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Least Squares Methods for 2 rath Order Elliptic
Boundary-Value Problems

By J. H. Bramble and A. H. Schatz

Abstract. In this paper we consider a general class of boundary-value problems for 2mth

order elliptic equations including nonhomogeneous essential boundary conditions and

nonselfadjoint problems. Approximation methods involving least squares approximation

of the data are presented and corresponding error estimates are proved. These methods can

be considered in the category of Rayleigh-Ritz-Galerkin methods and have the special feature

that the trial functions need not satisfy the boundary conditions. A special case of the

trial functions which is studied are spline functions defined on a uniform mesh of width h

(or more generally piecewise polynomial functions). For a given "well set" boundary-value

problem for a 2mth order operator the theory presented will provide a method with any

prescribed order of accuracy r which is optimal in the sense that the best approximation

in the underlying subspace is of order of accuracy r.

1. Introduction. In this paper, we present, and give error estimates for a class

of least squares methods for the approximation of solutions of general boundary-

value problems for 2mth order elliptic partial differential equations. The estimates

are based on an abstract approximation theorem which we prove. This theorem is also

applied to obtain some purely approximation theoretic results.

The results on boundary-value problems are a generalization of those of [14],

where we treat only the Dirichlet problem for second order operators. A description

of some of them is given in [15].

As is well known, the ordinary Rayleigh-Ritz method for the treatment of bound-

ary-value problems with essential boundary conditions requires that the trial functions

satisfy boundary conditions. In the least squares method this difficulty is not present.

For other approaches where the requirement of satisfication of boundary conditions

has been avoided, the reader is referred to the works of Aubin [4], [5], Babuska [6]

and Nitsche [26]. Although most of this work has been aimed at second-order prob-

lems, it could be generalized in some directions to higher order problems.

Little has been done, however, of a general nature on the treatment of higher

order equations with general boundary conditions by any method. We present here,

for the first time, a general theory for the approximation of solutions of such problems.

For a given "well set" boundary-value problem for a 2mth order operator, our theory

will provide a method with any prescribed order of accuracy r which is optimal in

the sense that best approximation in the underlying subspace is of the order of ac-

curacy r. Some special features of the method presented in this paper are as follows:

(1) The trial functions are not required to satisfy any boundary conditions.

(2) Selfadjoint problems and nonselfadjoint problems are treated with equal ease.
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2 J. H. BRAMBLE AND A. H. SCHATZ

(3) Problems whose associated quadratic form is not positive definite are treated.

(4) The data are used in an L2 sense.

(5) The matrix of the resulting linear system is always symmetric and positive

definite.

An outline of the paper follows. The first part contains the above-mentioned

general approximation theorem. We begin Part II with a description of the function

spaces and subspaces to be used later. The remainder of Part II is devoted to some

approximation theoretic applications of the general theorem; e.g. we study some

approximation theoretic properties on du of functions which are assumed to have

certain approximation theoretic properties on 0. The main part of the paper is in

Part III. Here we present and study least squares approximations for general bound-

ary-value problems for 2mth order elliptic operators. Many error estimates are

proved; e.g. L2 estimates are given as well as interior estimates for derivatives. A

specific example of a boundary problem for the biharmonic operator is presented.

Finally, two methods for the Dirichlet problem for Poisson's equation, which are not

contained in the general theory, are studied. The proofs of the estimates in these

methods are again an application of the abstract theorem of Part I.

Part I

2. Preliminaries. For each j = 1, • ■ • , n, n ^ 1, let X(J, 0,), 0^0, ^ 1, be a

one-parameter family of Banach spaces (real or complex), with corresponding norms

II* ||x(í.»() satisfying the following condition:

Condition I. (a) For each j = 1, • • • , n, X(J, 0<) C X(j, 0,) for any 0 ^ 0, < 0J g 1

with a continuous injection, i.e.

(2.1) IMI«M,) ^ CtiOu 9fi\\u\\xu.«n

for all m G X(j, 0J) where Ci(0,-, 0{) is a constant which may depend on the choices

of 0, and 0J.

(b) Let Y be any Banach space with norm 11 • 11Y. For fixed j, let T G £(X(j, 0) ; Y)

(~\ £(X(J, 1); Y) (where for X and Y Banach spaces, £(X; Y) is used to denote the

space of bounded linear mappings of X into Y) with

(2.2) llHillrSS molHlxu.o,,        ||ft||r ¡S mi||*||xH.».

Then, for each 0 < 0, < 1, T G £(X(j, 0,); Y) with

(2.3) Uritll, rg Ci(ei)m1o~"mV\\u\\xa.eo,

where C2(0,) is a constant which depends at most on 0, and is independent of the

choice of Y and T.

We note that Condition 1(b) states that for each j the spaces X(j, 0;), 0 < 0, < 1,

are interpolation spaces between the spaces X(J, 0) and X(j, 1) (cf. [17]).

Let 0 G R", 0 = (0i, • • • , 0„). We shall say that a ^ 0 ^ b for two real numbers

a and b if a ^ 8f g b, j = 1, • • • , n. For each 0 G R", 0 ^ 0 ^ 1, denote by X(6)
the product space X(9) = XI"-i X(J, 0,) with the norm

n

(2-4) ll«||x<9,   =    Z)   ll«f||x(/.»,>, U   =   («1,   •■•   ,  Un)-
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It will be convenient for us to renorm X(6) in the following way: For each a G R"

and h G R1 with h > 0, X(B; h; a) will denote the Banach space whose elements are

those of X(d), but furnished with the equivalent norm

n

(2-5) |MU<9;*:«)    =     2   A~"'ll"il|x(/.»i).
1-1

We note that the constants of equivalence depend on h and a and when a = (0, • • • ,0)

the norms (2.4) and (2.5) are equal.

3. Approximation-Theoretic Properties of Certain Subspaces of X(8). In order

to motivate the approximation-theoretic result we wish to prove, let us consider

the simplest case in which X(ff) = X(l, 0,), 0 ^ 0, ^ 1, a single one-parameter family

of Banach spaces satisfying Condition I. Suppose that there exists a one-parameter

family Sh, 0 < h ^ 1, of closed subspaces of X{\, ßx) for some 0 g 0, < 1, having

the approximation property that for some ax > 0

inf   ||h, - xi||x(i./M è C/V'IIh.Hx,,.,),

where C is a constant which is independent of h and t/j G X(l, 1)-

Suppose that the subspaces S* are also closed in X(l, 0). We now ask what prop-

erties with respect to best approximation in X(l, 0) do the subspaces 5* have which

follow from their properties on X(l, ft)? Since X(l, 0) C X(l, /?,) with a continuous

injection, we trivially have

inf   H«! -xillx(i.o) á CA"||i/|U(i.i).

We shall show in this case that since the spaces X(l, 0) satisfy Condition I the stronger

inequality

inf   H«, -Xtllxu.o) g CA"',/<l-'1>||ii1||x(1..l)
X>€S»

holds for each 0 ^ 0, ^ 1. Here C is some constant which is independent of h and

"i G X(l, 0i). In the nontrivial case, in which 0, = 1 and 0 < & < 1, we have

Mi/O - ft) = <r,/(l - ft) > «rt.
In this section, we shall generalize this situation. Briefly, we shall consider product

spaces X(0) as described previously. We shall assume that for some ß G R", there

exists a one-parameter family of closed subspaces S* of X(ß) having certain properties

with respect to best approximation in X(ß) (see below) and then show that this implies

that they have certain not so evident approximation properties in the weighted spaces

X(0; h; a), for some appropriate choice of a.

In Parts II and III of this paper, we shall consider some specific applications

where the assumed properties of the approximating subspaces are easily verifiable.

Let ft o- G R" with 0 ^ ß < 1 and 0 < a and let h G R1 with 0 < h á 1. For
fixed values of ß and a, let Sh denote a family of subspaces of X(ß) which are closed

in both X(ß) and X(0) having the following property:

Condition II. For all u G X(l) there exists a constant C3, independent of u and h,

such that

(3.1) inf   ||« - xlU> -   M   Ê II«.' - Xillxu.»,) è Cs ¿ *"|!«illx„.i>.
xes1 x£S'   Í-1 i-l
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Remark. In all our applications, the spaces 5* will be finite-dimensional and there-

fore automatically closed in X(ß) and X(0).

We shall now state the main result of this section.

Theorem 3.1. Suppose that Condition I is satisfied. For given S\ satisfying Condi-

tion II, let a, = ft<r,(l — ßj) and 0 *g it¡ *S a, for j = 1, • ■ • , n. Then

(3.2) inf   ¿ Â-"'||«,. - x,||x(,-.o, è C(0) Ê »""^"""Ikllxt,..,,
x€S*   í-1 ¿-1

/or a// M = (Ml, •■-,«„) G IT"-i *0', *•), wA*« 0 = (0lt • ■ • , 0») »M*A 0 | 0, *g 1
a«i/ C(0) ii independent ofu and h but may depend on the choice of 6.

The proof of Theorem 3.1 is lengthy. We shall first need some lemmas.

Lemma 3.1. Suppose that the conditions of Theorem 3.1 are satisfied and that there

exist Vi, 0 *S i)j <i ctj, j «= 1, • • • , n, such that for all u G LT"-i X(J, /3,)

(3.3) inf  £ A-a'||«,. - xtWztiM áC4¿ «'"IMU«.«).
X6S*   í-1 ,-1

wAere C, ú a constant which is independent ofu and h. Let k be an integer 1 ^ k :£ n

for which r/* = max [r/j, • ■ • , rjn]. Then

(3.4) inf   ¿ A-'IIk, - Xíllxci.0) á c/a""" ||*||x(».*- + £ *""lkll«i.w)'
X6S*   Í-1 \ i» /

wAere

CÍ - max {CaCS^ÍCC*/*, C4}.

The following remarks will be useful in the proof.

Remark 3.1. If X is a Banach space and TV a closed subspace of X, then the quotient

space X/N is a Banach space with norm ||{w} \\X/if = inf,SiV||« — v\\x where {u\

denotes the equivalence class to which u belongs. The triangle inequality then states

that

inf H«, + h2 — i*||x *g   inf  H«! — üilU +   inf  ||«2 — ¡"allx.
«ear i,ei\r »,£Ar

Remark 3.2. Let X and Y be Banach spaces X Ç_ Y and let N be a closed subspace

of both X and Y. Suppose that there exists a constant C such that for all u G X

inf ||« -o\\r ?S C|M|x.
»EAT

Then, for all u G -^ and for the same constant C

inf II« — ¡"Hy ̂ C inf ||« — w\\x.
»£JV wSAT

Proof. We may assume without loss of generality that r¡k = max [17^ • • • , tj„] > 0

and therefore ft > 0, for otherwise (3.4) is trivial. Let 5,-,- denote the Kronecker delta.

Then in view of Remark 3.1

(3.5) inf   ¿ A-'ll«, - Xillxu.o, è  £ ( inf   ¿ *-'HMfl - #}|txt/.o))*
xes»  1-1 i-i  v'es*  í-i '

Now for / = k we trivially have

(3.6) inf   ¿A-'UMii - *?||x<-.o> á A-"*||h*||xu.o,.
**6S*   í-1
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Suppose now that uk(E X(k, 1), then in view of our assumption (3.3) and Remark 3.2

n n

(3.7) inf   £ A-"'||Mrt - tfUxu.o, è C4   inf A"" £ ||«,5,* ~ lMlx<,.„>.
Í'€S»    ,-1 Í6S» (-1

Since Sh satisfies (3.1), we have from (3.7)

(3.8) inf   £ *—ÏIM» - tf||x(,.o> á C,C«A-w+'*||«*||x(».i).
**es*  ,-i

We can now "interpolate" the inequalities (3.6) and (3.8) using our assumption

(b) of Condition I. Let Y be the quotient space of X(0; A; a) modulo the subspace

Sh and T be the mapping of X(k, 0) into Y defined as follows: T = T2 o Tx where

Ti is the injection mapping of X{k, 0) into X(0; h; a) and T2 is the canonical map-

ping of X(0; h; a) into Y which associates with each element of X(0; h; a) its equiva-

lence class in Y. Now, in view of the inequalities (3.6) and (3.8), T G £(X(k, 0) ; Y) (~\

£(X(k, 1); Y) where in (2.2) we may take m„ = h~ak, mx = CtCJT'",*'\ Hence, in

view of (2.3), we have

(3.9) inf   £ *-' H«,«,, - ti\\xu,n á CMMC&f'h-"" ||«»||x<».,.»>

for all u„ G *(&, 00.
From (3.3) we also have that for / 9a k

(3.10) inf   £ h"" IM» - tillxcf.« ^ C4A"" ||«,||x(i.#,).
fes»  í-i

The proof of the lemma now follows from the inequalities (3.5), (3.9) and (3.10).

Lemma 3.2. Suppose that the conditions of Theorem 1 are satisfied. Then, for all

u G X(ß), we have
n n

(3.11) inf   £ A""' H«,- - x-llx(-.o) Ú C6 £ IMIx».,,),
xes*  í-i í-i

where C5 is a constant which is independent of h and u.

Proof Let M = max {CÍO, ßt), ■ ■ ■ , C,(0, ft), C2(ßl), ■■■ , C2(ft), C„ 1}. Now
we have

inf   £ A""' H«,- - XíIIx(í,o) á £ *-' |kllx«.o>
(3.12)

á m£a-°¡ ||«,||x«.«>,
1-1

where we may assume that max a¡ > 0, j = 1, • • • , n, for otherwise (3.12) is just

(3.11). In general then, (3.12) is a poor estimate. We shall now systematically improve

(3.12) by using Lemma 3.1 in order to obtain the estimate (3.11). We proceed as

follows. Let ak = max{al5 • • • , a„\. Now apply Lemma 3.1 to the inequality (3.12)

where we take C4 = M and a, — 77,, j = 1, •••,«. It is easy to see from (3.4) that

(3.13) inf   £ A""' ||«; - XiWxuM ^ M1+2> £ A""'0 ||«||x(,.iy,
xes*  1-1 i-i

where p = maxj/3], • • ■ ,ß„] and 17}" = a,- if j ^ k and t]t1} = a*ft. We repeat this
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process using Lemma 3.1, now using the inequality (3.13) instead of (3.12). Iterating

after s steps we arrive at

(3.14) inf   £ A-' ||«,- - X/l|x(í.o) á M, £ A-"'" \\u\\xu,ß0
x€S*   í-1 i-1

where

17-*' = a,(ft)*',        a, 5¿ 0,

= 0, a, = 0,

j = i, ... , n, s = 2%mt Sj and M, = A/122'-""'-11. Since M, ^ Af2"1"" and

ajißi)'1 can be made arbitrarily small for s, sufficiently large, it follows that each ijj''

can be made arbitrarily small after a sufficient number of iterations which proves the

lemma.

Proof of Theorem 3.1. We have, noting Remark 3.1,

(3.15) inf   £ A""' ||« - Xillxo-.o, ̂   £ ( inf   £ A"" |M/i - Mix«..»)*
xss*  i-i ¡-1  V'es*  i-i /

Now, for each / = 1, • • • , n, trivially

(3.16) inf   £ A""'' ||M,i - Mix«.«, û A-"' IklUu.o,.
if'es*  í-i

In view of Lemma 3.2, Remark 3.2 and (3.1), we have

inf   £ A"" |M« - tfllxt-.o, Ú    inf   £ h~" \\u,S„ - *5||x<,.o,
■t'esA   i-i <plesh   í-i

n

(3.17) á C5   inf   £ 118,3,, - réllxc,.,,,
iMes*  í-i

g C5C3A" ||«,||x<*.,,

for all u, G *(/, 1).
We can interpolate the inequalities (3.16) and (3.17). In (b) of Condition I, we

take Y to be the quotient space of X(0; h; p) modulo the subspace S"\ T to be the

same mapping as in the proof of Lemma 3.1, with k there replaced by any / = 1, ■ • • ,

n, ma = A""' and m, = CsC6h". Then, for any 0 < 0, < I, we have

(3.18)      inf   £A-"' H«,«,, -  -Aíllxc/.o) è C1(íI)(C,C.),,A-'" + <"+,">"
í'es*  í-i

lM!|k(!,Si)-

The inequality (3.2) now follows easily from (3.15) and (3.18).
As a consequence of Theorem 3.1 we have the following:

Corollary 3.1. Suppose that the conditions of Theorem 3.1 are satisfied and let

T G £iX(0; h; p.); X(0; h; /■)) such that Tx = xfor all x G Sh. Then

(3.19) ||« - 7-k||x<0i*„o ̂  C(0) £ *-•"♦<"♦'"<>»< ||ii,||x„.„„
i-i

where u, p., <j and 0 are as in Theorem 3.1.
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Proof. By hypothesis

||«   —   7,«|U(0;ft;^)    á   C  ||«||x(0;*i(.).

Hence, for any x G Sh,

II«   -   Tu\\xi0;h¡l¡)   =    ||«   -   X   -   T(U   —   x)I|x(0;A;m)

è   C   ||«   -Xllxto;»;,) c(£A-"' H«,- -Xillxo-.o,)*

The proof now follows from Theorem 3.1 by choosing x to be the best approximation

inS*tot-inZ(0; h; p.).

Part II

4. Some Function Spaces, Subspaces and Approximation Theoretic Properties.

In this part, we introduce some particular function spaces and certain classes of

finite-dimensional subspaces. We shall then apply Theorem 3.1 to obtain various

approximation theoretic results concerning these function spaces.

A. Some Particular Spaces and Their Properties. We shall first briefly state some

notions concerning the theory of interpolation of Banach spaces (see [17], [24] for

further details).

Suppose (Bo and (Bi are Banach spaces which are continuously imbedded in a

topological vector space (B. Their sum

«o + «i =   {«; « = «o + «, «i G 03,, i = 0, lj

is a subspace of 03. For u G Û30 + 03 ! and 0 < r < «> form the functional

K(t,u)=    inf    (| HI«. + r||«|k).

If 0 < 0< 1,1 ú q Ú °°, we denote by (fl30, 03,),,, the Banach space with the norm

MU.a.,,.. = (/    (Cm, «))ay),/0, if 1  ú q <

(4.1)
= sup t " K{t, u), if q =

i •<>

We note that if 030 = 03! then (fl30, 030,,, = 0Jo with

(4.2) II«IU.<b,„ . = C(q, 0)||«|k

where

(43)     <*>>»-u^r- *!*•<-.
=  1, if q =  œ .

The next lemma says that the spaces (030, 03 i),,Q satisfy Condition 1(b).

Lemma 4.1. Suppose that Y is a Banach space and Û30, 03, are as above. Let T G

£(03,; Y), i = 0, I, with

(4.4) ||7Yi||y g  Af-IMk,        I = 0, 1.
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Then for 0<e<\and\^q^<x>,T<E £((03 0, 03 0,,,, Y) and

(4.5) ||r«||y Ú {C(q, 0))"1A/r9M19||«||(fflo,(Bl)9.„,

where C(q, 0) is given by (4.3).
We shall now specialize to some particular function spaces. Suppose that fi is

an open set in iV-dimensional Euclidian space HN such that either Ü = R v or else O

is bounded with a C" boundary 60 which lies on one side of 0 (see [23]). We shall

consider the following spaces of real (or complex valued) functions defined on ß.

(i) The Sobolev Spaces W1(tt). (a) Let V = C"(Q) if Q is bounded and V = C°(RW)
if Í2 = RN. If 1 ^ p < oo and m is a nonnegative integer, then W1(Q) is the completion

of V under the norm

= ( £ iiö^irü1
M a | im

where a denotes a multi-index a — (a„ • • • , aN), D"u = d[alu/\dx"' ■ ■ ■ dx™),

\a\ = ai + ■ ■ ■ + aN and W\ = L„(ff) with

Miv,. = [ m*«**.
Ja

Note. We have written W" instead of W™(Q,) when the domain considered is evident.

(b) If m > 0 and not an integer, set m = [m] + s where [m] is the integral part

of m. Then, W'JÍÍÍ) = W'v is the subspace of Wx™x of all elements u such that

IMInv = lll«lk,i-i +   1,   /     -:-^-dxdy)
\ \a\-m Ja Ja \x — y\ '

is finite.

(c) Again, let V = CT(S) if Ö is bounded and V = C^R") if Q = R*. If p = 2
and m is any real number m < 0, then WP^(fi) = ff™ is the completion of V under

the norm

ii  ii ("■p)
||«||jr,-  = SupTT—j- ,

where

(«, u) =   / uv dx.
Ja

(ii) 77ze Spaces Cm(Ü) = W"(ß). If m is a nonnegative integer and 0 is bounded,

we set W"(0) = WZ = C™(0), the set of functions having continuous derivatives up

to order monü with the usual norm

ll«llir-- =    £   max \u(x)\.

If m > 0 and not an integer, set m = [m] + s. Then WZ(ü) is the subset of Wlm\tt)

such that the norm

ii   ii               ii   ii            _i_     V               \D"u(x) — Da«(v)|
ll«lk." =  IMI-r-i-i +     2-,     SUP -1-T'- '

l<*l-[ml   i,v6Q \X   —   y\

is finite.
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(iii) Besov Spaces ß™'"(O). For any 0 < m < I, I an integer, 1 ;£ q ^ oo and

1 ú p Ú °°, ß™'°(0) is the Besov space defined by interpolation

b;-"(Q) = {Wl(Q), W¡(0))..„       where 0 = m//.

The definition can be shown to be independent of the choice of / (up to equivalence

of norms).

(iv) The Boundary Spaces W^(30) and B^-\dÚ). Suppose that 0 is bounded and

either m > 0 and 1 *£ p ¿ « or-œ < m < oo andp = 2. Since 50 is of class

C", Ö can be covered by an interior subdomain and a finite number of boundary

patches {0, J with the following property: For each j there is a C" homeomorphism

T¡ which maps O,- onto the ball |x| ^ 1 and 0, C\ 30 into the hyperplane *# = 0.

The set }0, C\ 30} forms an (N — l)-dimensional open covering of 30. Let

£ |2 = 1 be a partition of unity subordinate to this covering which may be assumed

to be such that £, G Cô(0,-). Let S* denote the unit ball in RK, then r,(0,) = S* and

T,(0, H 30) = S""1. For g G C"(30) set T,g(x) = gfTj'x), x G S""1 and

(4.6) \g\w,. = cz t\\r, s, twOFrr:
(4.7) |*k-..- Œ (Wr^i g\\i1^,f)l/',

where the norms on the right of (4.6) and (4.7) denote the norm in FPJXSf-1) and

B"'"(SÍ'~1), respectively. The spaces W™(dQ) and 5™''(30), respectively, are defined

to be the completions of C"(30) with respect to the norms defined in (4.6) and (4.7).

It is not difficult to show that all possible choices of the 0, and J, give equivalent

spaces.

We shall now list some known results concerning the above-mentioned spaces

(see [21]) which we shall need in the applications of Theorem 3.1.

Lemma 4.2. (a) Ifp = q = 2 then £2m>2(0) = Wm2(ü)for all m > 0.

(b) //1 ^ p ^ oo and m > 0 is not an integer then B^-P(Q) = W%ß).

(c)If\úpú °° andm> 0 is any real number then fl^(O) C 5™'m(0).

(d) IfO < m0 < m„ 0 < 0 < 1, 1 g q0, qu q Ú °o and 1 g p ^ oo, then

(K0,"(0), ^""(O))!., = ft™,0(0),        m - (1 - 0)mo + Qmx,

where if either ma or m, are integers then 2?™,0i(0) may be replaced by W™'(Q); i.e. if

m0 andm, are integers (W^'(Ü), »7*(a))if, = B;-\Q).

(e) If — oo < m0 ^ m, < oo ant/O < 0 < 1 iAe«

(&T(0), W?'(0))».2 =   W2(0),        m - (1 - 0)wo + 0m!.

(f) /n íAe case íAaí O fe bounded and 30 fe as described previously then the results

of (a), (b), (c), (d) and (e) hold with 0 replaced by 30. Jn the above, equality is to be

understood with equivalence of norms and containment is to be understood in the sense

of a continuous injection.

B. Some Finite-Dimensional Subspaces of W%Q). One of the purposes of this

paper is to investigate some approximation properties of certain classes of finite-

dimensional subspaces of the spaces defined in 4.A. Many different subspaces which

have been described recently in the literature have certain approximation theoretic

properties in common. We shall consider a class of subspaces defined by a single

property common to most of these specific subspaces. More precisely, we define
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the subspaces Sîiri„(0) as follows: Let A, 0 < A < 1, be a parameter. For any two

given nonnegative integers k and r, with k < r and 1 ^ p ¿ », SiiriP(0) is any

one parameter family of subspaces of WP(Q) such that: (*) For any u G ^(0),

there exists a m G S£,r,„(0) and a constant C independent of h and u such that

(4.8) ||« - a\\w,> g ChT-k\\u\\Wr,.

This is obviously equivalent to the condition that

(4.9) inf        ||U - xlk.» á CA'-*|MU,,.
í€S¡,,,,»(S)

In the literature, SjiriP(0) (there is no standard notation) sometimes denotes

subspaces satisfying the seemingly stronger condition (**): For any u G W'P(ÇÏ),

there exists a constant C independent of h and u such that

(4.10) inf        \\u - x\\w,> £ Ch'-'\[u]\Wpl
X6S».,.,*<0)

for all nonnegative integers y and / with 1 ^ k and I & j & r.

The construction of such spaces has attracted much attention recently. For

example, S. Hubert [22] constructs spaces of splines on uniform meshes in R^ which

satisfy condition (*) for certain choices of k and r. Schultz [29] has studied many

finite-dimensional subspaces on rectilinear domains in R'Y which satisfy (*). The

papers of Aubin [3], Bramble and Zlámal [16] and Di Gugliemo [18] also contain

examples of subspaces satisfying (*). The work of Babuska [7] and Fix and Strang [19]

are also important in this regard.

C. Some Other Properties of the Subspaces. As the first application of Theorem 3.1,

we shall show that (4.9) implies (4.10) and in the case p = 2, (4.9) implies (4.10)

where / and j also may be taken to be negative. In the case p = 2, this says that a

space of the type S£,r,2(0) is automatically a space of type SÍ,-,2(0) where / and j

are any real numbers satisfying / ^ k and l Ú j Û r.

Theorem 4.1. Let S£r„(0) be given satisfying (4.9), then
(i) If I and j are any two real numbers satisfying 0 ^ / ¿ k and i i£ j á f> there

exists for all u G WP{Q) a constant C = C(l, j) which is independent of h and u such that

(4.11) inf        ||« - Xlltr.i S CA'-'lMlr.i.
XSSt.,,,»(0)

(ii) Ifp = 2, then (4.11) holds where we may take I and j to be any two real numbers

(positive or negative) satisfying I 5= k and I & j & r.

Proof. We first prove (i). In Theorem 3.1 let us take the case where n = 1 and

X(l,0)= ^a-M+'''(0),0á 0, ^ l,and 0, = (k - l)/(r - Ï) > 0; thatis X(l, 0,) =

Wp(ü). Hence (2.1) is satisfied. In order to show that Condition I is satisfied, it remains

to show that (2.3) holds. Take Y to be any Banach space and in Lemma 4.1 Û30 =

WlP(ü), (S,, = W;(ü) and q = °d. Then, for any T G £(03,; Y), i = 1, 2, satisfying

(4.4), we have

||7«||y =g M;-S'Mf'||«|Url,„,        0 < 0, < 1,

where 5 = /(l - 0,) + rdx. Now, since W'P(R) Q 5^°(i?) with a continuous in-

jection, we find that

||7K||r ^ C{ei)Ml-t,M''\\u\\w,;        0 <  0,  < 1.

Therefore, (2.3) is satisfied and hence Condition I is.
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We now take S* = S£.r,p(0) in Theorem 3.1, where S*£,,rP(0) satisfies (4.9) and

therefore <rx = r — k. We therefore have from (3.2) taking px = ax = k — I and

0i = 0' - l)/ir - 0 that

inf       A-(4-!) ||« - x\]w,, =g C(l, ;)A-*+i||«|U„,
iesi.,.,*(Q)

and (4.11) follows, which completes the proof of (i).

The proof of (ii) is simpler. Here we take X(l, 6X) = ^a-'*'+r9,(0), 0 *g 0, £ 1,

where / is any real number satisfying the conditions of (ii) of this theorem. Clearly,

(2.1) is satisfied. To show that (b) of Condition I is satisfied, we take Û30 = W2(Q)

and 03, =  W&ti) with q = 2 in Lemma 4.1. Then,

\\Tu\\Y g  2\/2 wô",,»lî,||«||(ir,'.ir.'),1...

But (^(0), H^(0))S2 = Wlll~')+,r(ß) with equivalence of norms which proves

(2.3) and hence Condition I is satisfied. The remainder of the proof of (ii) now proceeds

as in the proof of (i) and will not be given.

D. Approximation on 30. We shall now consider some questions which arise

naturally. Suppose that 0 is bounded and we are given a subspace of type Sjir>p(0).

Let us look at the restrictions to 30 of elements of Sjif.iP(Q) (assuming now that

these are well defined in the sense of a trace and belong to some Sobolev space on 30).

In Theorem 4.2, we shall consider the following question: What properties,

relative to best approximation, do the restrictions to 30 of elements of 5iiftP(0)

have relative to functions in Sobolev spaces on 30? We shall show that in fact they

have some very nice approximation properties on 30 which are analogous to their

properties on 0. Other questions of a related nature are also treated. Before pro-

ceeding, we shall need some preliminaries.

We shall use Bh j = 0, • • • , /, to denote boundary differential operators of

the form

(4.12) B,u =    £    *,„(*) />"«(*),       x G 30,
I a I Smj

where, for simplicity, we shall assume that the coefficients bja(x) G C"(30) and

0 ^ m, denotes the order of the highest order derivatives occurring.

Definition. A system of boundary operators {ft•}, j = 0, • • • , /, of the form

(4.12) is said to be normal if m¡ i¿ m¡ for i ¿¿ j and if for each j = 0, • • • , /

£    bia(xV * 0
I «l-m|

at each point x G 30. Here, v = v(x) is a unit normal vector to 30 at x and v" =

v"' ••• *■£■*. The system {ft} is said to be a Dirichlet system of order / + 1 if it is

normal and m¡ = j for j = 0, ■ • • , /.

We note that given a normal system {ft}, we can always add other boundary

operators to the system so that the resulting system is a Dirichlet system of order

m¡ + 1. We shall also need the following result concerning traces on 30.

Lemma 4.3 (Cf. [24]). Let ft be an operator of the form (4.12). The mapping

u —> BjU ofC"(Ü) into C"(30), completed by continuity, is continuous from WJ(ß) —»

Bp-mi~1/p'*(dä) for any m¡ + l/p < s and I < p < co. Furthermore, let {ft} be a

Dirichlet system of order / + 1. Then, there exists a continuous linear extension operator
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E mapping JIJ-o B'^'^XdU) -» WP(Ü) such that ft(£g) = gi, j = 0, • ■ • , I, for
all g G ITU By'-V'-'idQ) with I + Up < s and 1 < p < ».

We are now in a position to prove our first result concerning the approximation-

theoretic properties on 30 of the subspaces of the type S¿irpP(0).

Theorem 4.2. Let {B¡},j = 0,---,l,be normal with m0 < • • • < m, and suppose

that S£,riP(0), 1 < p < °°, is given satisfying (4.9) with mt + l/p < k.

(i) Let Sj and X, be given real numbers satisfying 0 ^ s, ^ k — m¡ — 1 /p and

0 á X, â r - m, - 1//» - s,, ;' = 0, • • • , /. 27-en, /or a// g = (g0, • • • , g,) G
ITi-o  W'+x'idR)

(4.13) inf       (¿ A""+" \gi - BiX\Wv.) g c(¿ A""+*i+x< kk,.,^)
xesj.r.,*(Q)  \,-o / \|-o /

wAere C fe a constant which is independent of h and g.

(ii) Ifp = 2, then (4.13) holds with X, as above and s, a«v ra*/ number satisfying

Sj  *S A: — m, —  1//7.
Before proceeding with the proof, let us note one consequence of Theorem 4.2.

Suppose we denote by 5îrp(30) any one-parameter family of finite-dimensional

subspaces of WP(dQ) having the property that for any g G WrP(dü)

(4.14) inf        \g - xk,» Ú Ch'-k \g\Wt.,

where C is a constant which is independent of h and g. Suppose we take / = 0 in

Theorem 4.2 and B0u = u\aa. In this case, we have the following:

Corollary 4.1.  The restrictions to the boundary of the elements of a space of

type S£ir>p(0), 1 < p < oo, ¡s a space of type SJ „„(30)/or all real numbers Ofí pi

k — \/p and p g a ^ r — 11 p. Furthermore, if p = 2, then this is also true for all

real numbers p ^ k — Up and p ú a Ú r — l/p.

Proof of Theorem 4.2. Without loss of generality, we may assume that the {ft} is

a Dirichlet system of order / + 1. For if it is not then, as remarked previously, we

can always augment it so that it is one. Let us denote by {ft}, j = 0, • • • , m¡, the

augmented system where B'm¡ = ft. If (4.13) holds for the augmented system

for given g = (g'0, ■ • • ,g'mt), it certainly holds for the original system by taking g'ml = g,

for j = 0, • • • , /, and g< = 0 otherwise. Now taking {ft} to be a Dirichlet system

of order / + 1 = m, + 1, let E be the extension operator discussed in Lemma 4.3.

Since 1 < p < oo, p — j — l/p is not an integer for any integer p, and hence

B¡z'-^'-*(dQ) = VPir'-w'idQ) for j + l/p < p, j •= 0, • • • , /. Set Eg = u for g G
ITU ftr'"""'"^). Then, from Lemma 4.3, we have that for any x G 5î,r,p(0)

i

(4.15) £ \g, - ftxk,'-'-*" é C\\u - xlk,*.
Í-0

In (4.15), let x be the best approximation in ShkTJß) to u in the norm of Wp(ti)'

Then from (4.15), (4.9) and Lemma 4.3, it follows that

ft-/-In-,*-'-/■> ú CAr"*[|«|ktr

I

^    ÇA'"*    £    |gik„r-,-,/,,.
Í-0

(4.16)

inf        £ \g,■ -
*eSi.,,„*(Q)      i-0
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In order to prove part (i) of Theorem 4.2, we shall apply Theorem 3.1 in the

following manner: Let us take X(j, 0,) = W^(dü) where p, = 0,(r - j + I - l/p) +

(1 — 0,)s, for 0 < 0, < 1 and j = 1, • • • , / + 1. Obviously Condition 1(a) is satis-
fied and it is easily seen that Condition 1(b) is satisfied using the fact that H^'(30) C

(Jfp'(30), WT,-'*1-l*idQ)),i.m = ^''"(dOJforO < 0¡ < 1, and s, satisfying, 0 g s, <

r - j + 1 - l/p, j « 1, ••*,/+ 1. Now, taking

n m ft) = n wri+i-i/r(30),
í-i í-i

it follows that ft = (k - j + 1 - l/p - s,)/(r - j+l-l/p- s,) for y= 1, • • • ,
/ + 1. We now identify Sh with the finite-dimensional subspace of UJIÎ l*'p"'+1"1/*'(30)

of elements of the form (ftx, • ■ • , ftx) for x G <SÎ>r,p(Q). Hence we have from

(4.16) that Condition II is satisfied with o-,- = r — k, j = 1, • • • , / + 1. Now a, =

ft<r,/(l — ft) = k — j + 1 — l/p — Sj, j = 1, • • ■ , / + 1, and we obtain from
(3.2) that

inf        (¿A-<M-v,-,)|gj_5(x|J
(4 17) xest.,,,»(0)   \ ;-o /

¡
<r /-- V l-(*-í-i/i>-'í)+^í i„ i
^ C ¿_i h \gi\wpu**i

í-o

for any 1 < p < a> and s, and X, satisfying the conditions of the theorem. The

inequality (4.13) now follows from (4.17) by multiplying both sides of (4.17) by

k — l/p and hence part (i) is proved. The proof of part (ii) is simpler and will be

left to the reader.

Remark 4.1. It can be easily seen from the proof of Theorem 4.2 that (i) of

Theorem 4.2 also holds if the norms |-k„',+xi are replaced by |- !,,,,■,+•.,.» on the

right-hand side of (4.13) provided we take 0 < X, á r — m¡ — Up — s, whenever

5, is an integer.

Theorem 4.3. Let us assume that

(i)     {ft;}, j = 0, • • • , /, is a normal system with m0 < ■ ■ ■ < mt.

(ii)   5î,r,p(0), 1 < p < oo, is given with ml+1/p < k < r.

(üi) ß, and s¡, j = 0, • • • , /, are real numbers satisfying m¡ + l/p < ß < r and

0 ^ s, á k - m, - l/p, j = 0, ■■■ , I.
(iv) Sj S ß — m{ — l/p if ß — m,: — l/p 7a integer, j = 0, •••,/, or s¡ <

ß - m,■ - l/p if ß - m, - l/p = integer, j = 0, • • • , /.
Then, for all u G W%R),

(4.18) inf        £ hmi + " \B,u - BiX\wv.i S CA^'ink,.,
xeSl.r.r'CSl)    i-0

where C is a constant which is independent of h and u.

Proof. Let us first consider the case where ß — m,■ — l/p is not an

integer j = 0, • • • , /. Then, a straightforward application of Theorem 4.2, with

X,■ = ß — m¡ — l/p — Sj, j = 0, • • • , /, yields

i
(4.19) inf        £ A"" + ,i \BjU

x£Sl,r,,»{ll)      Í-0
B,x\w,; Ú Chß~w* £ |Ä,«k,,- ,,-i/p.
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But since ß — m, —  l/p is not an integer

£ |Aííik,í—,-./, = £ |fi,«|B|,ij--f-./,., g c||«|kp»,
í-0 í-0

which together with (4.19) completes the proof for this case.

If the ß — m¡ — l/p axe integers, for j = 0, • • • , /, then we have, in view of

Remark 4.1 and the assumption that s, < ß — m,, — l/p for j = 1, • • • , /, that

inf        £ A""+" \BjU - ftxkp.,- è Chß~Wp £ Iß,«!,.,-,-,,,.,,
x£S*.,.p*(B)     í-0 í-0

from which the desired result easily follows.

For our next result, we shall prove an analog of Theorem 4.3, except in this

case we shall not require that the system of operators {ft} be normal.

Theorem 4.4. Suppose that

(i) {ft}, j = 0, • • • , /, is a system of boundary operators of the form (4.12) of

orders m0 5S  • • •  g w, ({ft} need not be normal).

(ii)   S£,r,p(0), 1 < p < oo, fe given with m, + l/p < k < r.

(iii) s and ß are real numbers satisfying mt + l/p < ß ^ r,

0 ïs s ^ min (k — m¡ — l/p, ß — m¡ — l/p),

if ß — m, — l/p is not an integer andO ;£ s < min (k — m, — l/p, ß — m¡ — l/p),

if ß — mi — l/p is an integer.

Then, for all u G »?(Ö)

(4.20) inf        £ |B,(n - x)|r,.+c-,-,) ^ Ch"'1'*—"' ||«|k,»
IêSi.,.,'(I1)    i-0

wAere C fe a constant which is independent of h and u.

Proof. Using the smoothness properties of the coefficients bia and of 30 it is

not hard to see that for any x G Sjir_p(Q)

* ••• •

£ Ift« — xk,«+»i--i ̂  c £
3'(« - x)

to' IF,• + "■(-'

where d' /dv' denotes the_/"th order inward normal derivative to 30 and Cis a constant

which is independent of u, x and h. Hence, it follows that

(4.21) inf        £ \Bj{u - x)k,. + -.-i ^ inf        £
x£Sl,t,,l(í)    í-0 ÍES!,,,,»!»)    í-0

a'(« - »A)
3v'

We can now apply Theorem 4.3 in the case that ft- = d'/dv' and s, = s + m, — j

for j = 0, • • • , m¡. We obtain from (4.18) that

(4.22) inf        £ A*+"
*6St.r.,'(D)    i-0

3'(« - ^)

3/ JFp'+'M-!
á CA^-^llwlkp.

for s and ß satisfying the conditions of the theorem. The inequality (4.20) now follows

from (4.21) and (4.22) which completes the proof.
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Part III

In this part, we consider some general classes of boundary-value problems for

2mth order elliptic operators. We shall present here a general theory on the approxi-

mation of solutions of such problems.

5. Preliminaries.
A. Boundary-Value Problems. Let 0 be a bounded domain in RN with

boundary 30. We shall assume (for convenience) that 30 is of class C" and shall

consider in 0 the operator A of order 2m with infinitely differentiable real coefficients :

(5.1) Au=A{x,D)u=      £      (-lia'Da{aaß{x)Dßu),
\a\.\ß\im

where, as usual, a = (au • • • , aw) and ß = (ft, • • • , ftv) are multi-indices, D" =

(d/dx1)ai ■ ■ ■ (d/dxNy\ Set

A0(x,t)=      £      (~l)maaß(x)rß
\a\.\fi\mm

where £a+ß = I,"1*"' • • • &""1""*. Note that A is not necessarily formally selfadjoint.

Its formal adjoint A* is given by

A*u=      £     (-1)1"1/»„„(*)//«).
I o 1.1/91 s«

It is assumed that A is uniformly elliptic; i.e., there exists a constant a > 0 inde-

pendent of x such that

a-1 \tr í \Ao(x,i¡)\ g am"

for all x G  Ö and all £ G Rv-

We shall consider the boundary problem

Au = f    in 0,

ft« = £;,       i = 0, • • • , m — 1,    on 30,

where the ft's are given boundary differential operators of order ot,, 0 g m, <

2m — 1 and / and g, are given. The operators ft are defined by (4.12).

All functions considered in remaining sections will be real valued. The conditions

we shall place on our problem are as follows:

Condition III.   (i) A is uniformly elliptic with coefficients in C"(0).

(ii) The boundary system {ft} is normal, covers the operator A (see e.g. [23]) and

has coefficients in C°(30). The order of ft- is m¡ where we assume them ordered so

that 0 g ot0 < • • • < mm_! g 2ot - 1.

(iii) The only solution of (5.2) in C"(0) with zero data is the zero solution.

Remark 5.1. The smoothness requirements on the coefficients of the differential

operators and the domain can be weakened considerably (cf. [12]).

B. Sobolev Spaces. In the remaining sections, we shall be concerned primarily

with an L2 theory for least squares methods. For simplicity, the inner products on

the spaces W'2(ü) and W'2(dü), introduced in Part II, will be denoted by (• , •), and

(• , • )„ respectively, and ||-1|, and |-1, will be used for their corresponding norms.

We shall occasionally be interested in the Sobolev spaces W'2(G) where G is an open
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set in RA, G ^ 0. In this case, the inner product and norm on W'2{G) will be denoted

by (• , ■)", and \\-\\a„ respectively. For precise definitions, the reader is referred to

Part II, Section 4A.
Remark 5.2. The spaces W'2(G) have the following property (cf. [23]) which shall

be useful later on. Let s, < s2 be any two real numbers, then for any 0 < 0 < 1

and all u G Wl'(G)

(5.3) ||«||f ú C(0,íl,í2)(||«||f1)1-9(||«||f1)9

where s =  (1  —  0)si +  ds2.

C. Definition of a Solution and Some Further Preliminaries. For any set of real

numbers / and sjtj = 0, • • • , m — 1, Wa,"} will denote the product space Wil''° =

W\(ß) X II"-i **W0) with the inner product

m-l

(5.4) (• , •)„..,) =(•••)«+£<•. •>.,.
¿-0

It will be essential for later purposes to consider different inner-product structures

on Wil,'°. Let 0 < h < <*> and y„ j = 0, • • • , m — 1, be given real numbers. Then

^(».t*> wm denote the Hubert space whose elements are those of W(t' ''' but equipped

with the inner product

m-l

(5.5) (• , ■)(!..,.».»,) = (• . Oi + £^27'(- . •>.,.
1-0

We note that the norm induced by (5.5) is equivalent to the norm induced by (5.4).

We shall next give definitions of weak solutions of (5.2) under various assumptions

on the regularity of the data. We shall use the following result which is basic in

what follows. In this theorem and throughout the paper we shall use C to denote

a generic constant not necessarily the same in any two places.

Theorem 5.1 (cf. [12], [28]). Under Condition III, we have that for any real

number p

(5.6) ||n||, g c(|M«|Um + £ |ft«|„_„,,_l/2)
\ Í-0 /

for all u G C"(Ö). The constant C is independent of u but in general depends on p.

Definition. Let F = (/, g„, • • • , g,.,) G tf*»-*-»-'-1'» and F„ = (/*, g"0, ■ • ■ , £_,)
G C"(0) X II"-o C"(30) converge to F in j^»-»-.»--«-»/*) as « -» oo. Let «n G

C"(Ö) be the solution of (5.2) with data F„ (it is well known that such u„ exists and

is unique). Then in view of (5.6), we define the weak solution of (5.2) with data F

to be the unique limit in Wl(Q) of the sequence {«„}.

In the case that p ^ 2ot, we have the following:

Theorem 5.2 (cf. [23]). Under Condition III, we have that if p is a real number

p 2: 2m, the mapping (Pu = (Au, B0u, • • • , 2?m_iw) fe a homeomorphism of Wl(ii)

onto jj/<»-*».»-»i-»/«%

It will be convenient for later purposes to give an alternative form for (5.6) in

the case that p ^ m0 + \.

Lemma 5.1. Suppose that Condition III fe satisfied and let h > 0, y, è£ 0, j =

0, • • • , m — I, and p g m0 + \ be given real numbers. Then, for all u G rVv(Q) such

that Au G F*T2m(0) and B¡u G rJTm'"1/2(30) (in the sense defined above), we have
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,- -. ..   ,,   ^  „ / (^«, ^t;)n +  £7.0' A 2y\B¡u, g,-p)o \
(5.7) ||«||p 5= C    sup    S-      _——-/

• ec-(S)   (.||^d||2b,_p +  2JT-0  A    T'  |ftü|mí + i/a_pl

wAere C fe a constant which is independent of u, h and y¡, j = 0, ■ • • , m — 1.

Prao/. In view of (5.6) and the definitions of Sobolev norms of negative order,

we have

/«ON I I     I I      «-    n j (AU>   Mo      I       V* (ft"'  y»)»  I(5.8) ||«||pgCS    sup_  tt-t:-+ 2^      sup      —->
WSC°>(0)    ||V||2m-p i-0   P,6C»(äO)    |^í|m/ + l/Z-i>J

where we may restrict ourselves to those functions \¡/ and <¿>¡ for which ||^||a«-, =

1 and k|m<+1/2..p = 1, j = 0, • • • , m - 1. Now, let {^"} and k?}, j = 0, ■ ■ ■ ,
m — 1, be maximizing sequences (subject to the above conditions) for each of the

respective terms on the right-hand side of (5.8). For each n let vn G C"(Ö) be the

unique solution of Av„ — ^" in O, B¡vn = h3y'<p* on 30, j = 0, • • • , m — 1. Then

■ 1  n   *--/,.      (^«, ^p»)q + £?ro h'2~"(BjU, BjVn)0

M«JB||2m_p + £?-o1 A 2yi |ftu„|m/ + i/2

for which the lemma easily follows

6. Finite Dimensional Subspaces of W*(0). In this section, we shall discuss some

approximation-theoretic properties of subspaces of the type 5í-ri2(0) = Sk¡r, dis-

cussed previously in Part II, Section 4. Our aim is to show that they have certain

approximation-theoretic properties relative to the "data spaces" of the differential

operators considered here. We refer the reader to Part II, Section 4B for a discussion

of their basic properties.

Theorem 6.1. Let S£,r,2(0) = Skk¡r satisfy (4.9) with 2m = k < r. Then, for all
F= (j,go, ■■■ , g-i) G Vu'x", where 0 ^ X :g r - 2m, 0 g X, g r - m,, - i

j = 0, • • • , m — 1, there exists a constant C independent of F and h such that for

Y, «=> 2m — m, — § (where 0 ^ m,- ̂  2m — 1 fe ¿Ae onfer of ft), 7 = 0, • • • , m — 1,

(6.1)

inf    (||/-  AX\\0+ £a"t' I«,- B,x|o)
;st.r» \ i-o /

g c(ax|/U+ £a-t'+x' |g|x,)-

Proof. The proof of Theorem 6.1 will follow from Theorem 5.1 and Theorem 3.1.

In Theorem 3.1, let us identify the spaces X(J, 0,-), j = 1, • • • , m + 1, 0 g 0, s¡ 1,
as follows: Z(l, 00 = WlllT-*m\Q) and W(J, 0,) = We2ll,-m¡-'-1/2)(dÜ),j = 2, • • • ,

m + 1. Certainly, Condition I is satisfied. We now take

ft = 0,        ft- = (2m — mj-2 — \)/(r — m,--2 — §),        7 = 2, • • • , m + 1.

Then

m+l

n xa, js,) - ¿2(o) x n ^2m_m,-i/2(30) = if(i
Í-0 ¡-0

ider CP(5tir) the image of ShktT under the mapping 0

ft„ix)- Since k = 2m and m, ^ 2m — 1, it follows that 0>(S£,r) is a finite-dimensional

rr 2 \uil) =■   n
Í-0 ¡-0

Now, consider (P(S£.,) the image of ShkxT under the mapping 0>(x) = (Ax, ftx, ■ ■
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subspace of XI™-ô X(j, ft) and hence of

m+1 m—1

n xu, o) = ¿2(0) x n ^(30) = wio-a).
Í-0 ¡-1

We shall now show that the space (P(Sk¡r) satisfies Condition II of Theorem 3.1

with Cj = r- 2m. In fact, let F = (/, g0, •'• • , g„_0 G w"-2m''-m>-U2\ By Theorem

5.2, there exists a unique solution u G W'2(R) of (5.2) with data F, and from (4.9)

(6.2) inf     ||n-xlk. ^ A'"2"ll«llr.

But by Theorem 5.2, the norms ||« — xlk and ||u||, are equivalent to the norms

m-l

IM(«   -   X)||o   +    £   |ft("   -   X)|2m-m,-l/2
Í-0

and

m-l

IM«l|r-2.   +    £   lft«|r—,-1/2,
Í-0

respectively. It then easily follows from (6.2) that

inf        ( ||/   -    AX\\o   +    £   \<Pi   -   ftx|2m-m,-l/2)
St.,''    \ Í-0 /

g CAr-2-(||/||r_2.+ £ |g,U.,_1/2)

(6.3)
xSS.

which was to be shown.

Now, in Theorem 3.1, we take

S" = (P(Sh2m,r), ft = 0,        ft = (2m - m,_2 - i)/(r - m,_2 - J),

y = 2, •• • , m + 1.

and <r,: = r — 2m, j = 1, ■ • • , m + 1. We have that at = 0 and <*, = 2m — m,_2 — è

= 7,-2, ./' = 2, • • • , m + 1. Hence, from (3.2) we obtain

m-l

inf     ||/ -  Ax\\o + £ A"7' \g, - ftxlo
x-Si,-» i-o

(6.4) ^    C(0,,    •••    ,   0„+I)|A9,<'-2m)    ||/|k(r-2m,

m-l 1
I       V1   i,-7i + 6i+*<r-'"i-1/2> |„   I \.

"T    Z^   " |?i|9, + .(r-m,-l/2) f
Í-0 J

where 0 g 0, ^ 1 for / = 1, • • • , m + 1. Now, setting 0,+2(/ — m, — i) = X,,

7 = 0, • • -, m — 1, in (6.4), we obtain the desired inequality (6.1).

7. Least Squares Methods for 2mth order Boundary-Value Problems. In this

section, we shall consider a least squares method for the approximation of the solu-

tion of (5.2) using the subspaces Sî,r as approximating functions. The scheme we

shall consider is a generalization of the scheme considered in [14].
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Let u be the solution of (5.2), where for the present we shall assume that F =

(j, go, • ■ ■ , gm-i) G Wl0,0). The first approximation scheme we shall consider is as

follows:
Let Shk¡r be given with 2m = k < r. Find w G S,',, such that

m-l

(7.1) (/ -  Aw, A<p)o + £ »-•""""'-""(r. - BjW, Bj<p)0 = 0,
Í-0

that is

f (/ -  Aw)A<p dx +  £ »-»«—-»-»/»   f   (g, - BjW)Bj<p da = 0
Ja j-o Jaa

for all <p G Si,.
Since OX'S*,,) (the image of Sk¡r under the mapping 0V = (^^, B0<p, ■ ■ ■ , Bm^<p))

is a finite-dimensional subspace of W{l\2))m^mj_1/2), by (iii) of Condition III (unique-

ness), w exists and is unique. It is determined by solving a linear system of algebraic

equations whose coefficients depend only on /, g, and h. An alternative way of stating

(7.1) is the following: Among all x G S\,r, find the one which minimizes the func-

tional

(7.2) *<x) =  ||/ -  Ax\\l +  £ A-î(î"-'-l/" \g - BiX\l
í-o

In the scheme given in (7.1) and (7.2) above we could have chosen ^_a(ï*-»f-v*)

instead of the coefficients if2l-2m-mi-l'2) where the fc,'s are any fixed constants which

are independent of h. All the results which follow remain valid for that case.

Let us note some features of this scheme: (i) For each given SktT, the weighting

factors /j-2(2m-mí-1<'2)j y = 0, •• -, m — 1, are constants, (ii) The trial functions are

not required to satisfy the boundary conditions, (iii) Only L2 inner-products are

used in the computation of the solution, (iv) The operator A need not be selfadjoint.

Let e = u — w. The following theorems give error estimates for the approxima-

tion scheme discussed above.

Theorem 7.1. Suppose that Condition III fe satisfied and u is the solution of (5.2)

with F = (/, go, • • • , gm-0 G W<c,0>. For given Shkr, with 2m g k < r, let w be the

solution of the approximate problem (7.1) and set e = u — w.

Case 1. Suppose that Am S r and I satisfies Am — r ^ /g m0+2- Then

kid ^ CA'-'(|| AHÍ + £ A-,(ï—'-l/w Iftel2,)
i/s

(7.3)

-'(l
m-l

|0 + £ A""—'"1/!"

1-0

Case 2. (i) If 2m < r < Am and Am — r g m0 + i, then for Am—r-^l^ma + \

(m-l \l/2

IMe||20+ £ Ä-a<2--'-1/2> |ÄjÄ|;
í-0 /

gCA2-!(||/||0+ £»-«--'-»/« |g|.|0).

Hein

(7.4)
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(ii) If2m<r< Am and m0 + § < 4m — r, then

(m-l \l/2

\\Ae\\l+ £ A"2'2— '-l/2' \Bje\l)

(7.5) '-° '

^ CAr-2*"(||/||„ + £ Ä-<2"-'-l/2' |g,-|o)-

In (7.3), (7.4) and (7.5), C is a constant which is independent of h and F.

If the data are smoother, we have:

Corollary 7.1. Suppose that the conditions of Theorem 7.1 are satisfied and in

addition F = (j, g0, ■■• , gm^) G Wa-X0, where 0áXár-2manrf0áX,g

r — m,- — \ , j= 0, • • ■ , m — 1. Then,

(a) Case I. If Am £[ r and Am — r ^ / ^ m0 + \,

(7.6) Ikll, ^ CA2-'(âx ||/||x + £ A-(»-.i-vi)«, |g|xjj.

Ca^e 2. (i) If 2m < r < Am and Am — r á w0 + §, then, for Am — r g / ^ m0 + |,

(7.7) Ikll, ̂  CA2-!(ax ||/||x + £ A-«—-'-v»)+x, ^J.

(ii) If2m<r<Am and Am — r > m0 + f,

(7.8) |k|U+I/2 g CAr-2"(Ax ||/||x + £ A-(2-"'-1/2,+x' |g,-|X/).

(b) If 2m < r, then, for each t = 0, ■ • • , m — 1,

(7.9) \gl - ftHo ^ CA2-""-1/2(ax ||/||x + £ A-(2"-'-1/2)+x' |g,-|Xl.)-

In (7.6), (7.7), (7.8) and (7.9), C fe a constant which is independent of h and F.

Proof of Corollary 7.1. Since

(7.10)

(m-l \l/2

||A||0 + £ A"2(2—'-1/2) \Bje\l)
í-0 /

S C     inf     (u/ -  ¿xllo +  £ A-<2-""-1/2) \gj - ft-xlo) ,
lESi .,*    \ i-0 /

the inequalities (7.6), (7.7) and (7.8) follow immediately from (7.3), (7.4) and (7.5),

respectively, after applying Theorem 6.1. The inequality (7.9) is a special case of

(7.10).
Proof of Theorem 7.1. From Lemma 5.1, we have

„ „   <r {Ae, A*)0 + £r--p1 A-2(2"-"'-1/2)(ü,e, Btf)0
Iklli á C    sup

*«Ä>  ||^||2m_, + E7.-,1 A-2"—'-"» |ft^|„i+i/2-,

= C    sup     \Q(e, #)}.

Since e satisfies (7.1), we have that for each \j/ G C"(Ö) and all x G S^r,
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m-l

(Ae, A+X + £ a-2("-""-1/2) (Bie, B^)0
Í-0

= (Ae, A*-  AX\ + £ A-2(2-"'i-1/2)(fte, Bj* - BiX\

(7.12) "°

g c{\\Ae\\l + £ a-2(2-""-1/2) |S,e|2)1/2

•(|M* -  ¿xllo + £ A-(2-""-1/2) \B,* - ft-xlo) ,
\ Í-0 /

where we have used Schwarz's inequality. Now, for each ty G C"(Ô), we choose x

so that it minimizes the last term in parentheses. Hence, for fixed \¡/, we obtain

(m-l \l/2

II Ae\\l + £ a-2<2-"'-1/2) |Ä,.e|2J    ß*W,

where

inf    (\\Af -  4,||. + £7-"o A-(2"-"i-1/2) \B,+ - iMo)

(7.14) ß*W = ^^^-—-
IM*l|2m-,   +   Er-'O1  A"2"—'-1/2'   lft^lm.-.l/2-l

We now appeal to Theorem 6.1 for the approximation-theoretic properties of

the subspaces S£>r in order to estimate Q*(\p). We obtain from (6.1) that

inf (\\Af - ¿H|0 + £ ft-«—'"»"> \Btf - Bi<P\0)
Sl.r»   \ Í-0 /

S c(ax \\At\h + £ A""—'~1/2>+x' Ift-^lx,-)

(7.15) V '"° '

rS CAx(||^||x + £ a(2-""-1/2)+x'-x |B,*|X,)
\ Í-0 /

g CAx(|M^||2m_, + £ A"'2—'-1/2-x'+X) |ft^|„i + 1/2_,)
\ Í-0 /

where X = min (r — 2m, 2m — 1) and

X, = min (r — m,■. — \, m,■ + § — /),        j = 0, • • • , m — 1.

First, suppose that the conditions of either Case 1 or Case 2(i) of Theorem 7.1

are satisfied, i.e. 4m — r^/^m0 + | and 2m < r. Then, 2m — / ^ r — 2m and

hence X = 2m — /. Therefore,

—X, + X = max (— / — r + 2m + m, -f- f, 2m — m¡ — §) g 2m — m, — J.

Hence,

2m — m,- — \ — X,- — X ^ 2(2m — m¡ — j)

and from (7.14) and (7.15), we obtain

(7.16) Q*(í) ^ CA2""'
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where C is a constant which is independent of \p and A. Therefore, we immediately

obtain the inequalities (7.3) and (7.4) from (7.16), (7.13) and (7.11).

For Case 2(ii) of Theorem 7.1, i.e. when I = m0 + % < Am — r and 2m < r <

Am, we have that the inequality (7.15) holds with X = r — 2m. Here, we also have

that 2m — m, — $ — X, — Xsá 2(2m — m, — £). Therefore, in this case, (7.14)

yields

(7.17) Q*W) ^ CAr"2m

where C is a constant which is independent of \p and h. The inequality (7.5) now

follows easily from (7.17), (7.13) and (7.11), which completes the proof of the theorem.

A discussion of the results of Theorem 7.1 and Corollary 7.1 is in order. In the

derivation of the error estimates, the only property of the subspaces SkiT, which

we assumed, was (4.9) (see Section 4B). One can show (cf. Theorem 5.1) that this

implies that S^,, only has the following property regarding best approximation:

For each u G Wß2(ü)

(7.18) inf     ||n-xl|i ^ Ctf-1 \\u\\,

for each pair of real numbers / and ß satisfying / ^ k, 1 g ß ^ r. CY is a constant

which is independe it of h and u.

The approximate solution w of (7.1) has, in many circumstances, the same prop-

erties as those of the best approximation. In order to show this, let us assume that

F = (/, g0, • • • , gra_i) G W*-***~r-uv for ß > 2W) heQC3 u G WßAQ) and the

norms \\u\\ß and ||/||p_2m + £"?-í |g,lí-mf-i/2 are equivalent.

Now, suppose that w is the solution of (7.1) for a given S*t, with r ^ 4m. Then,

the inequality (7.6) yields

(7.19) ||« - w||, g Chß~' \\u\\ß

for 4m — r ^ / ^ m0 + 5 and 2m ;£ ß ^ r, which essentially reproduces the property

(7.18) in this range. We note that since in this case 0 ^ m0 and 4m — r 2: 0, the

estimate (7.19) always includes the case / = 0 (i.e. an estimate in L2(Q) where, we

remind the reader, that m0 is the order of lowest order boundary operator which

was assumed to be operator ft). We note that when / = 0 and ß = r, we obtain

II«-   »||.  ¿   CA'IMIr.

If 2m < r < Am and 4m — r ^ m0 -f \, then the estimate (7.19) also holds.

However, in this case, Am — r > 0 which says that the approximate solution re-

produces the property (4.16) when measured in an appropriately high norm (which in

this case does not include the W^(0) = L2(0) norm).

In the case that 2m < r < Am and m0 + % < r — Am, (4.8) yields

II« - »||«.+1/. á Chr+ß-*m \\u\\ß

for 2m Û ß Ú r.ln this case, our results do not indicate that w has properties com-

parable to the best approximation measured in any norm up to order m0 + \. This

will be illustrated by specific examples in Section 9.

B. Interior Estimates.

Theorem 7.2.  Suppose that Condition III fe satisfied and u is the solution of (5.2)
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for given F = (/, g0, • • • , g„_,) G F*"x'x" where 0 á X ^ /• - 2m and 0 ^ X,á

r — m, — |, j « 0, • • ■ , m — 1. Le/ w oe me solution of the approximate problem

(7.1) fl«rf suppose that 0, fe any compact subdomain ofü. Then, for each Am — r g

/ ^ 2m

(7.20) Ikll?' ^ CA2-'(ax ||/||x +  £ A"""-"'_l/S)+X< |*,|x,) ,

wAere C fe a constant which is independent of h and F but may depend on 0,.

Remark 7.1. When X = j3 — 2m and X, = /3 — m, — J, j = 0, 1, • • • , m — 1,
for 2m Ú ß Ú r, the inequality (4.18) may be written as

(7.21) Ikll?' ̂  ÇA*""' ||«||,

for 4m — r ^ / g 2m and 2m -^ ß ^ r. Thus, for example, if r ^ 4m, this says that

the error can be estimated in all norms from L2(0i) to H^m(0i) with the best possible

power of h. If 2m < r < Am, then this can also be done provided the error is measured

in a sufficiently high norm W2(0i) with 4m — r £¡ / ^ 2m.

Remark 7.2. For some values of r and /, Theorem 7.2 may be improved by

replacing |k||?' with ||e||, on the left-hand side of (7.20). These cases are covered

by the inequalities (7.6) and (7.7) of Corollary 7.1. In Theorem 7.2, we are mainly

interested in obtaining estimates in norms ^(Oi) for / > m0 + 5.

Proof. As remarked above, we shall only need a proof of (7.20) in the case that

m0 + \ < I ^ 2m. However, it is just as easy to provide a proof for the case in which

0 i£ / ;£ 2m. We start with the well-known interior estimate (cf. [1])

(7.22) IMI?; g anillo + I Ml.)
and the estimate

(7.23) Ikll, g c(|Md||.2_ + £ IfttfU.-.A
\ Í-0 /

Hence, from (7.22) and (7.23), we have

(7.24) Iklfc g c(||^r||„ + £ IfttfU-iJ-

Interpolating the two inequalities (7.23) and (7.24) (with | |u| |0 replaced with | |y| |°' in

(7.23)), we easily obtain, taking v = e,

(7.25) Ikll?1 S c(|Me||,_2m + £ |fte|_m,_1/2) ,        0 ^ I ^ 2m.

Using the procedure given in Lemma 5.1, (7.25) may be rewritten in the form

(7.26) Ikll?« g C    sup     <*i A»° + ££ A—2>(ft,, *,*>„
*6C<°<S> IM^IU.-« + £r-o a-2<2-""-1/2) |ft^uf+i/2

for 0 ^ / ^ 2m. The proof of Theorem 7.2 now proceeds in the same manner as

the proof of Theorem 7.1 and Corollary 7.1 and will be left to the reader.

C. Interior Estimates for Higher Derivatives In Theorem 7.2, we were able to

obtain estimates for the 2mth order derivatives of the error on compact subsets of 0,

using only the property (4.9) of the subspaces S*>r. The question naturally arises
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as to whether derivatives of order higher than 2m can be estimated, in the case that

k > 2m, with the "correct" rate of convergence. This can be done provided we make

some additional reasonable assumptions as to the properties of the subspaces S1',,.

Our first assumption is commonly called an "inverse" assumption and is shared

by many of the spaces S*,r which are used in practice. More precisely, we shall

assume that the subspaces Sk>f have the following property:

(***) Let O, be any open subset of 0, Ö\ C 0. Corresponding to 0,, there exists a

Lipschitz domain 02 with 0, C 02 and 02 C 0 such that

(7.27) ||x||2" Û Ch'1 ||x||2:,

for all x G S£,r, where C is a constant which is independent of x and h.

Remark 7.3. These assumptions can be verified if for example we take 5x>r to

be the restrictions to 0 of splines defined on a uniform mesh of width h, provided

h is taken sufficiently small (cf. for example BabuSka [9]). Some further remarks

concerning the assumption (***) will be made immediately after Theorem 7.4.

Before proceeding with the interior estimates for the derivatives of the error

of up to order k, we shall show that the assumption (7.27) implies that the sub-

spaces Sl_r have some further properties.

Theorem 7.3. Suppose that Sk-r satisfies (7.27). Then, for each pair of real numbers

a and ß satisfying ß ^ a 5Í k and ß ^ k — 1,

(7.28) llxll«" ̂ Chß-a \\X\\°ß'

for all x G «S*,,, where C is a constant which is independent of x and h.

For simplicity we shall prove (7.28) in the case that a and ß are integers. The

proof in the general case follows using similar arguments. Using (5.3) (which is also

valid if G is a Lipschitz domain), we have that if s is any integer then for any xG^,„

(7.29) (||xll"ii)2á C llxll?' Ilxll?!.

where C is independent of x- Now suppose that (7.28) holds for k = s, then

(llxll?ii)2 ̂ ch-1 |Mit. IMF-.

or

(7.30) Hxll?!, á ch-1 ||x||?:2.

A simple induction argument using (7.29) now gives us that (7.30) holds for all

integers s ^ k — 1.
Now, let a and ß be any two integers satisfying the conditions of this theorem.

We obtain, after a finite number of steps,

llxll«' á CA"1 llxll«'-, Ú      ■ û ÇA*"" llxll?',

which was to be shown.

Let us denote by Sî./R*), for 0 < h < 1, any one-parameter family of finite-

dimensional subspaces of ^(R*) having the following property : For all u G W2(RN)

(7.31) inf     H« - #||f* S C/r* ||«||f*

where C is a constant which is independent of A and u.
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As discussed previously (see Section 4), such subspaces have been constructed

by several authors.

Remark 7.4. It follows from an easy application of the Calderón extension

theorem that the restrictions to O of elements of a subspace SÎ_r(Rw) form a subspace

satisfying (4.9).

In view of Remark 7.4, we shall make the following assumption:

(****) Sk¡r is the restriction to 0 of elements of a space of type S£,r(R*).

We shall now prove

Theorem 7.4. Assume that the conditions of Theorem 7.2 hold with F = (/, g0, ■ • • ,

gm-i) G w(ß-2m'ß-m'-U2), where now S},r satisfies (7.27), (***) and (****) with 2m +

1 ^ k < r. Then,

(7.32) Ikll?' á Ch''' \\u\\ß

for each I and ß satisfying Am — r ^ / ^ k and I ^ ß ^ r. The constant C is inde-

pendent of h and F, but, in general, depends on 0,.

Remark 7.5. In (***), we have assumed that Ö2 C 0. If we had assumed that

the inequality (7.27) held on 0, then we can also obtain estimates for the derivatives

of the error up to order k on 0 which are analogous to those obtained in Theorem 7.4.

However, subspaces whose elements satisfy inequalities of the type (7.27) for domains

0 of general shape are not easy to construct.

Proof. The inequality (7.32), in the case that 4m — r g / ;£ 2m, is just the in-

equality (7.20), where then our assumption on F implies that u G W?¡(Q). Hence,

we need only consider the case in which 2m + 1 ^ / ^ k. Obviously,

||«- *||* ̂  ||«- »Uf-
ana hence it is sufficient to prove the inequality (7.32) with 0, replaced by 02.

Let 2m + 1 ^ / g k and suppose that / g ß ^ r. By a theorem of Calderón [1],

we can extend u to all of R* so that

(7-33) \\u\\f ^ C \\u\\ß,

where we have again denoted the extended u by u. Now, let u, denote the best approx-

imation in Skft(RN) to u in the norm of ^(R*). Then,

II«- »||?' ̂  II»-»,||?*+ ||«, - »II?'
(7.34) ^  ||«- »,||?* + A"1 ||«, - H|?I,

^  ||« - «,||r + A"1 ||« - 8,||?* + A"1 ||« - w\\ti,

where, since «, G Sj>r(Rw), the restriction of «, to 0 is in S^r and hence m, — w

satisfies (7.27).

Now, it follows from (7.31) that

(7.35) ||«- Hl||?" ^ Chß~l \\u\\f Ú Chß'1 llallí,        / Û ß £ r.

We claim that for any integer /

(7.36) A"1 ||« - «.H?* g Chß-' \\u\\f    for    I £ ß £ r.

Now for any integer / we have

,, ,,R* («   —   «,,   ^),||« -«,(,_,= sup        - „-
^"r.,+'«")      \\4> ?+,
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where (• , •)?* denotes the inner product on W2(R"). From the definition of », it

follows that

.,             ,,R"                            (« — «,, j — \p,)f
II« - «,11,., = sup        - v- ,

*êw,> + hk») ||Hlf+i

where for each \j/, ̂ , denotes the best approximation in Sktr(R") to t m the norm

of ^(R^). Then, using Schwarz's inequality and the property (7.31), we have

ii               nR,v   <r   ll               llRAY                           lhAj-^iili_^II» -  «illi-i  ^   II«  -  «i||(    I Sup - R.v-)
\   *6W,' + '<R<") H^llf+l        '

£ CA ||» - «,H?" ^ Chß'l + 1 \\u\\t",        lífiír,

from which (7.36) easily follows.
From (7.34), (7.35) and (7.36), we then have

(7.37) ||« - HI?* á C(hß" \\u\\ß + h-1 H« - w\\V-i)

for any integer 2m jS / g k and l ^ ß ^ r. Hence, the inequality

(7.38) H«- Hl?' ^ Chß~l \\u\\ß

would follow immediately from (7.37) if we could show that

(7.39) ||«- H|?I, ^ Chß'l + 1 \\u\\ß.

In view of Theorem 7.2 or in this case (7.21), the inequality (7.39) holds when

/ = 2m + 1 and 2m ¿ ß ^ r. But then, by induction, it follows that (7.39) holds

for all integers 2m ^ / ^ k and real numbers ß,l Û ß Û r. The proof of (7.32) now

follows by interpolation.

D. An Example. We shall now consider a specific example of the theory presented

in this section. In [14], several examples were given which illustrated the theory for

Dirichlet's problem for second-order elliptic operators. Since the purpose of this

paper was to extend the theory to higher-order operators and general boundary

conditions, our example will illustrate this. In particular, we shall consider a bi-

harmonic problem whose associated boundary conditions are neither Dirichlet nor

natural boundary conditions. In our example, the operator is selfadjoint and the

usual associated bilinear form is positive definite, however, we should note that

our method works equally well if these properties of the problem are not present,

provided Condition III is satisfied.

Let us consider the problem of finding approximate solutions of the second

boundary-value problem for elastic plates. Here we take 0 to be a two-dimensional

region (with smooth boundary) and u to be the deflection (i.e. displacement) of the

plate Ö. The symbol a is used to denote Poisson's ratio and D will signify the plate

rigidity. The boundary-value problem to be considered can be stated as

(7.40) A2« = /    in 0

and

(7.41) « = go,        M(«) = g,    on dû.

Here, /, g0, and g, are prescribed data and M(u) is the bending moment; i.e.
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(7.42) M(«) =  - d[au - (1 - .)(§ + i |)   •

In (7.42), d2u/ds2 denotes the second tangential derivative of u, du/dv is the exterior

normal derivative and p is the radius of curvature on 30.

In this example, the approximate problem (7.1) takes the following form: For

given 5j,r with 4 ^ k < r, find w G S"k_r such that

(7.43)

f (/ - A2H AV ¿* + A"7 f   (g„ - w)p <&
Ja J aa

' 90
A"3  (   (g - M(w))M(<p) <fe = 0

JdO

for all ? G S»,r.
If we take w to be the solution of (7.43), then (7.6), (7.8) and (7.9) of Corollary 7.1

yield the following error estimates over 0 and on 30.

If 8 g r, then

(7.44) ||« - »||. g CA4(AX |l/IK + A-7/2+x° |go|x. + A-3/2+x' |g,L).

If 4 < r < 8, then

(7.45) ||« - Hli/2 ^ Ch'-\hx ll/Hx + A~7/2+x° |i0|B. + A"3/2+x' |gl|Xl).

For any A < r

(7.46) |« - Ho - |* - »|. è C(A7/2+x ll/Hx + Ax° |g0|x + A2+Xl |g,|Xl)

and

(7.47) |M(«) - M(w)|„ = |ft - M(w)|0 ^ C(A3/2+x ||/||x + A"2+x° |g0|x„ + Ax' |/|Xl).

In (7.44), (7.45), (7.46) and (7.47), X, X0 and X, are restricted to O á X g r - 4, 0 ^
X0 g r - i and 0 ^ X, g r - &

If we take for example fc = 5, /• = 6 and S£ir to be quintic splines on a uniform

mesh of width h, then we obtain from (7.45), (7.46) and (7.47)

II« - Hli/2 è CA4(||/||2 + |g„|n/2 + |g,|7/>) ^ Ch4 ||8||„

I*. - »I. ^ CAU/2(||/||2 + |g„|11/2 + |g,|7/2) iS CAI,/2 IHI.

and

I«, - Af(H|o á CA7/2(||/||2 + |g0|„/2 + |gi|7/2) g CA7/2 ||b||,.

If we take k = 7, r = 8 and S£,r to be splines of order eight, then the two extreme

cases of (7.44) yield

II« - »||. É Ch4 (||/||0 + A1/2 liolo + A5/2 |g,|„)

and

II« - »||. Ú Ch8(\\!\U + |g0|15/2 + |g,|i,/2) á CA8 ||«||8.

From (7.46) and (7.47) we obtain

I*. - »|. á CA,5/2(||/||4 + |g„|15/2 + |g,|ll/2 è Ch15/2 IHI,
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and

I*, - M(w)|o á CAn/2(||/||4 + |g0|,.3/2 + |g,|11/2) ^ CA11/2 IHI,.

Interior estimates are easily obtained from Theorems 7.3 and 7.4. If we take

k = 5, r = 6, Shk¡T to be say quintic splines and 0, to be an open subset of 0 with

0, C 0, we obtain from (7.32) that

II« - »||?" á ÇA6"1 IHI.

for any 2 ;£ / á 5. In particular, in the two extreme cases we have

||«- »||S- g CA4||«||.

and

||«- W||?' á CAIHI,.

If we take k = 7, r = 8 and Shkr to be splines of order eight, then

(7.48) ||« - »H?' =g ÇA8"' IHI.

for any 0 g / ^ 7.

We note that for 0 g / û §, Corollary 7.1 says that the inequality (7.48) also

holds with ||w — w||,, replacing ||» — HI?' on the left-hand side.

8. Other Approximation Schemes for Dirichlet's Problem.

A. We shall first briefly consider some approximation schemes which are closely

related to schemes previously discussed. For simplicity, we shall restrict the discussion

to Dirichlet's problem

(8.1) Au = f     fa°'

u = g    on dO.

In the scheme (7.1), the approximate solution in this case is determined as the

minimum of the functional

(8.2) *fo) =  ||/ - A<p\\l + A"3 |g - H»2,        <P G ft\r-

We could, if we wished, determine an approximate solution as the minimum of the

functional

(8.3) *,(*) - ||/ - AH|2 + A-s+2(—•' \g - <p\l

for a given pair of real numbers s and s0. Estimates for the error in these schemes

could be obtained using the methods presented previously in this paper.

Let us discuss the results one can obtain for the particular choice of s = 0 and

s0 = I. This scheme has certain advantages over the scheme (7.1). This will be dis-

cussed immediately after Theorem 8.1. An equivalent formulation of this scheme

is as follows: For given Sktf with 2 ^ k < r, find v G SjJir such that

(8.4) (/ - Av, A<p)o + h-\g - v, «,>, = 0    for all p G Sj.,.

It is easy to see that there exists a unique solution of this equation and that it can

be determined by solving a linear system of algebraic equations.
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If we assume for simplicity that g is defined in a neighborhood 31 of <30 and

g G W/3/2(3I), then we may take as a definition

<*. »>, == £*»«* + ¿(glj^ - |f |f) *.
where du/ôv denotes the interior normal derivative of v to dO.

We shall not give any details of the proof of the error estimates, except to say

that we use a generalization of Theorem 3.1 which also follows easily from

Theorem 3.1.

Theorem 8.1. Suppose S^r is given satisfying (*) with 2 :£ k ^ r and let u be

the solution of'(2.2) for given data F = (/, g) G WaM where 0 £\£r-2andl £

X0 á r — |. Z-ei u be the solution of the approximate problem (8.4). 77zen, for any

4-r|/á!

(8.5) ||« - y||, g CA2-!(AX U/H» + A"3/2+x° |g|x„),

where C is a constant which is independent of h and F.

Let us compare the estimates that have been obtained for the schemes (7.1)

and (8.4). Suppose that F = (/, g) G W{ß'ß~im for 2 á ß ú r. Then, as previously

discussed if w is the approximate solution of (8.1) obtained from (8.2), the following

error estimates hold : If 4 á r and 4 — r á l Ú h, then

(8.6) ||» -'w||( á Or*-' IHI,.

If r =  3, then

(8.7) ||«- »||1/2 ^ ÇA*"1 IHI,.

On the other hand, if we take v to be the approximate solution obtained from (8.4),

then (8.5) yields the error estimate

(8.8) II«-»II, ^ Ch"-1 IHI,

for any 4 — r á / á §•

The advantages of the scheme (8.4) are now easy to see. Namely, one can obtain

estimates for the error in the W2(Q) norm with the correct order of convergence.

This is an improvement over the previous schemes for any 3 äs r. In the case that

k = 2 and r = 3, one obtains from (8.8), using for example quadratic splines on a

uniform mesh of size A, the estimate

II«-p||, ik CA2||«||3.

In this case, the scheme (7.1) yields

II«- »II./2 ú ch2 IHI,.

B. Let us again consider the problem of approximating the solution of Dirichlet's

problem (8.1). Besides the approximation scheme analyzed in [6], Babuska (private

communication) has proposed the following scheme for the approximation of the

solution of (8.1): Find v G ShktT which minimizes the functional

(8.9) *,(*) = H» - AHIo + P_1(A) L(A) ~ - <p 2
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among all <p G Skr. Here, p(A) is a given function of h which is to be chosen ap-

propriately. It is easily seen that if v G S£,r is the function which minimizes (8.9), then

/   Av A<p dx + p(A)"'   /    v<p da —       j<p dx        g ^ da = 0
Jr -IdR Jr JaR        OV

for all <p G 5*ri2(0). Hence, v can be determined from a system of linear algebraic

equations in terms of the data / and g.

We shall prove some error estimates for this scheme with p(h) chosen as p(h) = A-3.

We believe this to be the best possible choice. We shall make use of a result which

was proved in [14]. It is also a special case of Theorem 6.1. For convenience we

shall restate that result in this special case.

Lemma 8.1. Let S£,r be given satisfying (4.9) with 2 g k < r. Then, for any

F = (f, g) G WaA°\ where 0 ^ \ ^ r - 2 and 0 ^ \0 è r - I,

inf    (H/, - AH |? + A"3 \g - H2)1/2 è C(AX |x + A-3/2+x° |g|x„)

(»eSi.r*

where C is a constant which is independent of F and h.

The following error estimates for the scheme (8.9) easily follow from Lemma 8.1.

Theorem 8.2. Let u G W22+\û) be the solution of(%.l)for given data F = (/, g) G
jpu,x+3/2) where | < x ^ f _ 2 Suppose that 5* f ¿j givejl} 2 úk < r,r ^ A and

let v be the solution of the approximate problem (8.9). Then

(8.10) Au||o è Ch" | H|x

where C is a constant which is independent of h and u.

Remark 8.1. If we denote by w the solution of the approximation scheme (8.2)

(or equivalently (7.1)), then in the case that 2 ^ k < r, r ^ 4, we can obtain from

Corollary 7.1 that

(8.11) è ch" IHK

for any 2 ;£ X ^ r. A comparison between (8.10) and (8.11) shows that the maximum

rate of convergence in (8.10) is of the order Ar~2 while (8.11) gives us the higher

maximum rate of order W. Note also that the matrices in the two schemes (8.2)

and (8.9) are identical.

Proof.   We certainly have (with p(A) = A3) that

inf
fest..

|« - AHIo + A"
du

dv

du\

dv\

Applying Lemma 8.1, it follows that for 0 s= X ̂  r — 2, and 0 ^ X„ ̂  r — \,

(8.12) ||«- Ai>||a0;g c(ax ||h||x+ A3/2+x'

Now, from Lemma 4.3, we have that if § < X then

(8-13) V Ú C||«||x
X-3/2
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where C is independent of u. Choosing X0 = X — § in (8.13) and using (8.12), we

easily obtain the desired inequality (8.11) which completes the proof.
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