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Existence of Quadrature Formulae with

Almost Equal Weights*

By K. Salkauskas

Abstract. The condition that an interpolatory quadrature formula on n nodes have degree

of precision at least « and positive weights defines a homeomorphism between the sets of

admissible nodes and weights of such formulae for each n. This is used to prove that the

only formulae having "almost equal" weights are the Chebyshev formulae.

1. Introduction. It is well known that for many weight functions it is not possible

to construct Chebyshev quadrature formulae of high order with real nodes. For

example, with the weight function w = 1, nonreal nodes appear for zz = 8 and n > 9,

where zz is the number of nodes. On the other hand, if w(x) = (1 — x2)-1'2, then the

corresponding Chebyshev formulae on [—1, 1] exist for all positive integers zz. In

those cases where the (equally weighted) Chebyshev formulae do not exist we may

ask whether it is possible to select real nodes in such a way that the weights are

almost equal in some sense, while the formula retains the degree of precision of

the Chebyshev case. For example, Ostrowski [2] has asked for the smallest constant

Cn 2: 1 such that there exists an zz-point quadrature formula whose weights have

ratios less than or equal to C„. Alternatively, one may choose to employ the sum

of squared weights as a measure of the equality of weights. When the weights are

equal (to each other), the sum of their squares attains its absolute minimum given

that the sum of the weights is a positive constant, say aa ; the last condition is in-

dependent of nodes and expresses the requirement that the formula be exact for a

constant function. However, in general the weights are functions of the nodes and

one may wonder whether the sum of squared weights as a function of the nodes

can have other local minima. What both the above-mentioned approaches to the

problem have in common is this. Let the weights of an zz-point quadrature formula

be hx, • • • , hn. Let h = (hu • • ■ , hn). We have £ h< = a0, a constant. Restricting

ourselves to formulae with positive weights, we let (P = \h : £ ht = a0, h, > OJ.

Let a continuous nonnegative function $ be defined on (P with the property that <i>

has one, and only one, minimum on (P at the point h = (a0/n, • • ■ , a0/ri). Denote

the nodes by xu • • • , x„, and let x = (x„ ■ • • , x„). Then h = £(x), and $(/z) = $*(x).

We ask whether $* has local minima for admissible real points x. It may not be

obvious that Ostrowski's proposal leads to the consideration of such a function $;

this will be dealt with in the last section. We shall prove the following

Theorem. The only n-point quadrature formulae which are exact for /,(x) = x'
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(J = 0, 1, • ■ ■ , zz), have positive weights, nodes in (—1, 1), and a local minimum value

of $*, are the Chebyshev formulae.

The next section contains the definitions needed to make the terminology of

this section precise, as well as some well-known results that will be needed in Section 3

for the proof of the Theorem.

2. Interpolatory zi-Point Formulae. Let /,•(<) = i (j = 0, 1, • • •), and let w be

a nonnegative function that is Riemann-integrable on [—1, 1] in either the proper

or improper sense, and whose integral over [—1, 1] is positive. We call w a weight

function. In what follows, w will be considered fixed. For a fixed positive integer zz

and for any function / that is defined on (—1, 1) and such that wj is integrable on

[—1, 1], we define two linear functionals 7 and Qn by

/(/) *  [   wf,       QM) = £ htfQc,).
J-i «-i

In on the weights h¡ are nonzero, and the nodes x, are real, distinct and lie in (— 1, 1).

The weights and nodes are parameters whose values determine how well QJj) ap-

proximates 1(f). ß„(f) is an zz-point quadrature formula intended to approximate 1(f)

and is interpolatory if, and only if

(2.1) QÁÍU = /(/,),        C/- 0,1, ■••.«- 1).

This can be accomplished for an arbitrary set of real and distinct nodes by setting

(2.2) hi =    ,        /-dt,        (i = 1, 2, • • • , n),
■K (Xi) J_i   t  —  X,

where zr(f) = (t — x0(i — x2) • • ■ (t — xn). If we set 7(/,) = at, then (2.1) becomes

n

£ hiX\ = a„        (J = 0, 1, ••• ,n - 1).
i-i

For any specific set of nodes and corresponding weights given by (2.2) we define

the degree of precision of Q„ to be the smallest integer d such that

QÁU+x) * KU+Ô.

Since Q„ is interpolatory, d 2: zz — 1. It is also well known that the Gauss formulae

have d = 2zz — 1, and that d cannot be increased. Hence zz — 1 £ d ¿ 2n — I.

Chebyshev formulae have degree of precision at least zz, and this is a condition that

we shall impose on Qn. Hence the nodes and weights of Qn must satisfy the equations

n

(2.3) £/z,x; = a,- O = 0, 1, ••• ,n).
i-i

Let x = (x,, • • •  , xn), and let

(2.4) S„ =  {x: 7(t) = 0, x, < x2 <  • • •  < x„}.

To every x G S* there corresponds an interpolatory quadrature formula whose

weights we may obtain from (2.2), and the condition 7(x) = 0 is necessary and sufficient

for the formula to have degree of precision zz. We shall be concerned with formulae

having positive weights, and therefore restrict x to a subset 9C of S„. It is easy to see
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from (2.2) and the fact that x, < x2 < • • • < x„ for x E §„, that h¡ > 0 (z = 1,

2, • • •  , zz), if and only if

(2.5) (-I)"-' f   w(fW0/(i - *<) * > 0,        (/ = 1, 2, •• ■ , n).

We define 9C to be that subset of S„ in which (2.5) holds and in which — 1 < x,,

x„ < 1. Then 9C is open in S„, and every point of 9C is an interior point. 9C is not

empty since the nodes of a Gaussian formula corresponding to the weight function

w satisfy the requirements of 9C.

Let (hu ■ ■ ■ , hn) = h denote the set of weights of Qn, with h¡ associated with x<.

Let (P = j/z: £ zz¡ = a0, A, > 0}. Clearly, Eqs. (2.2) or their equivalent (2.1) define

a mapping £ of 9C into (P. In fact, for each x E 9C there is determined a unique hE (P.

Let 3C =  £(9C). Then | maps 9C onto 3C.

3. Proof of the Theorem.

Lemma 1. If x, y E 9C, and £(x) = £(», r/zen x = j\
TVoo/. The hypotheses of the Lemma imply that

£ *</(*<) = £ hjiyd
i-l i-l

for all polynomials / of degree ^ n. We shall construct a polynomial of degree si zz for

which the equality does not hold when x ¿¿ y.

Let s¡ = x¡ — j, (z = 1, 2, • • • , n), and consider the sequence {s,}?. Not more

than zz — 1 sign changes can occur between the terms of the sequence. From {Si}'

extract a sequence ír¿}? by deleting all zero terms of {s¡}í and replacing every sub-

sequence of terms with the same sign by the first term of that subsequence. The

resulting sequence {i;}? has at least one term if x ^ y, but not more than zz, so 1 s:

p sj zz. Now, if p > 1, tm — xr — yT > 0 and zm+l = x, — y. < 0,

select £„ E [x,_i, x,]. If tm < 0 and tm+l > 0, select £„ G [y,-i, >>,]. Let this be done

for the whole sequence {i,}*. Let

/'(f) = (-ir1 sgn ii f[ (i - 6,),      p > 1,
i-l

= sgn Zj, p = 1.

Then

/(O-   Í   /'(T)dr
■'o

is a polynomial of degree p si zz. It has the property that /(x.) ^ /(j,)» with equality

only if Xi = yt. Since x, _v G K, we have /z, > 0. Hence

£ Ai/(x.) >  £ hdtyi),        x*y.
i-l V-l

This is a contradiction.

It will be convenient to abbreviate Eqs. (2.3) as

Fj(x;h) = 0       0'= 0, 1, ••• ,n).
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The equation F0(x; h) = 0 is part of the definition of 5C and does not involve the nodes.

We now prove

Lemma 2. The mapping £: 9C —> 3C is bicontinuous.

Proof. For every x G 9C, h = £(x) G 3C may be defined by the equa-

tions F,(x; h) = 0 (j: = 0, 1, • • • , zz —  1). The Jacobian

¿>(F0, F„ ••• , F„-.)_  K

d(A,, h2, ■ ■ ■ , hn)

where Fis the Vandermonde determinant of the nodes, and does not vanish on 9C X 3C.

Hence £ is continuous. Also

d(FltFa, ••• , F.) = n,   F JJ Ä. ̂  0>        (je; A) e ge x x.
o\Xi, x2, • • •  , .£„.) ,-_1

If, for A G 3C, we consider J"1 to be defined implicitly by the last zz of the Eqs. (2.3),

then the above implies that ¿f ' is continuous, and £ is a homeomorphism of 9C onto 3C.

Brouwer's Invariance of Domain Theorem [3] can be employed to show that

every point of 3C = £(9C) is an interior point relative to (P, for the condition 7(x) = 0

is equivalent to

(3.1) a„ + a„-ia, + • • • + a0an = 0,

where 7r(i) = f + a,*""1 + • • • + an. We identify ir(i) with the point (a,, • • • , an) E

(Rn, and (3.1) defines a hyperplane Qx in öt". This identification represents a homeo-

morphic map ty of Sn into ßi. an<i the image of Sn is open in Qx. Since 9C is open

relative to Sn, i//(9C) is open relative to \p(Sn) C ôi- Hence f(9C) is open in Q¡. Now 3C

is a homeomorphic image of ^(SC) under ty'1 and is a subset of the set <P contained

in the hyperplane Q2: £"_i h¡ = a0- Hence, by Brouwer's Theorem, 3C is open in Q2.

But (P is also open in Q2, so that 3C is open in (P.

If we now consider the function $ on (P, having its only local minimum at h =

(a0/n, • ■ • , a0/n), then, if h ç£ 3C, the problem of minimizing $ as a function of

the nodes, i.e. <£*, has no solution in 9C. But the statement that h G 3C, implies the

existence of the Chebyshev formula with real nodes. This proves the theorem.

4. Ostrowski's Proposal. Consider zz G (P. Let #(/z) = max,,, /Zj/zz,. The constant

C required is

C» = min $(zz),

if it exists. Clearly min^g. $(zz) = 1 and occurs at h = h = (a0/n, • ■ • , a0/zz).

Suppose that $ has another local minimum at h = h* 9e h. Then $(/z*) > 1.

Therefore, we can order the components of h* as follows:

Af. fe ¿kf. è • • • è Af„ > ht è Äf, ̂  • • • ^ A?x > 0,       m + X = «.

Now let e > 0 be a number < \(h* — h*). Consider the point h' with coordinates

obtained from those of h* via

h'ik = hft - *- ,       h'u = Ä?, + \ ,       (k = 1, • • • , ß-, 1 = 1, • • • , X).
Ai X
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Then h' E <P, and

h' A?   — e/u        h+

*lA j      h'ix      h% + e/X < A,*      ^ ''

Hence every neighbourhood of h* contains points h! at which $(zV) < $>(/z*). It

follows that $ has one, and only one minimum, at h, and if h G 3C> then no smallest

C„ can be found.
The results presented here are not valid if the degree of precision is not required

to be as great as zz, for then, if d is only required to be n — 1, £ is no longer a homeo-

morphism. If d > zz, then, in view of the additional constraints imposed on the nodes,

it may be possible to obtain interpolatory quadrature formulae which minimize $

and have real nodes. It may also be of interest to consider those cases in which

xt =  — 1 or xn =  1.
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