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A Stable, Rational QR Algorithm for the Computation
of the Eigenvalues of an Hermitian, Tridiagonal Matrix

By Christian H. Reinsch

Abstract. The most efficient program for finding all the eigenvalues of a symmetric

matrix is a combination of the Householder tridiagonalization and the QR algorithm.

The latter, if carried out in a natural way, requires An additions, 10« multiplications, In

divisions, and n square roots per iteration (n the order of the matrix). In 1963, Ortega and

Kaiser showed that the process can be carried out using no square roots (and saving In

multiplications). However, their algorithm is unstable and several modifications were

suggested to increase its accuracy. We, too, want to give such a modification together

with some examples demonstrating the achieved accuracy.

1. Introduction. In 1961 Francis [4] proposed the QR transformation, an

offspring of Rutishauser's LR transformation [8], for the computation of the eigen-

values of a general matrix. He considered his method to be inefficient for Hermitian

matrices but, fortunately, it soon turned out that, contrary to his original opinion,

the method is especially efficient for this class of matrices, provided the given matrix

is first reduced by Householder's method to real tridiagonal form and provided that

shifts are used to accelerate the rate of convergence. (A description of this technique

can be found in [10], for tested ALGOL programs see [6], [3], [2], the properties of

the now generally adopted shift are described in [11].)

Ortega and Kaiser [7] pointed out that by avoiding square roots the efficiency of

this algorithm can be further increased (though if all eigenvalues are to be computed,

it is already superior to all other known methods). The algorithm which they proposed,

however, was unstable and several modifications were suggested (e.g., [9], [5] and

others, not published). We, too, want to give such a modification here, together with

some examples demonstrating the achieved accuracy.

2. The Algorithm. Let A be the shifted matrix with diagonal entries au ■ ■ ■ , a„

and subdiagonal entries bu ■ •• , &»_!. As is well known, a QR step consists of the

orthogonal-triangular decomposition, A = QR, and the recombination in reversed

order, Ä = RQ. For tridiagonal matrices, the decomposition is usually done by the

application of n — 1 plane rotations P^, • • • , Pj_! from the left to A to produce the

upper triangular matrix P with diagonal rx, ••• , r„, first superdiagonal qu • • • , qn-u
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and second superdiagonal h, ■ ■ ■ , f„_2. If

Pï = Ci    s¡

-St   c<

PT'i-l Pi A

Qi-i      ti-i

Pi     bfii-i

b¡       ai+i     Z>, + 1

Co = l;

j = 1, • • • , n — 1 ;

then it follows by induction that

(1) Pi = «i,

,    2      i       .2x1/2
n = (pí + b¡)   ,

c, = Pi/r¡,

(2) s, = b,/r„

Qi = CjCj-ibj + SjOj+i,

Pi+i = CjOj+i      SjCj-ibj,

(3) r„ = pn.

For the recombination, we have in the tridiagonal case Ä = RPi ■ ■ ■ Pn-i giving

a,- = rjCf-iCi + qjSj,

(A) = PjCj-i + qjS¡, j =  1, • • • , n — 1;

hi = ri+1s¡,

(5) an  =  rnCn-l-

Thus, An additions, 10« multiplications, 2« divisions, and n square roots are

necessary per iteration. This algorithm is realized in the programs of [2]. To avoid

square roots, Ortega and Kaiser introduced the quantities

(6) hi = Pfii-i

(which they call y¡) and computed p) from h2/(\ — s2_i) which is obviously inaccurate

if s2_i is near to unity. We prefer to compute a quantity g¡ defined by

(7) 8i = Pj/cj-i

and to compute h¡ from it. From the last equation of (2) and from c,6, = s,/?, one

obtains the recurrence relation

gi+i = «i+i — SjCj^ibj/Cj = ai+i — Sfii-ibi/SiPi = ai+i — b2/giy

while according to Ortega and Kaiser, the second equation of (4) can be transformed

into

âj = hi + CjCj-ibjS,- + Sjüj+iSj = hj + î2(â,- + ai+i).
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Thus, the algorithm without square roots becomes

gi = Ai = ai,       5o = 0;

p) = g¡hi,

2 2      i       ,2
r¡ = Pi + b„

¿,_! = r2s2-i    (j ¿¿ 1),

(8) s2 = b\/r2, j = 1, •■•,«- 1;

a,- = A,- + s*(Ä, + ai+i),

gi+i = ai+l — b2/gj,

i 2/2
«i+i = gn-iPi/r¡,

àn   =   K, b2n-i    =    g»/¡A-l.

Note that the squares of the subdiagonal elements rather than the elements

themselves are the given data. This algorithm needs An additions, An multiplications,

and 3n divisions (n additions less than Ortega and Kaiser but n multiplications and n

divisions more). The iteration is repeated until the last off-diagonal entry becomes

smaller than a given tolerance A.

It should be mentioned that the g, are the well-known quotients of consecutive

principal minors of the shifted matrix A, which are also used in the bisection process

[1]. This can be used to advantage to assign ordinals to computed eigenvalues. As is

the case there, a vanishing g, has to be replaced by a small nonzero value 5 equivalent

to a perturbation of the diagonal entry a,. 5 has to be chosen smaller than 2 A in order

to avoid indefinite cycling: if g„ is replaced by 8 then 6^_, = í'^^cj., ^ 52/4 < A2,

and the iteration terminates. In any case, the computed values of g,; (j = 1, • • • , «)

are always the exact values corresponding to slightly modified entries of the matrix A.

Rounding errors in the evaluation of the remaining expressions are obviously harm-

less. For technical reasons, a decomposition starting with the lower end of the

tridiagonal matrix is preferable (called the llQL algorithm"). This is merely achieved

by the replacement

d„, ■ ■ ■ , di    for ax, ••• , an,

2 2        r ,2 ,2
en-i, ••• ,ei    for blt ■ ■ ■ , ¿>n-i,

(and similarly for the entries of Ä). Introducing the fake quantity e2„ we obtain the

procedure (without shift):

g : = h : = dn\       s2 : = 0;

i: = n - 1(-1)1 :

v .    . 2 2,2
g X h; r  : = p   + e,;

2   v ,      2 2 2/2
s   X r ;       s  : = e{/r ;

h + s2 X (h + di);

di — e2/g;        h : = g X P°'/r2;

= h;       ê\: = gXhXs2.

(9)
ë2+i

¿i+i

g

di : ■-
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The computation of the shift, the tests for splitting and convergence can be done as in

the usual QR algorithm (see [2]).

3. Test Examples. The algorithm (9) was embedded in the organizational

scheme of procedure TQL1 [2]. The following numerical results were obtained on the

AEG-TELEFUNKEN computer TR-4 of the Leibnitz-Rechenzentrum der Bayer-

ischen Akademie der Wissenschaften, München, with machine precision 2~35 a¿

2.9110-... Two consecutive machine numbers in the interval [1, 16) have a distance

2~34 ~ 5.8210-n, and this would be the appropriate unit to measure most of the

errors X, — A, listed below. Rounded decimal equivalents are listed in sequence as

they were computed.

First Example.

order:

diagonal:

subdiagonal:

5,

(0, 0, 0, 0, 0),
(1, 1, 1, 1).

This example served as a test for formal correctness. In the first iteration g2 and

g5 become zero for the chosen shift and have to be replaced by a small tolerance

quantity.

Computed eigenvalues X\ X\ - X, Iterations

-0.999999 999996

1.000000 0000
-5.14,0-,,

1.732050 8077
-1.732050 8075

0.4
0

-0.5

11.2
6.3

X io-

1

1

4

1

0

Second Example. Wilkinson's matrix W~

order:

diagonal:

subdiagonal:

21,

(10,9, ••■ ,-9,-10),
(1, •• ,1).
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This example was chosen since the exact eigenvalues were known to 24 decimal

places.

Computed eigenvalues X"; X, - X, Iterations

10.74619
9.21067
8.03894
7.00395
6.00022
5.00000
4.00000
3.00000
2.00000
0.99999
4.014,0-

-1.00000
-2.00000
-3.00000

4183
86472
11193
20027
56802
81589
02049
00037
00001
999999

00005
00001
00040

-4.00000 02057
-5.00000 81591
-6.00022 56806
-7.00395 20030
-8.03894 11197
-9.21067 86491

-10.74619 4185

-0.8
-11.9
-3.3

1.1
5.5

17.9
-12.1
-8.3

0.4
-1.2

4.0
-46.5
-6.2

-15.0

-6.3
-4.1
-4.6
-3.6
-4.3

-17.4
-20.9

X 10"

X io-

3
2

2

2

2

2

2
2
2

2

2

1

2
1

2

1
2
1

1

1
0

35

Third Example. Wilkinson's matrix W2\,

order: 21,

diagonal: (10, 9,

subdiagonal:       (1, • • •
, 0, • • • , 9, 10),

1).

Here, too, were the eigenvalues known to 24 decimals. The matrix has a number

of close pairs of eigenvalues, and earlier algorithms for the rational QR transformation

gave only poor results.
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Computed eigenvalues X, X, Iterations

10.74619
10.74619
9.21067
9.21067
8.03894
8.03894
7.00395
7.00395
6.00021
6.00023
5.00024
4.99978
4.00435
3.99604
3.04309
2.96105
2.13020
1.78932

0.94753
0.25380

-1.12544

4183
4183
86473
86473
11157
11228
17986
22095
75223
40316
44249
24777
40235
82015
92925
88842
92192
13524
436752
581678
15223

-0.8

5.0
-3.3
-8.9
-9.1
-6.3
-1.6
-4.0
-0.5

0.0
-9.1
-6.3

10.8
13.2

-8.3
-2.5

-18.6
-31.7
-0.7

-31.9
-21.8

XIO"

3
2
2

1

3
0
3
0

3
0

3
1

3
1

3
1

2

1

2

1

0

35

Fourth Example.

order:

diagonal:

subdiagonal :

21,

(0, 0, 0, 0, 5, 5,
(I.--- ,1).

, 5, 5, 0, 0, 0, 0),

This matrix has also several close pairs of eigenvalues. The same method in

double precision was used to compute them in sufficient accuracy to permit a reliable

computation of X< — \¡.
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Computed eigenvalues X, X, - X. Iterations

-0.68610
-0.68610
-1.64133
-1.64133

0.53719
0.53719
1.58048
1.58048
3.05424
3.21306
3.46568
3.79631
4.18602
4.61395
5.05837
5.49755
5.91051
6.27790
6.58272
6.81096
6.95219

208438
208455
43818
43820
550200
549767
33100
33817
18341
77750
21635
79956
04350
05337
84312
03169
27679
84969
45938
24646
74335

-1.0
-1.2
-2

-18.7
-18.6
-18.7
-2.3
-1.9

4.9
6.3
2.7
5.0
9.1

-4.2
-5.1
-4.0

14.1
22.7
10.9
10.3
9.0,

X 10"

6
0
2

1

3
0

3
0
4

2
2

2

2

2
2
2

2
2

2

1

0

40
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