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Error Analysis of the Algorithm for Shifting the
Zeros of a Polynomial by Synthetic Division

By G. W. Stewart III*

Abstract. An analysis is given of the role of rounding errors in the synthetic division

algorithm for computing the coefficients of the polynomial g(z) = /(z + s) from the coeffi-

cients of the polynomial /. It is shown that if \z + s\ ^ \z\ + \s\ then the value of the

computed polynomial g*(z) differs from g(z) by no more than a bound on the error made

in computing f(z + s) with rounding error. It may be concluded that well-conditioned

zeros of / lying near í will not be seriously disturbed by the shift.

1. Introduction. Let the polynomial

/(z) = a0 + a,z + • • • + zz„z"

have the zeros ru r2, ■ ■ ■ , r„. Then the polynomial

g(z) = /(z + s) = b0 + bxz + • • • + b„z"

has zeros rt — s, r2 — s, ■ ■ ■ , r„ — s. The coefficients of g may be evaluated by re-

peated synthetic division:

bï-ï" = a.-,, (/ = 0, 1, ••• ,n),

(1.1)        b™ = ¿i*"1', (zc = 0, 1, ••• ,n),

bïi+i" = b™i + sb?2t+1, (i = 1, 2, • • • , k + 1; zc = 0, 1, • • • , n - 1).

The coefficients of g are then given by b, = bf. This scheme is a rearrangement

of the usual synthetic division algorithm; however, the two are computationally

equivalent. The purpose of this note is to analyze the effects of rounding error on

the algorithm defined by (1.1).

2. The Principal Result. We shall assume that all calculations are carried out

in complex floating-point arithmetic. Specifically, let fl(a o b) denote the result of

executing the binary operation o in floating-point arithmetic. Then, we shall assume

that there is a number r¡ such that

jl(a ± b) = aa ± bß,

and

jl{ab) = aby,
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136 G.   W.   STEWART  III

where

(2.1) \a- i|,      1/3-11,      |y - i| â n - l.

For brevity, the following notational convention will be observed. A lower case

Greek letter, say r\, will denote a number presumed to be near unity, and

r¡ =  ij —  1.

In this notation, the bounds (2.1) become

\à\,     \ß\,     m S f?,

The results of this note are closely connected with the problem of evaluating

the polynomial / in the presence of rounding error. This is usually done by synthetic

division, and the value of f(s) is given by ban) in (1.1). The following theorem is well

known [1, p. 50].
Theorem 2.1. Let fl(f(s)) denote the computed value ofb0a). Then

//(/($)) = aaa0 + iZja,5 +  ■ • • -f ana„s",

where

\ân\   ^   V^  -   1

and

\ât\ ^ j,2'"1 - 1,       (I = 0,1, ••• ,zz - 1).

Thus, the computed value of f(s) is the exact value of a polynomial whose coeffi-

cients differ from those of / by small relative amounts.

Corollary 2.2. Let

Uz)=   |«o| +  |fli I* +   •••   +  W\z\

Then

\fKKs)) - f(s)\ ^ (V2n - l)/0(|z|).

For the shifting algorithm, a nice result would be an analogue of Theorem 2.1

stating that the polynomial g computed with rounding error from (1.1) is the poly-

nomial that would be obtained by applying (1.1) without rounding error to a poly-

nomial slightly perturbed from /. This is not true in general. For example, if the

algorithm is applied in four-digit decimal arithmetic to the polynomial

/(z) = z2 - 427.8z - 1.610,

with shift s = 416.9, the result is the polynomial

g(z) = z   + 406.0z - 4546.

In fact, g is the polynomial obtained by applying (1.1) with s = 416.9 exactly to

the polynomial

h(z) = z2 - 427.8z - 2.210,

whose low order coefficient differs considerably from that of /.

However, the following analogue of Corollary 2.2 holds.
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Corollary 3.2. Let g denote the polynomial obtained when the algorithm (1.1)

is carried out with rounding error. Then

\g(z) - f(z + s)\ g („2" - l)/a(|z| + |*|).

Thus when

(2.2) \z\ + \s\ S \z + s\,

that is, when z lies in the direction of the shift or when z is small, the error in g(z)

has the same bound as the error made in evaluating f(z + s) with rounding error.

This is true of the example given above. On the other hand, g(—416.9) = —2.210,

which differs considerably from /(0). This is to be expected, since z = —416.9 does

not satisfy (2.2).

In conjunction with Rouché's theorem, Corollary 3.2 suggests that the shifting

algorithm will not perturb zeros near the shift by much more than they would be

perturbed by the act of rounding the coefficients of /.

3. The Principal Theorem. From the Eqs. (1.1) which define the shifting algorithm

it follows that the b¡k) satisfy the matrix equation

'    . <i)
On

.(*)
0„-l

, (*>
On- k

From this, it is seen that the vector bw = (bnk), bn% •■■ , bn(k{)T may be obtained

by premultiplying the vector aw = (an, an-u ■ ■ ■ , a„_k)T by a unit lower triangular

matrix Lk of order k + 1. The idea of the following error analysis is to show that

the vector ba), calculated with rounding error, may be obtained by multiplying

aik) by a perturbed matrix Lk + Gk, where the elements of Gk are small.

Let the (z, /»-element of L„ be /<*>, (i, j = 1, 2, • • • , k + 1). Let /<» >4+, = 1,

and for all other (z, y') <$ {1, 2, • • • , k + 1} X {1, 2, • • • , k + 1}, let l^ = 0
(n.b., these last defined /"' are not elements of Lk). Then, from (3.1), it follows that

¡a      —hi   + sli-i.i,       (/, j = I, 2, ••• , k + 2).

Since

L   = Í1    °^
J     1.

it follows by an easy induction that

#' = s'-'C(k - j+ l,i - j),       (/, j = 1, 2, • ■ • , k + 1).

Here C(zzz, zz) denotes the binomial coefficient zzz!/[zz!(zzz — zz)!] and is assumed to

be zero for n > m.

(3.1)

<*+i)

0»-l

1

s     1

n-k

<t+l)

S        1

J        1
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Suppose now that the b,k) represent computed values. Then

>(t+l) ,(*>    (*>     i       ,<*)       s«>
13 21 =        ! s*"-i+iô.   -

(f = 1, 2, ••• , * + l;Ar = 0, 1, «- 1),

where

un ̂  í. IsTl

Let ej*\ t"1 = 1 when z and zc fall outside the bounds in (3.2).

Theorem 3.1. Let b<k) denote the computed vector. Then

bw = (Lk + Gk)aa),

where the (i, f)-element of Gk is /¡77Í*  and

Tu   = 0,

(3.3)    tfffl ^ ^+i_1 - 1.

Ifíf I á U* - 1,

(z = 2, 3,

a = 2,3,

.*+!),

* +1).

/Voo/. The proof is by induction. Throughout the proof, the symbols « and ô

will be used generically for the e'*' and o¡".

For zV = 1, define Gt by

L, + G,
1    0

so that

Moreover

(¿. + G,)
a,

la»-

G, =
0    0

iá     ê

Hence, the yft satisfy (3.3).
Assume that Gk is given and the 7,-*' satisfy (3.3). Consider the quantity

(i+l) ,<*)       (ft)     (*)      _, ,(*>        .   (*) j-(t)
g¿¿      = «<í7.z «i-i + s/.-i.í7.-i.í5.-i. (i,j =1,2, , k + 2).

Then, it is easily verified that the matrix Lk+1 + Gk+1, whose (i, /)-element is g\k+u,

produces the vector zV*+1) when it premultiplies the vector a(k+1). Moreover, since

«rg(0 = arg(iW) = arg &/&.,),

Z?.j

where

But, for y'=l,

WÎ(*+D i <

,,<*>      , ,<*>      %_,(*+!>    _     ,(*+l)     (t+l)
V'ij     1   ili-\.iJY a la     ïii     »

max{|7l(fe- l\,\y™.ii- l\\.

I    (*) ,i   ^      k+i-l
Iy.i e - 1| á 17 »7 -  1,
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and

I    (*)        ç 11*--       4+1-2    2 , k+i .
m-l.lO - 1| = 1, r?   -  1  = ij       -I.

For y > 1,

I    (*) 1 I    -T--       fc+»-2i + 2 « *+t-2j+3 i
It», e-ll^ij ij-l = t» -1,

and

I    (*)        ç «I   ^.       *+t-2/+l    2 . k+i-2j + 3 .
|7,-i.,-5 -l|^i? ij-l = »; -1.

Hence, the y,k+1) satisfy (3.3). In particular

\1$\ á z/2"- i.

This completes the proof of the theorem.

To establish Corollary 3.2, let g(z) be the computed shifted polynomial. Then

n+1 n+1   n+1

/  \ \~^   , n-i + 1 \^    V^     n-i + l/(n)     (n)

i-1 t-1    j-1

= Z o.-/+1 £z-'+V-'c(» - ; + i, í - /hi?
i-1 .-i

-  £ a„_i+i(z + s)—1 + £ o»_/+I £z—+V-'C(n - y + 1, / - Mu
I-I 1-1 >- i

= f(z + s)+ e(z),

where

e(z) =  £ «n-i + > E^"<+V"'C(zi - j+ 1, i - y)?.?.
i-1 i-i

Hence

|«»| á (Z72n - l) £ k_,+1| £ iz|n-i+1 |»|*-* C(zz - y + 1, i - /)
i-1 t-i

= d?2n - i) £ k_/+1| (|zi + i*ir,+1
i-1

= (>?2B - n/o(|z| + kl).

This proves Corollary 3.2 stated in the last section.
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