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On the Effects of Scaling of the
Peaceman-Rachford Method

By Olof B. Widlund*

Abstract. The alternating direction method of Peaceman and Rachford is considered for

elliptic difference schemes of second order and with two independent variables. An earlier

result of the author's on the rapid convergence of multi-parameter noncommutative prob-

lems is described and a connection is established between that result and theorems on

optimal scaling of band matrices. Simple algorithms to decrease the condition number and

increase the rate of convergence are discussed.

1. Introduction. In this paper we shall consider the alternating direction implicit

(ADI) method of Peaceman and Rachford [12] when applied to difference approxi-

mations to elliptic problems with two independent variables. It is known that this

method is often quite powerful, especially when different acceleration parameters

are used in the different iteration steps. Usually, these parameters are chosen in

a cyclic way. We shall assume that this is the case and denote the cycle length by m.

It has been proved that the method always converges when m = 1, but for the

potentially much more powerful multi-parameter case the theory is still not satis-

factory. Indeed, there seems to be little hope that there will ever be a very general

convergence theory because of the fact that divergence has been observed in numer-

ical experiments.

Under certain additional restrictions on the problem, we can theoretically ex-

plain the full power of the method. Thus, there exists a very satisfactory theory in

the case when the two matrices, corresponding to the different independent variables,

commute. Cf. Varga [15] or Wachspress [16]. The commutativity condition is how-

ever very limiting because, as was shown by Birkhoff and Varga [1], it imposes

severe restrictions on the coefficients as well as on the region. The region thus has

to be rectangular. In fact all problems giving rise to commutative problems can be

handled by separation-of-variables techniques. It is of interest to note that for sepa-

rable problems there now exist faster methods than the ADI or SOR methods. Cf.

Hockney [10] and Buzbee, Golub and Nielson [2] for methods which are in fact

very efficient computer implementations of the separation-of-variables idea.

We shall now make a short survey of results for the noncommutative case. (Cf.

Wachspress [16] for more details.) One of the more interesting results follows from

an observation by Guilinger [8]. It is thus possible to prove the convergence of
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the ADI method for a difference approximation to Laplace's equation on convex

regions for any set of positive parameters. However, the result fails to explain the

very rapid convergence which has been observed in many applications. Pearcy [13]

has shown that any given problem can be made to converge by choosing m suffi-

ciently large. Practical experience also indicates that a choice of a long cycle is a

cure for divergence. Pearcy's technique is however not refined enough to give realistic

bounds for the rate of convergence or to explain in any satisfactory way the marked

difference between one- and multi-parameter ADI.

A class of noncommutative problems was treated in an earlier paper, Widlund

[18]. A recipe was given for the choice of parameters to ensure a rate of convergence

which, for small enough mesh sizes, is as large as those of comparable commutative

cases. In order to make the proof work, severe restrictions had to be imposed. We

were thus only able to treat Dirichlet problems on rectangular regions for equations

with sufficiently smooth coefficients. Furthermore, we had to let the iteration param-

eters depend on the independent variables in a special way. Numerical experiments

strongly indicate that such a choice of parameters improves the performance of the

algorithm, even in much more general situations than those covered by the theory,

changing divergent or slowly convergent problems into rapidly convergent ones. As

will be explained in Section 2, the use of parameters depending on the space variables

is equivalent to a scaling of the matrices of the problems by a diagonal matrix.

Frequently, one can look upon the scaling procedure as a device which will change

the original problem into one which is closer to one which can be treated by separa-

tion-of-variables techniques.

We shall now outline an idea of the proof of the main result in Widlund [18]

in order to be able to describe the results of the present paper. Denote by Sm the

matrix which maps the initial error vector into the error vector after a full cycle of

m iterations. Our objective is to give a good bound for the spectral radius of this

matrix. Such a bound can be given in terms of the norm of a matrix S¿ which is

similar to our original matrix Sm. (We will use the spectral norm as our matrix

norm throughout this paper.) After a choice of a similarity transformation, we

write S¿ as a sum of a principal matrix Pm and a remainder matrix Rm. The matrix

Pm is the product of two matrices each of which corresponds to operations in one

space direction only. The norm of Pm can therefore be estimated as if we were dealing

with two one-dimensional problems. In commutative cases Rm = 0 and, by an

appropriate choice of a similarity transformation, the same is true for m = 1 as

well. Under the assumptions mentioned above we were able to give a good enough

bound for the norm of Rm. In the present paper, we shall, instead, concentrate our

attention on minimizing the norm of Pm by an appropriate scaling. It will be seen

that we will end up with exactly the same recommendation as in Widlund [18],

where we were concerned primarily with the norm of Rm.

The idea of scaling ADI problems is far from new. Cf. Wachspress [16], Wachspress

and Habetier [17], Douglas [4] and Gunn [9] for various ideas and results.

It would be most interesting if something conclusive could be said in a com-

parison between the successive overrelaxation methods and an optimally scaled one-

parameter Peaceman-Rachford algorithm, (in which case the remainder matrix van-

ishes). No general theorem seems to be true which would rank one method ahead

of the other. However, numerical experiments seem to indicate that in cases, when
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the coefficients of the elliptic problem vary very much in magnitude, well scaled

ADI methods give quite good rates of convergence while the successive overrelaxa-

tion methods are very time consuming.

We end this section with a warning. The scaling which is recommended in this

paper is based on considerations about the norm of Pm only. A scaling can turn

a commutative problem into a noncommutative one and such a problem might

conceivably give rise to a divergent ADI algorithm. However, such a situation

appears to be quite unlikely in problems arising from physics or other applications.

We also note in this context that it is quite simple to decide whether or not a problem

is commutative.
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2. Presentation of the Algorithm and Earlier Results. Let Ahu = /be a system

of linear equations which has arisen from a difference approximation to a second-

order selfadjoint elliptic equation with two independent variables and no mixed

derivatives. The subscript A is a parameter which goes to zero with the mesh size

of the problem. We assume throughout that Ah is the sum of two matrices H and

V. These are symmetric positive-definite sparse matrices. In order to get an efficient

algorithm we also assume that H + D and V + D can be inverted rapidly for any

choice of a diagonal matrix D with positive elements. We shall refrain from going

into details about how to split Ah into the sum of H and V and only mention that

appropriate splittings are often suggested by the original problem and by efficiency

considerations. The matrices H and V typically have band structure or, as in the

case of periodic boundary conditions, almost band structure with only a few nonzero

elements in each row. The corresponding linear system can therefore be rapidly

solved with the help of a Cholesky or LU decomposition or in important special

cases by odd/even reduction (cf. Buzbee, Golub and Nielson [2]). It is well known

that these procedures can be made numerically stable.

We refer to Varga [15] for a description of how one sets up difference approxi-

mations to elliptic problems. It could be mentioned that we can always assure the

symmetry of our matrices by choosing a method of discretization based on a varia-

tional formulation.

For a chosen splitting we thus write our system of linear equations as

(H +   V)u = f.

The ADI algorithm is defined as follows: Given some initial approximation «,,

compute un+1, n = 1, 2, • • • , by

(coni7Z)2 + H)un+U2 = (unHD2 —   V)un + /,

(a,nVD2 +  K)«„.. = kvû2 - #)«„+1/2 + f.

D is a diagonal matrix with strictly positive elements. The iteration parameters

unH and œnV are chosen in a cyclic way, i.e.

UnH = um,       w„F = co(1-    for n = / mod m.
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We want to choose D and w = {wBff, unv}, n = 1, 2, • • • , m, so that the rate of

convergence is as large as possible. Our choice can be restricted so that unr!D2 +

H and unVD2 + V are positive definite.

Denote by Sm the matrix which maps the initial error into the error after a full

cycle of iterations. Clearly,

m

Sm -  II KfÖ2 +   V)-\œ„rD2 - H)(wnHD2 + H)-\unHD2 -   V)
n-l

if we adopt the convention

i

II A< =  AxAx-y. ■••  A,.
i-l

Introduce the matrices

HD = D~lHD-\ VD = D"1 VD'1.

It is easy to show that

m

DSmD~' =  II (<*»v* +   VDT\<*nVl - Hn)(wnIII + HDT\<*nHI -   VD).
n-l

Thus Sm is similar to the error matrix which we get by applying the algorithm with

D = I to the scaled problem (HD + VD)v = g. Let T be some appropriate transfor-

mation matrix. (Cf. Section 1.) Define S¿ by S¿ = TDSmDlT-\ The spectral radii

of Sm and S¿ are clearly the same. The principal matrix Pm and the remainder matrix

Rm are defined by

m m

J*» = Il i««*7 + ffi>)~W/ - #d) Il («.r/ +  KDrW/ -  KD)
n-l ii-l

and

Ä- = 5; - Pm.

We refer to Widlund [18] for a good choice of T and D which enables us to give

a useful bound for the norm of Rm for the five-point difference approximation to

a class of problems with smooth coefficients. A further restriction in that paper

namely that w„ff = wnV can be removed. Our earlier results thus hold true in particular

for parameters chosen optimally as in Wachspress [16], cf. Section 4. In our earlier

paper we gave a set of easily computable parameters, such that

||P,„|| è 1 - C,/t1/ra

and

||Ä«|| ^ C2h3/2m,

provided D2 is chosen to be equal to the diagonal of H or V. C, and C2 are strictly

positive constants. An immediate consequence is

p(SJ g 1 - CxhUm + C2h3/2m

and rapid convergence for small mesh sizes. (p(A) = spectral radius of A.) Here

h is a meshparameter such that the order of our matrix Ah is a const hZ2.
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We shall now concentrate on making ||i'm|| small by an appropriate choice

of D and w. We assume that accurate lower and upper bounds are available for the

spectra of HD and VD but that nothing useful is known about the location of the

eigenvalues inside these intervals. In practice such bounds might be computed with

the help of a Sturm sequence or a symmetric QR subroutine. Cf. Kahan and Varah

[11]. Repeating standard argument, we get

Il   m

n («.»/ + wWi - hd)

X I (w»r7 +   VDy\w„HI -   VD)

r    —    \\(wnH    —    P.
;£ max

XeiXi.X") ;»€[»!,»•]
n

a»s + X/\co„F + p.

<j>m(u, X,, X", p¡, pZ).

Here X¡ is the smallest eigenvalue of HD or an accurate lower bound of it, X" the

largest eigenvalue of HD or an upper bound thereof and pi and p" are the corre-

sponding bounds for VD. The problem of minimizing <t>m(u, X¡, X", pu pZ) with re-

spect to to has been solved completely. Cf. Wachspress [16].

By the homogeneity of (¡>m the minimum of <j>m with respect to co will depend only

on three parameters, k(Hd) = Xu/X¡, n(VD) = pZ / px, and A = X"/m". Two of them,

k(Hd) and k(Vd), are equal to or very close to the spectral condition numbers^of

the matrices HD and VD. Denote by

4/m{K(HD), k{ Vd), A) = min <pm(w, X¡, X", pu, pu).

It is the purpose of our study to show that an appropriate scaling D of our problem

will give values for the arguments of \pm such that we are quite close to the best

possible estimate for ||P„||.

3. On the Eigenvalues of Certain Matrices. Let BD = D~XBDrl be symmetric

and positive definite and denote by k(Bd) its spectral condition number defined as

the ratio between the largest and smallest eigenvalues of the matrix. The diagonal

matrix D is strictly positive. We say that BD is best conditioned if k(Bd) g k(Bd.)

for all such diagonal matrices D'. The following result follows immediately from

Forsythe and Straus [5] and Golub [7].

Lemma 3.1. Let B have Young's property A. Then BD is best conditioned if its

diagonal elements are equal. Furthermore, the value of the diagonal elements is equal

to the average of the largest and smallest eigenvalues of BD.

All tridiagonal matrices satisfy property A. This is also true for many matrices

which correspond to one-dimensional differential operators with periodic boundary

conditions.

For more general symmetric positive-definite sparse matrices, we can use the

following interesting result by van der Sluis [14].

Lemma 3.2. Let B have at most q nonzero elements in any row. Then the condition

number of the best conditioned matrix is at most a factor q smaller than that of a

matrix BD which has constant diagonal elements.
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van der Sluis also proved that this kind of diagonal scaling can never improve

the condition number of a matrix by more than a factor n = order of the matrix.

That result, however, seems to be of less interest to us because we are primarily

interested in quite large matrices.

It is clear that the scaling strategy suggested by these results is very attractive

because of its simplicity. In many cases we are dealing with elliptic problems where

the coefficients of the second order terms are the same. The diagonals of HD and VD

will then typically be almost equal. The following bound on possible improvement of

the condition numbers is then of interest.

Lemma 3.3. Let the maximum ratio of any two diagonal elements of B be 7. Then

the condition number cannot be improved by more than a factor 7 by making the diagonal

elements equal.

The proof follows directly from Courant's min max principle.

These results will be of interest in our attempts to make \pm small. It will thus

be shown in Section 4 that \pm will decrease when k(Hd) and k(Vd) both decrease

provided A is kept fixed. This naturally leads to the question whether A can be

expected to change only slightly under diagonal scaling. We shall now describe a

result in that direction for the important special case of tridiagonal matrices.

Lemma 3.4. Let Bh be a class of symmetric tridiagonal matrices the order nk of

which increases with decreasing h. For simplicity let h-nh = 1. The elements of Bh

are such that

(B.)„ = Wh, h) > 0,        i = 1,2, ••• , «„,

(¿U..+i = -hm, A)(i + o(D),      i - 1, 2, •••,«»- l,

where j(x, h) depends smoothly on h and is piecewise smooth with respect to x £ [0, 1].

The largest eigenvalue X" of Bh will then satisfy

\" = 2   max  /(*, 0)(1 + o(l)).

Proof Gersgorin's theorem immediately gives that X" ^ 2 max j(x, 0)(1 + o(l)).

In order to get a reverse inequality we use the variational formulation of the largest

eigenvalue. An appropriate trial vector can easily be constructed. First, choose for

a given e > 0 a subinterval such that j(x, h) is smooth and j(x, 0) ^ max,e[01| f(x, 0)

— e. Let all vector components corresponding to x values outside this interval be

zero and let the rest of them be ± 1 alternatingly. It is easy to see that this will result

in a good enough lower bound for X".

Remark. This proof contains elements quite similar to the arguments which

are used in derivation of asymptotic expressions for the eigenvalues of two-dimen-

sional elliptic problems. Cf. Courant, Hilbert [3] or Garabedian [6]. Indeed, inter-

esting information about the larger eigenvalues of difference equations can be

obtained by such an approach. It could also be remarked that the method of trans-

formations of variables which gives the asymptotic behavior of the eigenvalues for

continuous two-point boundary-value problems does not seem to have any useful

discrete analogue.
Possible applications of Lemma 3.4 should now be obvious. Thus consider a

problem for which the principal part has the form — dxa(x, y)dxu — dya(x, y)dvu,

a(x, y) piecewise smooth. Set up the standard five-point difference approximation
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and make a natural splitting of the matrix. Lemma 3.4 then implies that A will

change only slightly under a scaling which is such that the elements of the scaling

matrix are values of a piecewise continuous function in two variables evaluated at

the corresponding mesh points. Many problems in physics lead to elliptic problems

the principal parts of which have this simple form provided Cartesian coordinates
are used.

Remark. One might believe that if a scaling decreases the condition number of

HD and VD then the solution of the tridiagonal systems of equations in the ADI scheme

might become more accurate. However, typically, if we use Gaussian elimination

we do not want to do any pivoting of positive-definite matrices and, with an un-

changed pivoting strategy, the quality of the solution will not be improved by scaling.

4. Recommended Scalings of the Matrices. We shall begin this section by re-

viewing one aspect of the theory for the optimal choice of w. The components of

cc can be computed easily in the case when m = power of 2; in the general case,

there exist accurate approximate formulas. We shall rely heavily on Wachspress'

[16] presentation of the theory in this section. One can compute the value of

tm(n(HD), k(Vd), A), for given \¡,\",pl and pu, in terms of a parameter k',0 <k' < I,

defined by

k' =  l/((m' + 1) + (m'(m' + 2))I/2),

where

m'  = 2(X" - X«)0*" - M,)/(X" + m")(X, + M<).

For any cycle length m, there exists a strictly positive constant Cm such that

*. = (d - Cm(k')U2m)/d + cm(k')1/2m))\

when the mesh size goes to zero. Our problem is therefore reduced to the study of

the value of k', which measures how well conditioned our problem is with respect

to the ADI algorithm.

Lemma 4.1. Let X"/m" be fixed. Then k' increases if both Xu/X, and pu/p, decrease.

To prove this lemma we rewrite m' as

(4.1) m' = 2 -.-ry-;-r

and note that a decreasing m' will increase the value of k'.

We can now give an explicit recommendation for a scaling, when the principal

part of the differential operator has the form — dxa(x, y)dxu — dva(x, y)dvu and

the matrices HD and VD are similar, via permutations, to tridiagonal matrices. It

follows immediately from Lemmas 3.1, 3.3, 3.4 and 4.1 that a good choice for D2 is

the diagonal of H or V.

Remark. This scaling is close to the one suggested by Douglas [4]. He also gave

the scaling an interpretation in terms of parabolic equations. To any positive-definite

elliptic problem one can associate many parabolic equations whose steady-state
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solution is equal to the solution of the elliptic problem. Each scaling corresponds

to a particular choice of a parabolic problem.

Several scaling strategies now suggest themselves for the general problem. One,

which for smooth enough a(x, y) and small mesh sizes would lead to an almost

identical algorithm in the special case above, amounts to choosing D2 equal to the

diagonal of H + V. There are, however, some objections to such a strategy. On

the basis of our earlier results, Widlund [18], and numerical experiments, it seems

as if an attempt should be made to scale the original problem so that the modified

problem could "almost" be treated by a separation-of-variables technique, provided

the region happened to be appropriate. Choosing D2 equal to the diagonal of H +

V in the case of a diffusion problem written in polar coordinates would thus be

quite unnatural. In that case, it seems much more natural to choose D2 equal to

the diagonal of the matrix corresponding to the derivatives with respect to the angle.

By the results of Section 3, such a scaling would either minimize the condition num-

ber of one of our matrices or at least make it quite well conditioned. Such a strategy

also coincides with the one suggested by the analysis in Widlund [18].

The recommended strategy would therefore be to choose D2 equal to the diagonal

of H or V. We cannot support this choice as strongly in the general case as in the

special case above, because \"/p" might vary a great deal. However, examining the

formula (4.1) again, we see that not only can we compare the values of k' for a scaled

and an unsealed case, if we have eigenvalue bounds available, but we can also give

an upper bound for m', and thus a lower bound for k', in terms of the condition

numbers of HD and VD alone. Varying \"/p", we thus find that

•I?
with equality only for \"/pu = dtn/nl/ih/*"))1'2- This formula should give a

realistic estimate of the size of m' in many cases. A more accurate comparison can

of course be given if we have information about the size of X"/m" and how it changes

under scaling. It follows from Lemma 3.4 and its proof that a Gersgorin estimate

often gives an accurate bound for the largest eigenvalues. It is clear from formula

(4.1) that, if we can show that \"/pZ does not change very much and at least one

of the condition numbers decreases a lot, then we can be assured of a larger value

for V.
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