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An Interior a Priori Estimate for Parabolic
Difference Operators and an Application

By Magnus Bondesson

Abstract. A general class of finite-difference approximations to a parabolic system of

differential equations in a bounded domain fi is considered. It is shown that if a solution

Uh of the discrete problem converges in a discrete L1 norm to a solution U of the con-

tinuous problem as the mesh size A tends to zero, then the difference quotients of Uh con-

verge to the corresponding derivatives of U, the convergence being uniform on any com-

pact subset of Q. In particular, Uh converges uniformly on compact subsets to U as h

tends to zero, provided there is convergence in the discrete L1 norm. The main part of

the paper is devoted to the establishment of an a priori estimate for the solutions of the dis-

crete problem. This estimate is then used to derive the stated result.

1. Introduction. Let Í2 be a bounded domain in R1+i. The points in Rl+d will

be denoted by X = (i, x) = (r, xu • • -, xd). In 0 we consider the inhomogeneous

system of differential equations

(1.1) LU=D,U-    X)    AaDxU=F,
I ai ÍM

where the N-vector F(t, x) and the N X N matrices A a(t, x) are in C"(ü). We also

assume that the differential operator L is parabolic in ti in Petrovskiï's sense, which

implies that any solution of (1.1) is in C°(S2).

Let X be a positive constant and let h and k be positive parameters such that

k = \hM. We introduce the mesh

{ X G R1+d: X — (v0k, v¡h, ■ ■ ■ , vdh), vt integers),

and denote by Qh the set of meshpoints in Ü. Let the difference operator Lh be con-

sistent with the differential operator L and be determined by

L„ U(t, x) = kTx S2 Mr, x, h) U{t, x + vh) - ¿>,(f, x, h) U(t - k,x + vh)],

where a, and b, are smooth Ar X TV matrix valued functions. Furthermore, we require

that Lh is parabolic in Q in the sense of F. John. Then we approximate (1.1) by the

equation

(1.2) Lkuh = MhF,     xE a;,

where Mh is an operator consistent with the identity operator and ü°h is, for instance,

the maximal subset of tih in which LhU and MJJ are determined by the values of

t/inil
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Let U be a solution of (1.1) and Uh be a solution of (1.2). Further, let ^ CC

0a CC Í2 and set Í2^ = ft¡ H {X: t g 7}, í = 1, 2. Our result is that if (1.2) ap-
proximates (1.1) with order of accuracy p and the same holds for the difference

operator Qh and the differential operator Q, then

(1.3)       \Q„Uk-QUU.B%T á C(A*+ ||i/» - U\\h,0,T),       h^h0,    TER,

where the constants C and A0 are independent of the particular solution Uh and

\V\h,a = max \V(X)\,
XEHh

UHU.«- (*a' E|ku)|2Y/2-
\ X60» /

From (1.3) we conclude that if U is a solution of a mixed problem for (1.1) and

Uh is a solution of a corresponding discrete problem with LJJh = MAF in ü°h and

such that [|C/A — U\\hi a, —> 0 as h —> 0, then QhUh converges uniformly in Oj to QU.

To derive (1.3), we start by proving, in Section 2, three lemmas, which are con-

sequences of our assumptions about the operator Lh. In Section 3, we use these

lemmas to prove an a priori inequality for the difference quotients of functions V

defined in the meshpoints. This inequality essentially states that

\\d:V\\h,a,T £C(\\LkV\\h.a,T+ \\V\\k,a.T),       h^h0,    \a\ g M,    TER.

In Section 4, we combine the a priori inequality with the discrete Sobolev inequality

to obtain (1.3). Finally, in Section 5, we illustrate our results by two simple examples.

The methods used in Section 3 are to a great extent taken from [11], where results

similar to ours were proved for the elliptic case. Related questions for the pure

initial-value problem for the homogeneous counterparts of (1.1) and (1.2) have

been considered by Thomée [10] and Widlund [12]. In this case, convergence of

the discrete solution Uh to the exact solution U is not assumed, but is part of the result.

I wish to thank Professor Vidar Thomée for suggesting the problem and for

his constant encouragement during the writing of this paper.

2. Notation and Preliminaries. Let Q be a bounded domain in PZ*d. The points

in R1+i will be written X = (t, x) with x E Rd- If fii is a domain such that fij C Œ,

we shall write Í2, CC Œ. Unless otherwise stated, all the functions considered have

their values in the A^-dimensional complex vector space. For N-vectors V = (vu

■ ■ ■ , vZ) we use the Euclidean norm \V\ = (%2 ]t\|2)1/2 and for N X N matrices

A the induced norm \A\ = sup {\AV\ :\V\ = 1}. If A is an N X N matrix, we let

X,04), j = 1, • • • , N, denote the eigenvalues and p(A) denote the spectral radius,

i.e. max |X,-(/4.)|.

Greek letters a, ß, y, p, v, will denote J-dimensional multi-indices with integral

components. If a = (a¡, ■ ■ ■ , ad) is such an index, we shall write |«| = X) l^l-

We define the translation operators T\TX by

T\Tat U(t, x) =  U(t + jk, x + ah)

and the difference operators d„ d„ and dm, by

a, - \ (t, - i),     dt = t~Z dt,     dxi = - (rz - i),
k h
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where / is the identity operator and e, is the z'th unit vector in Rd. If the integer j and

the a.'s are nonnegative, we will use the notation

d\d: =  ,  d    — ,     d[ dax = d[ a"' • • • a:;.
ö« dZl  • • • dxd

Note that these definitions depend on the positive numbers k and h. However, we

preferred not to indicate this in the notation. Also, we shall frequently suppress

the subscripts t and x.

Now, consider a differential operator L defined by

(2.1) LU = (D, - P(DX))U = DtU -    £    Aa DaxU,

where the N X N matrices Aa(t, x) are assumed to be in C"°(Q). This operator is

said to be parabolic in Í2 in Petrovskiï's sense if for any I£ 0 there is a positive

constant C such that

max Ue \J £    Att(X)(il;)a)) rg  -C \t\",        £ E R\    T = Ef ■ ■ ■ £,".

Throughout this paper, we shall assume that the positive parameters k and h

satisfy a relation k = \hM, X = constant. Let C^(ü, h) be the set of N X N matrix

valued functions A = A(X, h) such that for any fij CC Œ, ̂  is infinitely differentiable

in 0, X [0, h0] for some positive A0. We then approximate the differential operator

L by a difference operator Lh given by

(2.2) Lh UU, x) = j [Ah U{t, x) - Bhrtl U(t, x)],
k

where the operators Ah and Bh have the same form, e.g.

A =   E  *.(f. -v, ml,       a, E Ck(Q, h),    K < co .
IHSK

We say that Lh is consistent with L in £2 if for any U E C"(ß) and any I£il

L4 V(X) - L U(X) = o(l)    as h -> 0.

Lft is said to be a consistent operator if it is consistent with some differential operator

of the form (2.1). The notion of consistency is introduced analogously for other

types of difference operators.

Our first lemma gives a simple representation of the operator Lh.

Lemma 2.1. Suppose that k = \hM. Then the difference operator Lh given by (2.2)

is consistent with the differential operator L in (2.1) if and only if Ah is consistent

with I, the identity operator, and

Lk =   Ah o i       Ph,

where Ph has the form

Ph=      E    ca,(/, x, K)T~txrx dax,       cay E C.v(Q, h)
\a\SM .9

with ca, 9e 0 only for a finite set of indices and

(2 3. cav(t, x, h) = ca,(t, x, 0),       a 9± 0,

Ec„((, x, 0) =  Aa(t,x).
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Proof. The proof of the sufficiency part is obvious. In order to prove that the

conditions are necessary we write

U -  Ahdt-1~ (Bh -  Ah)TZ =  Ah d, - PhTZ =  Ah d, - Ph,
\h

where for certain pv E C~(tt, h)

Ph = h~M ¿z]pt(t,x,h)Tl
v

Since Lh is assumed to be consistent with L, we find by taking U(t. x) = U(x) E

C(Rd) that for (/, x) E «

(Ph - P(.DX)) U(t, x) = o(l)    as h -+ 0.

This means that, for fixed t, Lemma 2.2 in [11] applies, giving

Ph =     ]C    c«Át, x, h)Tx d",
\a\<,M ,v

where the coefficients cay satisfy (2.3). The construction in that lemma shows that

ca, C C%(Q, h) and hence P,, = PhT~tl has the stated properties. From (2.3), we

infer that Pk is consistent with P(DX). Thus, we have for any U E C"(Q) and any

(t, x) E n

A d, t/(í, *) -  D, t/(í, x) = o(l)    as h -» 0,

and, by taking U(t, x) = tU(x), we get ^v a,(t, x, 0) = /, which implies the con-

sistency of Ah with /. This completes the proof of the lemma.

We now introduce the principal parts A°h, B°k, and L°k of the operators Ah, Bh,

and Lh, respectively, namely

Al =   £ a,(t, x, 0m,        Ll =  l- (Al - ß°77'),

where B°h is defined in the same way as A°h. If Lh is a consistent operator, we find

from Lemma 2.1

(2.4) Ü- Aid, -     Z    ca„(t,x,0)T;lrxd:.
I a I -M, v

Further, we introduce the symbols

AÏS& =   Al(H, X)=  JZ "ÁX, 0) exp (ilw-l;),        £ G -R",    i"î =   ¿ *,í.,

lï(t,0 = lI(t,í, x) - |[4(ü -r"Tito,     rGí,  5G«',

corresponding to the operators .¿J and Lj¡. Here, 2?£(£) is defined in the same way

as ¿¡¡(Q.
We shall assume that for any Í2t CC 0 there is a positive constant C such that

(2.5) |det A¡(j¡, X)\£C,        i£ß„

Consequently, the following notation makes sense:

E°h(0 = £î(£, « -  AlQ. X)~lBl(k, X).
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Definition. The operator Lh in (2.2) is said to be parabolic in 0 in the sense of

F. John [4] if it is consistent and if for any Sí, CC Í2 there is a positive constant C

such that (2.5) is satisfied and

(2.6) p(£Î(î, X)) g 1 - Ck lír,        |Ä0| è t,     *G Qi-

The next lemma will be fundamental for the a priori estimate in Section 3.

Lemma 2.2. IfLh is aparabolic difference operator in ti, there exists for any Í2, CC ß

a constant C0 such that

\LI(t,H, X)-'\ ^ C0 lír",       ? * 0,    |g,| g»,    ZC B,.

iVoo/. We have Lj(r, 0 = (l/k)A°h(0(I - e~ikT£^Q) and so it is enough to prove

that |(/ - e-^EXOT1] á C/(k |£|M). But we know (Lemma 3.4 in [10]) that

|(£Î(0)"| ^ C, exp (-C2nk \Í\M),        \h%,\ ú 7T,

uniformly for X E fii and hence we get for £ ?* 0

CO

|(/ - c-'*'^))"1! ^  Z |(£f(0)"| Ú C,/(l - exp (-Cs* 10")) ̂  c/(* 10"),
n-0

as required.

We will need some facts about Fourier series. The set of N-vector valued functions

defined on the mesh \X E R1+d : X = (jk, vh) = (jk, vjt, ■■ ■ , Vih), j, », integers,

k = \hM) is denoted by 311». In the subset l¡ ,„ = ¡ U E 911* : £,,, ]í/0'fc, p/z)|2 < œ [
we use the norm

llülU« (**- Z |t/(;A-,,A)|2)'/2-

For U E ¡I.h we introduce the Fourier transform

0(t, 0 = ¿Aá £ t/O*, vh) exp [-/(/ät + »-A01,        tE R,   Í G /?",

with the sum defined as a limit in I2(g), where Q = ¡(t, 0 : |/ct| ^ jr, |/z0[ ^ a-,

j = 1, • • • , ¿}. Conversely, if ¿/ G £2(0 the function Í/ defined by

U(Jk, vh) = (2ir)~1_d  f   Û{r, 0 exp [*0*T + vhÇ)] dr a\
Jq

belongs to Fkth and is the unique function in this space having the Fourier transform 0.

The Parseval relation holds, that is

Ill/Hi = 0)I+d f 10(r, 0|s drdt
Jq

We note that

d

iA'£/Mr,0 =  /'"lal  n^'i£'  -  xr'Û(r,0 - âxa(0c7(r,0.

We shall consider also the space ¡l of functions U defined on the mesh

{x G R* ■ x = vA} and such that £, liZ^A))2 < <». In this space the counterparts

of the facts above are obvious.
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Now let the principal part operator L°k be parabolic and have coefficients which

are independent of X. It then follows from above that (L°hUf(T, 0 = LI(t, 0c/(t, 0,

and hence for £ ^ 0 we have (dxUf(r, 0 = dx(Ç)Ll(r, 0_1(L°(7)>, 0. This is the

key to the following lemma, which gives a representation for daxU(t, x), \a\ = M.

Lemma 2.3. Let L°h be the principal part of a parabolic difference operator with

coefficients independent of (t, x) and let T and T0 be real numbers. Suppose that U

is a mesh-function such that U(Jk, • ) G llfor any integer j and U(jk, • ) = Ofor jk g T0.

If F = LIUfor t ^ T and F = 0 otherwise, then for \a\ = M and t ^ T,

(2.7)        a; U(t, x) = Vit)-1-"  f 3xa(0I.Ï(T, 0_1£(t, 0 exp (i(tr + *-0] dr ¿0
Jq

Proof It suffices to consider J0 = 0. The condition (2.5) shows that (A°hyl is a

bounded operator on l\. Hence the problem

(2g) L\v=d"xF,       t = jk>0,

V = 0, t = jk á 0,

has a unique solution V in 9TC4 such that V(jk, •) G l\- Since L°h commutes with

a:, we have V(t, x) = dxU(t, x) for t ^ T.

Let \a\ = M. For meshpoints (t, x) we denote the right member in (2.7) by H(t, x).

By Lemma 2.2, |d"(0L°(r, 0_1| ^ constant, £ ¿¿ 0, and so H G /*,» and consequently

also H(t, •) G l\- We claim that iï satisfies (2.8). This would imply the lemma. Taking

Fourier transforms we see that L°hH = d"xF and hence it only remains to prove that

H(jk, x) = 0 for j è 0. But

H(t, x) = G * F(t, x) = kh" £ G(f - nk.x - vh)F(nk, vh),

where the mesh-function G has the Fourier transform ô = d"(0L|¡(r, 0_I, and so

it suffices to prove that G(jk, x) = 0 for j < 0. We have, for j < 0,

dt(2x),+dG0*, *) - * f I"/"        *""(/ - e-^ito-1 dr] dXSAlWTV

- 7 /" |f       z"1_/(/ - z^))"1 dz\ 3:(0^(0-Vxt <$

= o,

since the condition (2.6) shows that the function (/ — z£j(0)_1, £ ^ 0, is analytic

in z for |z| g 1 and the inner integral thus is equal to zero. The proof is complete.

We also state the Leibniz rule which will be used frequently in the technical

calculations later on.

The Leibniz Rule. If A is an N X N matrix valued function with rows in 9TIA and

if U G 9ÏÏ*, we have

d\AU) =  Z IfiiT9 ds~'ß A){d'ß U) =  X (fl(d~ß AXT* d*~~ß U),

l) = nfe)-
where

5 = (oto, a), T" =  T"°T", d" = d°° d
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3. An Interior a Priori Estimate. For any set Q in Rl+d and any real number T,

we put QT = {(t, x) G 0 : t á r} and Í2„ = {(t, x) G fi : (í, x) = (/£, vh), j, vt

integers, k =  \hM\. Further, for U G 3TC* we introduce the notation

U\ ,a= (khd  Z  \U(X)\2)
\        .Yen* /

\\U\\h.,.,.a =       £       \\dÍ d: U\\h,Q,
,'Sr.lolS»

llClU.r —  ||Ü|U.<*««>*. II^IU.r...r-  l|Vll».r...<».+«i'.

We now state the main theorem of this section.

Theorem 3.1. Lei 0 be a bounded domain in R1+d and let Lh, given by (2.2), be a

parabolic (in the sense of F. John) difference operator in Ü. Then, for any Q1 CC

ilj CC Ö and any nonnegative integers r, s, there exist positive constants C0 and h0

such that for TER

(3   1} ||U||».,«...lh!- +   ||tf|U.r.lf+..0.*   ^   Co(||£»£A||»,r,.>0,T  +   \\U\\h.a2r),

h á ha,    U G 31Î».

Remark 3.1. It might seem more natural to use the norm

l|ff||f.r.o-    Z    l|äia;t/||4.n.
Afl'+I a\%r

This norm is, however, unsuitable for the application in Section 4.

In order to be able to handle the implicit case, Ak ?± I, we define the fractional

difference operators d\ by

(3.2) *' = '■        j= °'

= h"-' dt,       l Ú j ú M.

Note that df =  d,. We often omit the subscript /.

The proof of Theorem 3.1 will be carried out in several steps. We first treat a

principal part operator with constant coefficients and derive an estimate valid for

U G 2D»(0), where 3öA(fi) =  [U G 3TC» : U(X) = 0 for X G fil-
Lemma 3.1. Let Ü C -R1+d ¿>e a bounded domain. Also, let L°h be the principal part

of a parabolic difference operator with coefficients independent of X. Then, there is

a constant C0 (which depends only on the constants in the definition of parabolicity,

on the bound of the coefficients in L°h, and on the spatial diameter of fi) such that

E      \\d'i d; U\\h.T á Co \\LlU\\h,T,        h él,     £/£35,(0),    TER.
i+\a\íM

Proof. Let |«| = M. Set T0 = inf \t : (t, x) G fi} and let F and H be the cor-

responding functions in Lemma 2.3. Then, using this lemma, the Parseval relation

and Lemma 2.2, we get for U G 2DA(fi),

\\d:u\i,T g hah, = (»i/2(i+d> \\d:o)¿U','TlH'.')\\LHQi ^ c\\L°hU\\h.T.

The discrete Poincaré inequality (cf. Lemma 2.4 in [11]) shows that

||tf||».o.ar.r á C max   \\d;u\\h,T,        h £ 1,     UE D,(ß),
\ct\-M
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where the constant C depends only on the diameter of fi in the x-space. Hence, we get

(3.3) \\U\\h.0.M.T è C \\L°hU\\h,T,        Agi,     (7 G ©„(fi).

Since Al has a bounded inverse on 11, we conclude from (2.4) and (3.3) that

\\d,U\\h.T^ c(\\L°hU\\h,T+    E    \\d:u\l.T) g C \\LlU\\h,T.

[f j y¿ 0 and j + \a\ g M, we thus have, using (3.2),

0.4)     ||äidrr/||,,r = llÄ^-'ä.ari/lkr g c\\d,u\\h,T g c \\L0bu\\h,T.

Together, (3.3) and (3.4) prove the lemma.

Our first step towards an inequality for an operator with variable coefficients

is the following:
Lemma 3.2. Let L°h be the principal part of a difference operator which is parabolic

in a bounded domain fi C R1+d- Then, for any fit CC fi, there are positive constants

C„, h0 and e0 such that, ifh^h0 and TER, we have

E      \\did:u\\h.T g Co \\L°hU\\h.T
Í+1 «is»

for every function U G ©¿(fio whose support has diameter less than to-

Proof. Let X0 G supp U. Defining the operator Ll(Xo) by

¿to=E",(4 0)r¡-   E  cay(x0,o)T-'r da,
v \a\-M ,v

we have according to the preceding lemma with some constant C¡ independent of AT»

E      \\d'' daU\\h.T g C, ||L¡Uo)l/||».r,        Agi,     U E 2D„(fi,).

On the other hand, it is readily shown, using (2.4) and the regularity assumptions

on a, and c„„ that for sufficiently small h0 and e0,

\\L°h(X0)U - L°hU\U.T g   E IIOa*o, 0) - a,(X, 0))r' d V\\h,T

+    E   ll(c«,(*o, o) -cB,(jr, o))r-'r daU\\h,T
I a I - M, »

g ^(||t/|Í,1.o.r+  ||l%.o.Jf.r),

which evidently completes the proof.

We next extend this result to arbitrary functions in 35,(12 0.

Lemma 3.3. Let Lh be a difference operator which is parabolic in a bounded domain

fi C P-1+d- Then, for any fii CC fi, there are positive constants C„ and h0 such that

E      \\d', d:u\\k.T g C„(\\LhU\\h.T + || U\|,.o,,/-,.T-t),
¡-UISM

h è h,   U E s>»(Qi),   re«.

Froo/. Let e0 be the constant in Lemma 3.2. There exists a finite sequence j 0, }f., of

scalar valued functions in C°0(ti) such that diam (supp <p/) < e0 and E 4>XX) =  1

in fi!. Now, let U G 3ö,(fi,)- Then we have U = E «¿¿^ and> using Lemma 3.2 on

<¡>¡U, we get for j + \a\ g M
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\\d'd"U\\k.T g E \\d'd'Humer g CJZ \\Ll(<t>,U)\\h.r.
i i

Since the <p¡ are uniformly bounded, we have therefore

E     \\d'd"U\U.T
(3.5)

i+\ct\Stf

g Ct^WLhUWh.T + \\LlU - LhU\\h,T + max \\Ll<p,U - tf>,¿* t/||,,r)-

The last two terms inside the parentheses are estimated for sufficiently small h by

use of Lemma 2.1, (2.4), and the Leibniz rule:

.0,. -      1
(3.6) \\LlU - LhU\\h.T Ú — ||I/||,.1.o.r + C || i/||».o. *-!.!•-*,

4C[

||L^,i/ -0,L°„i/||4,r

(3'7) g   -Ar l\\U\U,1.0,T +   \\U\\h.o.M.T]   +   C |1 ÍT||,.o,*-,.,-,.
4L-1

The estimates (3.5)-(3.7) prove the lemma.

To prove Theorem 3.1, we have to reduce the subscript M — 1 in Lemma 3.3

to zero. This can be done using a discrete analogue of a norm used by Friedrichs

in his investigations on elliptic differential equations (cf. [2] and [11]). Let fi be a

bounded domain and let fix CC fi2 CC fi. Take a scalar valued and nonnegative

function <t> G Co(fi2) with <¡> =  1 in 0,. We introduce the norms

l|£>lli*i.r=     E     \\4>m+*a*d?d;U\\h.a.T,       OáiáM.
m+|a|s»

We now give a sequence of three lemmas concerning these norms. For simplicity,

we shall write T'" =   T\T"X and di,a  =  d\d"x.

Lemma 3.4. Given i, p, j, ß, q, m, a, s with q ^ 1, s ¿0 and j + \ß\ + m -f-

|a| g q, m + \a\ g s g M, there are positive constants C0 and ha such that

(3.8)     UiT •> d< ■ fy)d7 d: U\\h, T ^ Co \\U\\l*l,T,        A g A„,     Í/G3TC,,    TER.

Proof. If m + \a\ = 0, (3.8) holds trivially. In particular, the statement is true

for 5 = 0. Let ^ = r'^'V- If j + \ß\ + m + \a\ g q, we have, by a Taylor ex-
pansion,

m+ I a I

W^C   E   A>'"+""-\
r-0

For small h, ^ = 0 outside some fi3 CC fi2 and we obtain for 0 < m + \a\ g s

||iH-dac/||,.T

m + I a I

= ||^d-a"r/||,.0lr g c E  ll*"+lBl"rArä"a"ry||,.n.r

(3.9)

i/|liîi.r+ E E        ll(r'-'*-+,8|-r)â'dlr£/||A,a,,
r-l       |-y |+n»m+| a I —r ; i , p

Now, the statement follows from (3.9) successively for s =■■ I, •   • , A/,
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Lemma 3.5. Given m, a, q, and s with 1 g s g q and m + \a\ 5= s g M, there are

positive constants C0 and h0 such that for h g hQ, U G 9TC» a«d TER,

(3.10) ||ära;(^£O-0'3ra;i/||,.r g c0 |H7||£»_i.r.

(3.11) llâra^'toil».,. g Co ||ü||í*..r.

iVoo/. The inequality (3.11) clearly follows from (3.10), which we prove separately

for the cases m 9e 0 and m = 0. In the first case we get, using the Leibniz rule,

dm d"(<t>QU) - 0° dm d"U

=  E  u)(aV)iy ä"da-it/)+ E  (fl)(ä"3V)(r"1,iaa-''co,
0<ÍSo    \ß' OäßSa    \P/

and so (3.10) follows from (3.8). If m — 0 the second sum does not appear and (3.10)

follows for this case too.

The last lemma is of interpolation type.

Lemma 3.6. Given s, 1 g s g M, and e > 0 there are positive constants C„ and

h0 such that

(3.12) ||C/||£i-i.r g e WUWltl.T + C„ \\U\\l*l.T,      A g A„,    UEWh,    TER.

Proof. We prove the lemma by induction on s _ M. If s = 1 the inequality (3.12)

is obvious. Now suppose that (3.12) holds for s = 1, • • • , S — 1. To establish it

for s = S ^ 2, we have to estimate only those terms ||0m+l aldmdaU\\k.T for which

m -+ \a\ = S — 1. This will be done first for m 9e 0 and then for m = 0. We use

the notation (U, V)hT = E<sr Ef-i «,(A")ö,(X). If m ^ 0, we get

\\<s>s-' dm da u\\l.T = (</>* ¡r <r t/, <¿A-2<r d "o,, r

= (<ps ¡r+1 a" c, 0s-2 ¿r-1 a" t/),i7., m ^ 2,

= (0-s d2 <Tt/, 4>s~2 da(U - tZu)\.t,       »1=1,

and then, using the Schwarz inequality and (3.8), we find that

(3.13) \\<pS-1dmd"U\\lT ^ C\\U\\l%,T-\\U\\l%-2,T.

If m = 0, it follows from the argument in the corresponding proof in [11] that (3.13)

holds. From (3.13) and the induction assumption, we may conclude

||tf||tt-i.r ^ |||tf||i*i.r+ C( \\U\\lk%-2.T

= ¿ l|tf||¡%., + i ||c/||i%_lir + |c„ ||íy||¿*o.r.

This proves the lemma.

It is now possible for us to prove Theorem 3.1.

Proof of Theorem 3.1. We first prove the theorem for the case r = s = 0. We

assume that h is small so that the lemmas apply. We have

(3.14) llülki.oA* + \\U\\h,0.M,u,T ^ \\U\\k%,T,

(3.15) ||ü||í*i,.r=       E      H**3"a"Ií|U.0.r+||ü||ÍV..r.
m + I a | - .1/
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Application of (3.10) in (3.15) gives

IltfllÄr.i'jS        E       HômôVt/)lkr + C||{/||iVi.r.
m+\ a\—M

Using Lemma 3.3 on the terms in the sum, we see that

(3.16) \\U\\l%,T^ C[\\Lh(<pMU)\\h.T+ H**ü|U.o.jr-i.r+ Il U\]£*-i.rl.

By (3.11), the following holds:

(3.17) \fr"U\\k.:*-i.T è Cllr/lliVi.r-

To permit the switching of Lh and <pM in (3.16), we show that

(3.18) \\Lk(<pMU)-cl>MLhU\\h,T ú C \\U\\¡»m-x.t.

To do this, we first notice from Lemma 2.1 that

1,(0" U) - 0"L„ U =  E ",ir d(4>M U) - 4>Mr â U]

-   E   ca,(T-lr da{4>Mu) - <pMrlr d*u] = p + q.
\u\SM.,

We infer from the Leibniz rule and Lemma 3.4 that

E aÁT"4>M - <f>M)TvdU + aXKdcb^r1 U]

úc E   \\(raß4>M)hdu\\h.T + c\\u\\l%.T^c\\u\\i%^,T.
101-1,>■

The second term, Q, is estimated in a similar way and therefore (3.18) follows. Indeed,

our use of the operators dm, was necessary for the estimation of \\(T"dß(pM)hdU\\h,T =

\\(T'dß4>M)~dM-lU\\h.T in the inequality for P. In the explicit case, Ah = I, the first

part of P would disappear and we could do without the operators d?. Using (3.17),

(3.18), and Lemma 3.6, we transform (3.16) into

\\U\\l%,T è  C(||L„t/||„,ß2r+  ||t/||,,B.r).

Thus, by (3.14), we have proved (3.1) for r = s = 0. By induction on s, we deduce

after some computation

(3.19) ||E/||,,lf,,0lr +  ||t/||,,olJf+„0lr è  C(||Z.,l/||,,o...8,r +  11 I/| |,.o. 0.

which is the statement for r = 0. Finally, (3.1) follows for arbitrary r, s from (3.19)

by induction on r.

4. Convergence of Difference Quotients. Now, consider in a bounded domain

fi C Rl+i the equation

(4.1) LU = F,

where L is a parabolic differential operator and F G C"(fi) is a given A^-vector valued

function. It is then known that any solution belongs to C"(fi) (see e.g. [1]). For each

value of the positive parameter h, we introduce a mesh {X E R1+i '■ X = (Jk, vh),

j, v¡ integers, k = XAM}, where M is the order of the operator L, and denote by
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fi,, as before, the set of meshpoints in fi. Let Lk be a parabolic difference operator

consistent with L in fi. Further, let Mk be an operator of the form

j
MkU{t, x) = E   E   m,.,{t, x, h)U(t - 6¡k, x + vh),

i-\   \vlsK

0 g 9; g 1,    m,,, G C£(fi, A).

This operator is required to be consistent with the identity operator. We then ap-

proximate (4.1) by the difference equation

(4.2) LhUh = MhF    in Q'k,

where fi£ is a subset of fi, such that for any fii CC fi, we have filt, C fi£ for h small

enough, and such that LkU and MkU are determined in Q°k by the values of U in fi.

Any function Uh defined in fi, and satisfying (4.2) is called a solution of (4.2). We say

that (4.2) approximates (4.1) with order of accuracy p if for any U G C"(fi) and

any X G fi,

LhU(X) - MhL U(X) = 0(hv)    as A -> 0.

We observe from (4.2) that the operator Mk has no effect on our problem if

F = 0. In fact, operators of this type were introduced to get the same rate of con-

vergence for the Cauchy problem for certain inhomogeneous differential equations

as for the corresponding homogeneous ones (cf. [3]).

We shall consider scalar differential operators Q and difference operators O,

which for simplicity are assumed to be of the form

(4.3) 0=    Y,QM,x)d;,       Qa G C°(fi),
I «IS«

and

(4.4) 0, =     E    9-.C x, h)T'x dax,        qa, G CT(0, h),
lalSo.»

respectively. We say that Qh approximates Q with order of accuracy p if for any

U G C"(fi) and any X G fi,

Qh U(X) - Q U(X) = 0(A")    as A -» 0.

We also introduce the maximum norm

\U\h.v. = max \U(X)\.
xeoi

In this section, we shall prove the following convergence theorem as an applica-

tion of the a priori estimate derived in Section 3.

Theorem 4.1. Let Slbe a bounded domain in R1+d. Further, let the difference oper-

ator L, in (2.2) and the differential operator L in (2.1) be parabolic in fi in the sense

of F. John and Petrovskii, respectively. Assume that (4.2) approximates (4.1) with

order of accuracy p and that Qh, given by (4.4), approximates Q, given by (4.3), with

the same order of accuracy. Then, if U is a solution o/(4.1) and fii CC fi2 CC fi,

there exist positive constants C0 and h0 such that

\QhVh- QU\h.atT ^  C0(hp +  \\Uh-   U\\h.0,r), h ¿ho,     TER,

for any solution (/, o/(4.2).

From this theorem, we conclude that if for any fi2 C C fi we have 11 Uk — U\ |,. ¡¡, =

0(K) as h -> 0, then for any % CC fi,
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10* Ca - QU\k.a, = 0(Amin(^,•r,)    as A -> 0.

In particular, choosing Qk = Q = /, we see that convergence in the norm ||-1|,,a,

implies uniform convergence in fij.

In order to prove the theorem, we need a result due to Sobolev [9]. To state

this we introduce additional notation. Let w be a bounded set in Rd. For functions

V defined on the cubic mesh \x G Rd '■ x = vh), we set

1/2

wv\\h.. = u e iF&*)i,y

v\\h„,a = E n*:m»..
lalSi

|F|,,„ - max |F(kA)|.
pAG tu

77¡í? Sobolev Inequality. For any two domains «j CC w2 CC Rd, there exists

a constant C such that

I FU.., = C ||K|U,m«,+1>..,
where [d/2] denotes the largest integer ^ d/2.

The following lemma contains an inequality related to the Sobolev inequality.

Lemma 4.1. Let fij and fi3 be open cylinders, fi, = (Tu T2) X w,-, i = 1,3, wAere

o>i and co3 are bounded domains in Rd such that u,CC w3. Then, ifT— T is bounded

below by some positive number, there is a constant C0 such that

(4.5) |£/|,,0it ^ c„ ||c/||,,lild/21+1,ßsI-,      UE m,.

/Voo/L The proof will consist of two parts, each of which is an application of

the Sobolev inequality. First, we note that, according to that inequality, there is a

constant C such that for any t = jk,

max \U(t,vh)\ g C ||D(i,-)||».w«i+i.-..        ^G 3K»-
»ASM,

Hence, (4.5) would follow in the case T < T2 if we could prove that

(4 6) *(0 ~   IIW.OIU.wm+i.... =  C||ü||,.1.,vl,+lfo.r1

Í/ G SU,,     T, < t = jk ^  T <  T2.

In the case T ¡z T2, which is treated similarly, we must prove this inequality instead

for T¡ < t = jk < T2. The Sobolev inequality for of = 1 shows that

(4.7) g(jk) ^ C(||g||,,(r,,rj + ||d,í|U.(f,.rj).        Ti < jk è T,

where the constant C depends only on the difference T — TV It now remains to

substitute the expression for g into the right member of (4.7). Let the integers R and

S be such that (R - l)k g Tx < Rk and Sk Ú T < (S + l)k. We then have

(4.8) IWI*.<r,.n = E * k('*)|2 è C || U\\L0,w„+1.0.t,

Ud.g"2k.lTi. T)

(4.9) - ¿H     E     l|d-"ü(».-)lk-. - na:i/«/ - i)*.-)IU...T
¡-B Lla|Sl<i/2] + l J

á  C || £/||,,i,|d/21 + I,n,'',
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where the constants are independent of T. Together (4.7)-(4.9) prove (4.6). This

completes the proof.

Remark 4.1. Direct application of the (d + l)-dimensional Sobolev inequality

on the pair (fij, fi3) in Lemma 4.1 would give an estimate similar to (4.5). The right-

hand side of this, however, would depend on difference quotients in the ¿-direction

of order greater than 1.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. It is evidently enough to prove the theorem for the case

fi! = (Tu T2) X a;, with coj a domain in Rd and ß,CC fi2. Also, we may assume that

T — Ti is bounded below by some positive number. We choose the domain

fi4 such that fi2 CC fi4 CC fi and let h be small so that fi4., C Q». We then extend

Uh in an arbitrary way to be a function in 311,. The triangle inequality gives

(4.10) \QkUh - QUU.a.r g   \Qh(Uk -   lOkfe* +  |(ß, - ß)t/|,.0lr.

Since Qh approximates Q with order of accuracy p and U G C"(fi), we have for

the second term

(4.11) |(Ô, - Q)U\k,0lT ^ Ch*

if h is sufficiently small. To estimate the first term, we let fi3 = (Tu T2) X w3 be a

cylinder with u, CC «j and fi3 CC fi2- By Lemma 4.1 and Theorem 3.1, we obtain

(4 12)   \QÁUh -   C/)|,,0lr g C || Uk -   U\\k,1Aim+1+,.a,T

^ C[\\Lh(Uh -   V)\\k.o.i*m+i+,.a.T + ||C, -   C/||,.0,r].

In fi4,„ we have Lh(Uh - U) = MhF - LhU = (MhL - Lh)U. Making a Taylor

expansion and using the assumption about the order of accuracy, we find for X G

fi4 and small h,

p + r-I

{MhL - Lh)U(X) =    E   h'u,(X) + hp+,Up,r(X, A),

(4.13)
r =  [d/2] + l + q,

where U¡(X) is a linear combination of certain derivatives of U at the point X for

i Ú p + r — 1 and UV+T(X, h) is a linear combination of certain derivatives of U

at the points (t - 6(X, h)k, x + v(X, h)h), where (t, x) = X and 0 ^ 6 ^ I. Since

U G C"(fi), we thus get, for small h,

(4.14) \\Lk(Uh -  t/)||».o.[<i/2] + i + ,.B.r è Chp,        TER-

(4.1 OH4-12) and (4.14) prove the theorem.

Remark 4.2. It is seen from the proofs of Theorem 3.1 and Theorem 4.1 that

the regularity assumptions in Section 2 can be considerably relaxed. For the proof

of Theorem 4.1 it suffices to know about the solution U that U G C+r+M(Q),

r = [d/2] +1 + 0. If, however, we had used the norm proposed in Remark 3.1

or the idea in Remark 4.1, we would have to require more than this since k = \hM

(cf. (4.13)).

5. Examples. We now give two examples with d = 1 and N = 1 to illustrate

our results. In these examples L is the heat operator,
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and Lh is the parabolic difference operator,

Lh = a, - tj't:1 a2,      k = XA2,   X < \.

Example 5.1. We consider the problem

LU = F    in fi =  [(/, .y) : 0 < t ^  T,0 < x < 1},

1/ = /     on T =  fi\fi,

where we assume that F G C"(fi) and / are such that the problem admits a unique

solution U with D\D'XU G C(fi) for 2/ + ;' ^ 6. For the numerical solution of this

problem, we use the scheme

LhUh = MkF    in fi,,
A = \/n,    X = | ,

Uh = /   on r„

where

MhF(t, x) = \F(t, x) + MF«, x + A) + F(f, a- - A)] + |F(i - ft, *).

The use of an operator Mh ¿¿ I is justified by the fact that for any smooth function

V, we have (I, - MhL)V = 0(h4) as h -> 0 while only (L, - L)V = 0(h2) as A ->

0. Let Í/, be the solution of the scheme. From the definition of L, we derive easily

that

\V\h.â S \V\h.v + C |L,Kko

for any mesh-function V. Replacing V by Uk — Í/, we thus have

|C, -  U\h,â ¿ C \Lh(Uh -  U)\h.a - C |(A/,L - L,)C|,.n = 0(A4)    as A -* 0,

and consequently also \\Uk — U\\k,a = 0(A4) as h —> 0. Hence, if g, approximates

g with order of accuracy 4 and fit CC \(t, x): 0 < t < T, 0 < x < 1}, Theorem

4.1 gives

\QhUk - ß£/|,.a, = 0(A4)    as A-^0.

Example 5.2. We consider the problem

LU = 0    in fi =  {(*, x) : 0 < /, 0 < x < 1},

(5.1) 1/(0, *) = /(*),        0 ^ x ^  1,

t/(f, o) = r/a, i) = o,     o < t,

where we assume that the function / is continuous and /(0) = /(l) = 0. The corre-

sponding discrete problem will be

LhUh = 0    in fi,,

(5.2) l/,(0, x) = j(x),        0 | x = j7i ^  1,

i/,(/, 0) =   U(t, 1) = 0,        í = ik > 0,
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where h is the reciprocal of some positive integer. Let U be the solution of (5.1)

and Uh be the solution of (5.2). By extending our mixed problems to pure initial-

value problems, we see from [12] (cf. [5], [7], and [8]) that

I Uk -  U\h.a = 0(hT)    as A -* 0,

where

r = a if  / G Lip« [0, 1],
(Kail.

- 1 +«    if/' G Lipa [0, 1],

Hence, if Qk approximates Q sufficiently well and fi, is a bounded domain such

that fi, C fi. we get from Theorem 4.1,

|0,l/, - QU\h.a, = O(A')    as A^O.

In case / is only continuous, 0(hr) should be replaced by o(l) above. These results

could be obtained directly from [12]. Replacing L, in (5.2) by the implicit Crank-

Nicolson operator L,,

U = d,~ *[/ + tZ\t~Z d2x,      k = XA2,

which is parabolic for any fixed X, 0 < X < °°, we deduce easily analogous results

(cf. also [6]).
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