2 £ cos 2irrtaCl'm)j + 2 £ sin 2rrtaSp'm)}.
r-l r-1

It is interesting to note the effect of using an adjusted form of the Fourier co-

efficient asymptotic expansion (4.19), (4.20) in (5.2) to obtain a correspondingly

adjusted form of the Euler-Maclaurin expansion. This gives an additional term

in (5.3), namely,

CO CO

Atm,Œl =  £ cos 2irrta Re (47n Res (2irmr)) + £ sin 2irrta Im (4ri Res (2irmr))
r-l r-l

(5.5)
co

=  Re £ e~2T'"°47ri Res (2irmr).
r-l

while the remainder term is altered by A1™'"' to

co co

(5.6) Evmal(L') = 2 £ cos 2trrta&;m\V)] + 2 £ sin 2irrtaS^m\^')l ■
r-l r-l

We now investigate the form of a1™"1 for the case in which z = c is a simple pole.

Theorem 5.7.   When z = c is a simple pole

(5.7) AIm'al = Re 4*-ia_,/(ei""ae~2T<"M - 1).

Proof. Since z = c is a simple pole we may use (4.16). Thus

(5.8) Res (2irmr) = a./""".

The sum in (5.5) reduces to the sum of an infinite geometric progression; this may

be summed to give (5.7).

The next theorem is less mundane:

Theorem 5.9.  If z = c is a simple pole, then

(5.9) A""'"1 = R[ma]<b,

where

4x/a_i_
(5.10) 4>(x) = Re ,

e     e — 1

This may be proved in a direct manner. A proof which requires less manipulation

is as follows. We may expand the denominator of (5.10) by the binomial theorem

(since Im c > 0). This gives

co

(5.11) <b(.x) =  Re 2 £e-2l,Vr'rc47r/a_1.
r-l

Consequently, the Fourier coefficients of <b(x) are given by

(5 12) /* = 0;        2CM<b =  Re Ariane2"",

2SM<b = -Re47Tû_1e2T,r\

Applying the Poisson summation formula (5.2), we find
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CO CO

Rlm'a]<b = 2 £ cos 2irrtaCUm)<t> + 2 £ sin 2irrtaSl'm)<¡>
(5.13) '-1 "l

co

Rx  *     — 2rirta   2xirmc.
e ¿_i e e 47Tia_i.

r-l

In view of (5.8), this is identical to (5.5). This establishes Theorem 5.9.

Theorems 5.7 and 5.9 may be generalized for poles of order w > 1. To this end,

we introduce a set of functions as follows:

(5.14) Wx,c)=  £e""<«->,
r-l

(5.15) Ux, c) =  -j- *._,(*, c) =  £ (2T<r)V'"<*"),    S « 1. 2, • • • , co - 1.
ox ir,

These may be evaluated in closed form. The first is the sum of a geometric progression,

namely

(5.16) Mx,c)= I/O"2*«—' - 1).

Subsequent functions may be obtained by differentiation. For example,

d«     • -2tííí-í)
V'1 V W, c) = -- Ux. c) =      „,,._., _ 1)2-

It will be convenient to define the analytic continuation of these functions by

(5.18) Mz,c) = l/(e2ri{'-c) - 1),        y-.{z,c) = -jz *.-,<*. c).

This definition is valid for all z, except at poles, which occur when z — c is an integer.

If the pole at z = c has order «, then

10-1

(5.19) Res (*) = e*" £ a-.-dm'/sl.
1-0

Substitution of this value of Res (k) into (5.5) gives

(5.20) A1"""1  =  Re £ £ *wia...l(2rimrr^'iTim'-'')/s\.
r-l    »-0

Theorem 5.7'. If z = c is a pole of order «, then

(5.21) A1"*'"1 =  Re4ri £ a-.^mV.G.. mc)/>!.
>-0

Theorem 5.9'.  If z = c is a pole of order o>, zTze/z

(5.22) A'"-01 = i?Im,alc5,

w/zere
si-1

(5.23) c>(x) - Re 4iri £ a_._,^8(x, c)/i!.
«-0

The proofs of Theorems 5.7' and 5.9' follow the same lines as those of Theorems

5.7 and 5.9.
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The function c6(x) has an analytic continuation

ca-l

(5.24) ¿(z) = 27TZ £ («_._,*.&, c) - S...ir*.(z, c))/s\,
»-0

where

(5.25) niz,c) =  \/{e-2'a-'c) - 1),

and

(5.26) f*,(z, c) = (- l)s £ 4>U{z, c).

We have already shown that I<j> = 0 and by definition <¿>(z) is clearly periodic with

period 1. We now prove that <£(z) has a pole at z = c of precisely the same nature

as the pole of /(z).

Theorem 5.27.  /(z) — 4>(z) is regular in a neighborhood of z = c.

Proof. In view of (5.18), \f/0(z, c) has a pole of order 1. Thus, i/-0(z, c) may be

expanded in the form

(5.27) Mz, c) = r—-1- + £ ßT{z ~ c)T.
2xi(z — c)        ~o

Consequently,

(5.28) *.(z, c) = (-1)' j! M*. c) = tz-tt^-^tï + £ ß'Az - c)r.
dz (2iri)(z — c)

Substituting this into (5.24), we find

(5.29) <>(z) =   £ a-.-i(z - c)~-l - 2ri £ â-.-,^*(z, c)/s! + £ ft'(z - c)r.
5-0 »-0

The first term on the right coincides with the 'infinite part' of /(z) given by (4.12).

The second term has poles only at the poles of ty*(z, c). These occur where z — c

is an integer. Since ß 7a 0, the second term is regular at z = c, as is the third. Con-

sequently, <j>(z) — /(z) is regular at z = c, which establishes the theorem.

The adjusted Euler-Maclaurin summation formula takes the form

(5.30) Rlm-alf - Ij = £ ^fs2^—i1} ~ / °    (0) + A[-al + ^-"l (I/)/.
o-i     a! m

The term A1™''*1 may be evaluated directly using (5.7). It is interpreted using (5.9)

as R[m' a]<p. By the previous theorem, <b(z) — /(z) is regular at z = c. Thus the in-

troduction of a1"1'"1 corresponds precisely to the process of subtracting out the

singularity. For example, the adjusted formula (5.30) may be written in the form

(5.31) R        x - Ix =  2-, —,-,-—i-r- Ep      (I/)/.
o-l       "! W

where x(*) = /(*) - <*>(*)•
Suppose, for example, that Gregory's quadrature rule is used. After evaluating

7vIm,a1/ and the approximations, based on finite differences, to /Í<,_1)(1) and /'"""(0),

it may be realized that a nearby pole is important. Rather than subtracting out the
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singularity and recommencing the calculation with xW, all that is necessary to

obtain an identical result is to subtract the number A1"1'al given by (5.7). The author

need hardly add that he does not recommend such a haphazard approach to numerical

quadrature, but such a situation does illustrate the relation between the adjusted

formula (5.30) and a process for subtracting out the singularity.

6. Applications to Numerical Quadrature. Subtracting out a pair of complex

conjugate poles would not normally be accomplished using 0(x) as a subtraction

function. In this section, we discuss the conventional approach to the problem

and compare the two methods.

The first thing that has to be done is to determine the location and nature of the

nearby singularities. This in itself can be quite tedious. We suppose that this has

been done and we have found simple poles at c = X + iß and at c. We now can

express /(x) in the form

« n ,, ^ 0(x)
(6.1) /(x) = -

(x — c)(x — c) '

where the value of 6(c) is known, i.e.,

(6.2) 6(c) =  A + iB,       c = X + iß.

A direct approach would be to choose a function h(x) such that h(z) — /(z) is

regular at z = c and at z = c. The usual choice is

<(, « u„\       n Kc) 1 ißA + (x - \)B
(6.3) A(x) =  Re —- = - S--   2        2

ip(x — c)      ß \{x — X)   + ß

An alternative choice, derived in the previous section, is

...       2-K                6(c)
<¡>{x) = — Re ^-77^-

(6.4) M - 1

= 2r JA[e2T" cos 2tt(X - x) - 1] - Be2T" sin 2x(X

"  M \ 1 - 2e2™ cos 2tt(X - x) + (e2*")2

In general, one evaluates Ih or ty analytically and applies the quadrature rule

to the function /(x) — /z(x) or /(x) — <b(x). So far as the analytic evaluation of Ih

is concerned, although this is straightforward, it is not quite as easy as the result

I<b = 0. However, when one comes to apply the quadrature rule, in general the

function /(x) — h(x) is usually easier to evaluate at an abscissa than the function

/(x) — <b(x). Without stating the form of /(x), one cannot say for certain that this

would be the case, particularly as it is normal to simplify the expression /(x) — h(x)

or /(x) — <b(x) before applying the quadrature rule. However, to evaluate h(x) one is,

in general, committed to evaluating (x — X) at each abscissa. To evaluate </>(x),

both cos 2x(x — X) and sin 2x(x — X) in addition have to be evaluated at each abscissa.

A second inconvenience is that the function <b(z) has poles at all points z = n -f

X ± iß, n = 0, ±1, ±2. Thus, while /(x) — #(x) has no poles at X =1= iß, it does have

poles at X ± 1 ± iß. If X is close to either 1 or 0, these additional poles may cause

inconvenience in the numerical quadrature process.

While in general the use of <£(x) rather than /z(x) as a subtraction function has
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Table 2

Elements of two Romberg T-tables based on (6.8) and {6.9), respectively.

i mi Ta< 7V-« 7V-«                       Ti<->                     Tt*-*                     Tt*-*

0 1 8.5998 - 00t
1 2 8.9031   - 001 1.4737 - 000
2 3 -3.1087 - 001 -1.2718 + 000 -1.6150 + 000
3 4 1.9623 - 001 8.4821 - 001 1.5549 + 000   1.7662 + 000
4 6 5.1533 - 002 -6.4226 - 002 -3.6837 - 001 -6.0878 - 001 -6.7664 - 001
5 8 1.3721 - 002 -3.4895 - 002 -2.5118 - 002   3.1051.- 002  7.3707 - 002   8.5617 - 002

0 1 -6.4190 - 002
1 2 -1.9726 - 002 -4.9050 - 003
2 3 -9.3333 - 003 -1.0189 - 003 -5.3314 - 004
3 4 -5.3907 - 003 -3.2173 - 004 -8.9340 - 005 -5.9753 - 005
4 6 -2.4470 - 003 -9.2088 - 005 -1.5540 - 005 -6.3153 - 006 -4.7885 - 006
5 8 -1.3875 - 003 -2.5145 - 005 -2.8310 - 006 -7.5130 - 007 -3.8037 - 007 -3.1041 - 007

little to recommend it, there are two special interrelated cases in which it might

be useful.

Firstly, for a general function, one might use the trapezoidal rule, or some rule

closely related to the trapezoidal rule such as Simpson's rule or Romberg integration.

In this case the first objection to using <b(x) related to ease of calculation disappears. In

fact, one finds that, from a computational point of view, <b(x) is easier to use than h(x).

This is because

RlmMQ -</>) = R[m,u1 - R[m'1]4>

(6-5) 2* 0M

-A1-"/- Re-—-^-
ß ,-•»«•» _ j

Instead of evaluating the function /(x) — <p(x) at each of the m + 1 abscissas, one

adjusts the sum of m + 1 function values of /(x) by a term whose evaluation is equiv-

alent to a single function evaluation of <j>(x). In fact, if a regular sequence of values

of m is used, only one or two exponentials are required for all values of m for this

additional term. No such simplification is known to the author for the evaluation

of 7?[m-1,(/ — h), which requires m + 1 function values of /(x) — h(x). However,

the second objection mentioned above, that relating to additional induced poles, is

still valid, and this procedure would be useful if the pole is significantly closer to

the real axis than to either of the lines Re (z) = 0 or Re (z) = 1.

As an example, we consider the evaluation of If = /J /(x) dx, where

(6.6) f(x) = l/(x2 - x + 0.26),

using Romberg integration with mesh ratios

(6.7) {m,} - {1.2, 3,4, 6, 8},       / = 0, 1, 2, • • • , 5.

In the first half of Table 2, the first column of the T-table is based on

(6.8) T'0 = R[miMf.

In the second half of Table 2, the first column is based on

(6.9) To = R[m''1]f - A1""'11.

Here the adjustment term, given by (5.7) is
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(6.10) A""'11 = 20V((-lfe        - 1).

In both tables, the rest of the T-table is calculated from the first column in the con-

ventional manner. In both cases, we have listed, in place of T\, the signed relative error

(6.11) E) = til If- 1.

The second special case is that in which /(x) is analytic and has period 1. In this

case, it is natural to use a quadrature rule which takes advantage of the periodicity

of the function and so one would be inclined to use a subtraction function which

has the same property, i.e., <b(x) and not h(x).

We may be more definite than this. If /(x) is analytic and periodic, then /(z) has

poles of a similar nature at z = n + X ± iß, and <b(z) subtracts out all these poles.

The second objection is no longer valid; rather, the usually inconvenient property

becomes an advantage. In addition, the evaluation of a function /(x) of this

nature almost certainly involves the evaluation of cos 2ttx or sin 2irx. By a

proper arrangement of the interval of integration, the same values of sin 2irx

and cos 2irx may be used in the evaluations of both /(x) and <b(x). Thus, the first

objection need not apply. However, in such cases it is conventional to use the trape-

zoidal rule, and as indicated above, <b(x) need not be calculated at each abscissa.

Finally, we mention that this subtraction function can be extremely convenient

when applied to the MIPS method, Lyness [4], for calculating Fourier coefficients.

This application is described in a preceding paper in this issue.

Appendix. F.C.A.E. for Logarithmic-Algebraic Singularities. An asymptotic

expansion similar to the one stated in Theorem 1.12 is valid in the case in which /(x)

has an algebraic logarithmic singularity at a terminal point. We treat the function

t) m = In (x - a)(x - a)a(b - x)ßh(x),       a > 0,    ß > -1,

= In (x — a)(x — a)"\[/(x).

The derivation of the expansion is structurally similar to that given in Section 2.

In this Appendix, we note briefly the difference in detail.

The coefficients that occur involve the digamma function ^(x) defined by

IW(z) = T'(z) - j- [  e-t"1 dt
(A.2) dz Jo

I     -«.«-i=   I    e   t
Jo

In t dt.
Jo

We again expand the regular part of /(x) at x = a as a Taylor series to give

(A.3) g(z) = In (z - a)(z - a)    ¿_,-',-TZ-
o-o       \Q      u¡

The terms in the expansion, as in Lemma 2.4, come from the following evaluation

of an integral:

/.O+ICO p—1 fi0)/     \ i*00    / '     \
/•A    A\ I I \  <*«    J V     T       \a)        i 'a/2   ika.q+1     I       I,        .     I     ™ I    0+«   -kv    ,
(A.4) ]a        g(z)e     az^g^^e       e    ,      ¿   [in y + -)y     e      dy.

The term (In y + zV/2) is the value of In (z — a) at z = a + iy.
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The final integral may be manipulated using (A.l) to give

„        ( O" ' + r)""V" * - F^T f (in : - in * + f )<" V «

r(a + a+ 1) I",,     , ,    n       .    ,    ,    ftr]
= -^rTrl- [_*(« + « + 1) - In k + -J •

The part of the expansion involving derivatives of ^(x) at x = a contains both terms

in k'"-"-1 and terms in In k /c_<,"*a_1. These are

/a+ioo
g(zyk' dz

(A.5)

= e'"'y*" £ 0^ -^ V(a + q + !)[*(« + a + 1) - In k + fer/2].
o^     »!      /c

The other part of the expansion is formally the same as in (1.12); however, in this

case, f>(x) = In (x — «)(x — d)ah(x).

The verification of this result depends on establishing lemmas corresponding

to Lemmas 2.1, 2.2, and 2.3. Lemma 2.1 is unaltered. Lemmas 2.2 and 2.3 have to

be adjusted. The adjustment involves establishing the order of a function analogous

to the incomplete gamma function (2.13). This function is

0>(ß + 1, x) =   Í   zV1 In t dt ~ 0(xße~x In x),       x

With this result, the derivation of the analogues of these lemmas may proceed along

the same lines as in Section 2. The results are

72 ~ Oi/c"""""1 In k),        h ~ 0(k~l In ke~kL).

Thus, the order of the remainder term is established and coincides as before with

the order of the first omitted term in the expansion.
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