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Gauss's Ternary Form Reduction and
the 2-Sylow Subgroup

By Daniel Shanks

Abstract. An algorithm is developed for determining the 2-Sylow subgroup of the class

group of a quadratic field provided the complete factorization of the discriminant dis known.

It uses Gauss's ternary form reduction with some new improvements and is applicable even

if d is so large that the class number h(d) is inaccessible. Examples are given for various

d that illustrate a number of special problems.

1. Introduction. The problem treated here is this: Given an imaginary quadratic

field Q(y/ — A) where the factorization of A is completely known, to compute the

2-Sylow subgroup of its class group. My interest in a solution was motivated by two

closely related questions. Since these are interesting in their own right, I will use them

here as an introduction.

For certain n, the numbers

(1) Sn = (2" + 3)2 - 8

are primes of the form 8/c + 1 with many remarkable properties [1, p. 158]. Since Sn is

then prime, the 2-Sylow subgroup for Q(y/ —S„) is cyclic and is

(2) C(2UM)

of some unknown order 2°<B). Here is a brief table:

n               U(ri) n U(ri) n U(n)

12 6 6 19 7
2 3 8 8 27 6
3 3 10 9 28 9
4 4 11 6 32 8
5 5 12 10 36 10

Now, it is easily seen that U(n) ^ 3 for « > 1, but it was (and remains) obscure why

the U(ri) are much larger. The determination of U(n) is a special case of the general

problem above, with A = prime S„ and (2) as the 2-Sylow subgroup.

Next, consider

S36 = 4722366483281962074113.

The only feasible way of evaluating

(3) ¿(-4536) = 50866650112,
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to my knowledge, is the method I introduced in [2]. For this specific case (3), I pointed

out there [2, p. 417] that if one knows that

h m 210 (mod 211),

then the algorithm in [2] can be speeded up by a factor of 211/2 œ 45. The knowledge

that 17(36) = 10 therefore much facilitates the evaluation of the class number (3).

Consequently, I referred to this present paper in [2], before its publication, as ref. [6],

"to appear".

The solution of the problem is suggested by the theory of factorization given in

Section 5 of [2]. Consider

(4) A(-4519) = 128-3377.

To factor SiB (not yet knowing that it is prime), one selects a binary quadratic form of

discriminant —ASig such as

F = (3, 2, 91627017558),

and computes

(5) G = F3377 = (318607, -142542, 878702)

by composition. (See [2, Appendix 1] for an efficient algorithm.) Then, repeatedly

squaring, one obtains

G2 = (167277, -111536, 1661861)

G4 = (502722, -256318, 579457)

Gs = (71473, 52746, 3855674)

(6) G16 = (169257, 71408, 1631577)

(7) G32 = (524289, 4, 524293)

(8) a  = G64 = (2, 2, 137440526337)

(9) / = G128 = (1,0, 274881052673).

Since G is thus of order 128, the 2-Sylow subgroup is cyclic and the only ambiguous

forms are the identity (9) and the trivial (8). Therefore, S1B is prime and has no proper

factors.

The general strategy of determining U(19), if one does not know the class number

(4), is now clear. One starts at the ambiguous form (8) and determines one of its square-

roots \/ft- Gauss's famous theorem [3] states that a form has a square-root if and only

if it is in the principal genus. And (8) is in the principal genus since (2 | S19) = +1.

Subsequent to Gauss, other proofs were given for his theorem but Gauss's proof is

the most explicitly constructive of them all. Using his construction we thereby obtain

(7) (or the other square-root G~32). If (7) is in the principal genus (it is), we repeat the

operation and continue until we get to (5) (or some other 128th root of /). Since G is

not in the principal genus, the process terminates and one has U(19) = 1.

The solution of the general problem is similar. Assume that Q(V — A) has 2r

genera, and therefore 2r ambiguous forms

(10) /,   ßa,  A3,   '••    ,  «2"
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Its 2-Sylow subgroup now has r cyclic factors:

(11) C(2"') X C(2"a) X ••• X C(2"r)

and we wish to compute nu n2, ■ ■ ■ . Since the factorization of A is completely known,

we can write each ft: tt2, Û3, • • • explicitly. For each Q¡ in the principal genus, if any,

we may evaluate one of its square-roots

Ki = V«,-

as above. Then the remaining 2' — 1 square-roots of a, are given simply by the

compositions

(12) a2Ki,a3Ki, ■•• ,a2,Ki

since the class group is Abelian. We thereby can build up the entire 2-Sylow subgroup

(11) explicitly.

We give below a brief account of Gauss's construction together with some small

improvements we made. This algorithm has been coded in a computer program called

GATESR, with which we can determine these 2-Sylow subgroups even if the dis-

criminant d is so large that the computation of h(d) is not feasible. GATESR, of

course, stands for "Gauss Ternary Square-Root".

About If years after my Stony Brook talk [2], but before the present paper was

submitted for publication, I learned from Professor H. Hasse that Helmut Bauer had

written a somewhat related program. Bauer's paper will appear as [4]. He kindly sent

me a preliminary account entitled "Die 2-Klassenzahlen spezieller quadratischer

Zahlkörper". From this note, the differences between his paper and mine can be

characterized as follows:

A. There is a difference of language, and I do not mean German and English.

Since I follow Gauss here, I use the language of quadratic forms. Bauer follows Hasse,

and uses the language of divisors. But this is merely language, not a difference of

substance; the groups involved are isomorphic.

B. Because of the motivations indicated above, we are primarily interested in

imaginary fields here, but the algorithm developed works for discriminants d > 0

also, and we give several such examples in Section 6. Bauer gives equal attention to

d > 0 and d < 0, but, on the other hand, he examines only d divisible by exactly two

primes, as he states in his title [4]. These fields have r — 1, in the notation above, and

cyclic subgroups. As I indicated above, the generalization to all d that can be factored

completely is not difficult. I will give several noncyclic examples below.

C. The most important difference is that Bauer does not use Gauss's ternary form

reduction. He must solve a certain ternary equation, which is not specified in his note

above. But since he confines himself, in this note, to \d\ < 8000, he uses a simple,

trial-and-error method of obtaining a solution: "so dass es genügt, ein einfaches

Suchverfahren zu verwenden". In contrast, Gauss's reduction is highly efficient,

arithmetically speaking, and can also be used for very much larger discriminants. In

fact, it is only for large ¿that a program of this type is really needed; if ¿is small, one

can easily compute h(d), and therefore 2" || h(d), directly.

2. Gauss's Solution with Some Changes. In [3, Section 286, p. 338] Gauss

solves the following:
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"Probleme. Etant donnée une forme binaire F = (A, B, C) de déterminant D

appartenant au genre principal, trouver une forme binaire / qui donne F par sa duplica-

tion."

In this section we sketch Gauss's solution. We begin with some adaptation we

must make in order to use his notation and solution, and we conclude with some

changes that we make in his solution in order to shorten it somewhat.

By (7) above, we mean a quadratic form

524289a:2 + Axy + 524293/.

Gauss writes this as

(524289, 2, 524293)

with the middle term halved. These coefficients are the A, B, C in

(13) F =  Ax2 + 2Bxy + C/.

Gauss calls D = B2 — AC the determinant of F.

In what follows, we use this Gauss notation exclusively. That implies that we only

allow even discriminants:

d = A(B2 - AC) = AD.

If the discriminant of Q(\/ — A) is already even, i.e., if d = —4 A, there is no problem,

but if A = — 1 (mod 4), and d = — A, there also is no real problem. In the latter case,

it is known that the primitive binary quadratic forms of discriminant — 4 A constitute

a group under composition and its 2-Sylow subgroup is isomorphic to that of

Q(V — A). Therefore, with no loss of generality, we can make the discriminant even

and use Gauss's solution directly.

Now assume that

(14) F = (ai, b3, a2) = aiX2 + 2b3xy + a2y2

is in the principal genus. We want an

(15) f = (a, b,c)

such that f ~ F under composition. Gauss adds three terms and enlarges F into a

ternary form aiX2 + a2y2 + a3z2 + 2biyz + 2b2xz + 2b3xy which he writes as

(16) t
ßi    a2    a3

¿>i    b2    b3.

The terms added are such that the determinant of t, which is defined as

(17) D(t) = b\ai + b\a2 + b\a3 — aia2a3 — 2bib2b3,

equals +1. The form t has an adjoint:

Ai    A2    A3
(18) T =

[Bi     B2      B3

given by the equations
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(19)
Ai = bi — a2a3, A2 = b2 — aia3, A3 = b3 — axa2,

Bi = aibi — b2b3,        B2  = a2b2 — b¡b3,        B3   = a3b3 — bib2.

The adjoint of T may be seen to be t, since D(t) = 1. Therefore, we also have

(20)
ai = Bi — A2A3, a2 = B2 — AiA3, a3 = B3 — AXA2,

bi =  AiBi - B2B3, b2 =  AoBo BiB3, b, =   A3B3 BiB2.

Now, note that A3 is the determinant of F. Since F is in the principal genus, ax and

a2 are quadratic residues of each prime divisor of A3. There are therefore solutions of

(21)        B\ = ai + A2A3,        B\ = a2 +  AXA3,        BXB2 =  -b3 + B3A3

consistent with (20). From Fand A3 we therefore determine Bu A2, B2, Au and B3. We

now have T and may compute the a3, b¡, and b2 needed to complete t from (20).

By a series of linear transformations of determinants ± 1 that we discuss in the

next section, Gauss transforms t into

(22) t' =
1

-1

0    0

0    0.

which has the same determinant D(t') = +1. Conversely, there is a 3 X 3 matrix m

that transforms t' into t. Gauss now computes the a, b, c needed for (15) from the

elements of m.

We have already made one change in Gauss in our description above, in that

Gauss builds his ternary t with — b3 instead of the original coefficient b3. But it seems

preferable to use the original b3, as we do above, and adjust the sign of b at the end of

the process. Next, in place of the t' of (22), we will use the ternary form

(23)
0       1

0    -1

This shortens the reduction process and also has the effect, as we shall see, that a, b,

and c appear in their correct locations in the array below. Our third, and main change

is that we do not compute an inverse such as m above. If M transforms / into u and

(24) M =

(X     Y    Z

we ignore its first two rows and have, directly, that if e is the sign of X,

(25) / = (fX, - Y, 2tZ)    or    / = (2eX, - Y, tZ)

according as X is odd or even. We not only avoid computing an inverse matrix, and

also have simpler formulas for a, b, and c, but, in the series of transformations needed

to transform t into u, it is only necessary to compute the third row in the corresponding

series of matrices that culminate in M.

Mostly, it is Gauss—but with improvements. By way of proof, one simply notes

that the Gauss computation [3, Section 286], mentioned above, that leads to (a, b, c)
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from the elements of m is really the computation of a single row in the inverse of m.

This double inversion, therefore, merely cancels itself out.

3. Gauss's Reduction and an Explicit Endgame. In reducing the ternary form t

to u we first make a series of binary form reductions. We alternate between two

different types which we call Phase 0 and Phase 1. The binary form reduction is the

usual one (going back to Lagrange) of transforming into a series of "neighboring"

forms. Given a form

(26)

of determinant v2

(27)

(u,v, w)

uw (which is positive, negative, or zero), and an initial matrix

1    0m,

0    1

m

«2 «3   J

of determinant 1, we replace the form and the matrix by another form

(28) (w, -V + Iw, u + I([-v + Iw] - v))

and another matrix

m3    Im3 — m2

,n3       In3 — n2 ,

(29)

having the same determinants. The multiplier /. is chosen so as to minimize | — v + Iw\

In a finite number of steps we obtain a reduced form

(30)

that is, we have

(31)

(U,  V, W),

2\V\<  \U\ w\ U = 0, I V\ <  I WI

By this reduction we obtain \U\ = |w| .

In Phase 0, the form (26) is taken as

(32) (A3, Bi, A2)

using part of the current adjoint. This form has determinant ax. The final transforming

matrix

(33)

changes T into a new T and therefore t into a new t. But üi remains unchanged.

In Phase 1, (26) is taken as

(34) (ai, b3, a2)

from the current t. This results in a new t and a new Bi and A2. But A3 remains un-

changed.

In the next section, we give an explicit algorithm, so we will omit here the formulas

used in computing the new t and the new (A3, Bu A2). We may add, however, that we

do not keep, or use, the entire adjoint T, merely the three elements indicated.
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After a finite number of such Phase 0 and Phase 1 transformations, we will obtain

(35) ai =  A3 = 0    or    |o,| - 141 - 1.

At this point, Gauss is not very explicit, see [3, Section 274], since he is discussing the

general ternary t with an arbitrary value of its determinant D(t). There are then many

possibilities (i.e., the class number may be large, and many different reduced ternaries

may exist). But we are only interested in D(t) — +1 here and can be perfectly explicit.

In fact, we must be; otherwise, there can be no program.

If (35) is satisfied, there are five cases, and in each one we may transform the

current t into u by an explicit matrix it.

I. If ai = 0 and a3 is even,

(36a) p =

II. If ai = 0 and a3 is odd,

1    -1

(36b) p =    0

.0

1

0

lo

-bi

b2

0

«3/2

0

-At

bi    b, + (a3 + l)/2

-b2

-b2

III. \fai = -a2 = 1,

(36c) M =

IV. If fll = -a2 = 1,

(36d)

-b2

1 + bi

1

1 + b2

-bi

1

1 - b2

1 + bi

1

1 + b2

1 - bi

1

1

1

0J

1

1

0

V. If a, = a% = 1,

(36e) M =

-b2

1 - bi

1

1    -    ¿»2

1 - bi

1

(An explicit endgame; at this point, t should have resigned.)

4. The Algorithm. The algorithm utilizes a changing sextuple / that begins as

(16) and ends as (23), a similarly changing triple (32) from T, and another triple (x, y,

z) called lastrow that begins as (0,0,1) and ends as the (X, Y, Z) of (24). The algorithm

uses two subroutines COMTAT and GAURED. The second performs the Gaussian

reduction described in Eqs. (26)—(31) above with a changing triple (u, v, w) and a
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changing sextuple

mi     m2    m3

«i      n2    n3 J

The first has as input a form (au b3, a2). If this form is in the principal genus, this sub-

routine solves the Eqs. (21)—details given below—and thereby computes the complete

ternaries / and T of (16) and (18). If the form is not in the principal genus, the sub-

routine so indicates and thereby terminates this chain in GATESR.

In the formulas below, the left sides of the successive equations are replaced

(sequentially) by the expressions on the right in terms of the latest values of all

variables. Some variables are occasionally used as temporary storage if their most

recent value is no longer pertinent; e.g., the first four formulas in "New Ternary"

below.

GATESR

Start with a form

(fli, b3, a2)

1. Print form.

Call COMTAT.
(x, y, z) = (0, 0, 1).

2. Phase = 0.
(u, v, w) = (A3, Bi, A2).

3. Call GAURED.
If Phase = 1, go to 4.
New Lastrow

f"i = ym2 — zn2.

z    = zn3 — ym3.

y   = nti. (x remains unchanged.)

New Ternary

mx = a2m3 — Ms-

A3 = a3n3 — bim3.

Bi = a2m2 — bxn2.

A2 = a3n2 — bxm2.

a3   = mim3 + A3n3.

bx  = —Bim3 — A2n3.

a2  = B¡m2 + A2n2.

mi = b3m2 — b2n2.

b2  = b2n3 — b3m3.

b3  = nti. (ai remains unchanged.)

If ax = 0, go to 8.

New Adjoint

A3 = u.

Phase = 1.

(u, v, w) = (au b3, a2).

Go to 3.
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4. New Lastrow

mi = xm2 + yn2.

y   = xm3 + yn3.

x   =mi.(z remains unchanged.)

New Ternary

(flu b3, a2) = (u, v, w).

mi = b2m2 + bin2.

bi  = b2m3 + bin3.

b2  = mi. (a3 remains unchanged.)

If A3 = 0, go to 8.

New Adjoint

Bi = axbx — b2bt.

A2 = b\ — axa3. (A3 remains unchanged.)

nx = axA3.

If H ^ 1, go to 2.
If nx = —1, go to 6.

New Lastrow

mx = -b2x + (1 + bx)y + z.

«i   = mi + x.

5. z = x + y.

Go to 9.

6. If Ö! = 1, go to 7.

/Hi = (1 + 62)x - bxy + z.

«i  = nti + J-

Go to 5.

7. /Mi = — b2x + (1 — bx)y + z.

«i  = mx + *.

z    = «j - y.

Go to 9.

8. 7 = \a3\ (mod 2).

/Ml = x.

"i   = — (t + ¿>0* + b2y.
z   = [761 + \(y + a3)]* - yb2y - b2z.

9. x = mi.

y = -«i.
If x < 0, * = —x, z = —z.

If x = 0 (mod 2), go to 10.
z = 2z.

Goto 11.

10. x = 2x.

11. (u, v, w) = (x, y, z).

Call GAURED.
(a„ Ô3, a2) = (u, v, w).

Go to 1.
END.

The routine COMTAT computes t and Tfrom a given form (ax, b3, a2) in the princi-
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pal genus. If \A3\ is a prime, as it is for the prime S„ mentioned above, we choose Bx as

the smallest positive solution of

(37) B\ = ax (mod \A3\).

A convenient method of solving

(38) x2 = a (mod p)

is the method described in [5]. If mx is the smallest positive solution of m\ =

a2 (mod \A3\ ), we now take B2 as +m, or — mu as required to satisfy the third equation

in (21):

(39) BiB2 + 63 = 0(mod \A3\).

If |y43| is not prime, we obtain Bi by evaluating (38) for each p{ dividing A3. We then

combine these x¡ by the Chinese Remainder Theorem.

I wish to acknowledge here the assistance of Richard Serafín in programming the

foregoing algorithm in a Fortran program which utilizes multiprecision arithmetic

routines that we obtained from D. H. Lehmer and Peter Weinberger.

5. Old and New 2-Sylow Subgroups. Let us begin by verifying the result

C/(19) = 7 of the introduction. For all S„, prime or not, an ambiguous form that

generalizes (8) is (in Gauss's notation):

(40) a = (2, 1,(1 + Sn)/2).

For one y/&, generalizing (7), we need not use GATESR since we can give it explicitly:

(41) Va = (2n+ 1,2, 2n + 5).

It is easily verified that (40) is the square of (41) by composition. Further, for n > 1,

and Sn prime, this %/ñ is seen at once to be in the principal genus since 2" + 1 = 1

(mod 4), and so by the reciprocity law, is a quadratic residue of S„. Therefore, U(n) ^ 3

for«> 1.
We begin our verification of £7(19) = 7 with the form given by (41) with n = 19:

(42) (ai, b3, a2) = (524289, 2, 524293).

COMTAT determines

Bi = 70152264827,        B2 = 58934984227,

and therefore

1524289    524293    582491
t =

U33805    112409

The corresponding indefinite form (A3, Bu A2), of determinant 524289, is now trans-

formed by GAURED into

(-23, -2, 22795)    with
-3319     -108437

1-13005    -424894

After three Phase 0 and two Phase 1 reductions, t is transformed into
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0        13
t  =

-2    1    0.

and lastrow into

(x,y,z) = (169257, 641324, -3394305).

Then, endgame (36b) gives

(X, Y, Z) = (169257, 810581, 2752981)

and (25) gives the new form

(43) (ax, b3, a2) = (169257, 35704, 1631577)

in agreement with (6). Like magic, isn't it?

Since (43) is in the principal genus, GATESR continues and obtains as its next

form that called Gs above. But the next cycle yields not the G4 shown above but the

other square-root:

(251361, 123202, 1153957).

We now proceed up a different branch of the binary tree and finally conclude with

(44) G19 = (344102, 51511, 806547)

which is the the nonprincipal genus and is of order 128. So U(19) = 7, as before.

The next prime S„ after S38 are the very large SiS, 566, and S81. These primes are so

large that their h(—ASn) have never been computed. But we apply GATESR as above

and obtain, respectively,

(45) c48 = (78911301602671, -3236633876873,1004148160070862),

(46) G56 = (14879838293235211, -362297848483874, 348957294826682799),

(47) g61 = (2393122440531793838, 713539499646158397, 2434497500846761027)

in the corresponding nonprincipal genus and of orders 512, 256, and 512.* So

(48) U(A8) = 9, 1/(56) = 8, 17(61) = 9.

These U(n) remain mysteriously large; we make only small progress in understanding

this phenomenon in the final Section 8 below.

6. Positive Discriminants : Small, Large or Odd. We now examine two real

fields that exemplify several significant points. Consider first Q(\/226). One has an

obvious ambiguous form with d = 4 • 226 :

(49) a = (2, 0, -113).

It is in the principal genus and we compute

* A reader attempting to recompute (44)-(47) should be forewarned that the GAURED sub-

routine used in their computation did not insist that the reduction condition (31) be satisfied strictly.

A weaker condition, where the factor 2 was deleted, was used. This suffices to attain (35), and therefore

an endgame, but may result in following a different path up the binary tree than that which would be

followed if (31) were used. Of course, (48) remains invariant.
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t = T =
57

62

17

113

226

31.

2     -113    -

31-1        0

One Phase 0 and one Phase 1 reduction produce

1      1      7
t =

.2    -2    0.

and endgame (36e) produces a new form

(50) (14,4,-15)

in the principal genus.

But (49) is equivalent to other forms; an obvious one arises from 226 = l2 + 152,

namely,

(51) a = (15, 1, -15).

Had we chosen (51) in place of (49), we would have the entirely different

t =
15    -15

5        6

A Phase 0 and Phase 1 now give

T =
40

69

21

-95

226

-29.

t =
-1     961

-32      0

and endgame (36c) gives

(52) (18, -8, -9).

GATESR would now continue with either (50) or (52). But if we were computing

by hand, we would see, at once, that since (52) is equivalent to

(53) (-18,-8,9),

and since 9 = 32, the form (53) is obviously a square, and its square-root can be

written immediately:

(54) (-54, -8, 3) ~ (3, -1,75);

cf. [6, Section 8]. Further, since (3 | 113) = — 1, (54) is obviously not a square and so

we are done: the 2-Sylow subgroup is C(8).

Now return to (51) and (49) and note that 15x2 + 2xy — I5y2 = 49, a square, for

X = 2, y = 1. Similarly, 2x2 - 113/ = 49 for x = 9, y = 1 and 225 for x = 13,
y = 1. There are therefore forms equivalent to ft, namely,

(15,31,49)    and    (2,26,225)

for which we may, once again, write their square-roots immediately.

The conclusion is that for small d, and especially for small d > 0, such an ad hoc or

trial-and-error procedure can be faster than Gauss's systematic solution. We

emphasize d > 0 because the class numbers are then usually much smaller and a form

such as (49) will represent not only one small square, but even many.
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Now, on the contrary, suppose that d > 0 is very large and the fundamental unit of

Q(\/d) is also very large. A new problem arises. Let

a = (a, 0, —c)

be one of its ambiguous forms with 4ac = d. It may now require a very extensive

computation to determine if ft is, or is not, equivalent to /, the principal form. If

a ~ / (unknown to us), and if we apply GATESR to this ft, we could obtain another

form ~J as its square-root. Thus, it is possible that GATESR would produce a

sequence of forms, say,

/, /, /, /, a2, (a2f/2, (a2)1/4, ■ • • , g

with G in a nonprincipal genus. In that case, we would only know an upper bound

for the order of G, and not necessarily its correct order. I believe there is no way, in

general, of avoiding this "very extensive computation" in this circumstance: all of the

many reduced forms equivalent to I are in the 2-Sylow subgroup, and we must contend

with them. This problem cannot occur for d < 0.

If dis odd, we use 4c? instead, as we explained above. For example, consider Gauss's

nonconstructible regular polygon:

F5 = 232 + 1 = 641-6700417,

and Q(VF6). The ambiguous form with d = AF5 is

(55) « = (641, 0, -6700417).

The fundamental unit is very small here and & is clearly not ~I. We therefore compute

(56) Bx = 641-1593109,        B2 = -6700417-(-121),

and so

t =
641 -6700417    -378759

1593109        -121 0

Note that we can write t almost immediately, in a case such as (55), as soon as (56) has

been computed. The remaining coefficient a3 = —378759 can be obtained at once

from D(t) = 1.
Two Phase 0 and one Phase 1 reductions produce

0     1     41

2    -1     0J

and endgame (36b) gives a new form

(143, -59, -30034712)

in the principal genus. Continuation now determines that C(32) is the wanted sub-

group.

We may note that we could have also found

641-4092 - 6700417-42 = 1432
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by trial-and-error, but many more trials would now be needed. Further we are "lucky"

here since 1432 is far smaller than could be expected probabilistically. For the cor-

responding imaginary field, and positive definite form

641.x2 + 6700417/,

it is obvious that this represents no small square.

7. Noncyclic Subgroups.   Consider the imaginary field

Q((-2-1445599-101361401),/2)

of [2, p. 438] which has 22 genera. Since 1445599 = 7 (mod 8) and 101361401 = 1
(mod 8) are nonresidues of each other, it is clear that

a2 = (1445599, 0, 202722802)    and    <33 = (2891198, 0, 101361401)

are in nonprincipal genera and

a4 = (2, 0, 146527939924199)

is in the principal genus. We compute

V«4 = (12529693, 4574990, 25059386),

one of its four square-roots. It is not in the principal genus since 12529693 =- 5

(mod 8). We compute fí2\/CÍ4 by composition to obtain a second

Vöi = (13297693, -5513003,24323699),

also in a nonprincipal genus. There is no need to compute the remaining two since

they are the inverses of V&i and V&i and are obtained simply by changing the sign

of the middle coefficient. We have therefore found that C(2) X C(4) is the 2-Sylow

subgroup.

Suppose, more generally, that there are 22 genera and 0L2 and &3 are in non-

principal genera. Then the group is C(2) X C(2") and we wish to determine n. If a4 is

also nonprincipal then n = 1. If not, we compute a GATESR sequence:

(57) a4, (aj/2, (aùu\ ■■■ ,Gi

until Gi is nonprincipal. If a2Gx is also nonprincipal, we are done, and n equals the

number of forms in (57). Otherwise, we erase Gx from (57) and start up a new branch

of the binary tree:

(58) Q2Gi, (a2Gi)1/2, (a2Gi)Ui, ■■■ ,G2.

Finally, n equals the total number of forms in (57), (58), etc., until Gk and &2Gk are

both nonprincipal.

To illustrate this construction we list a series of imaginary fields that will also

enable us to make quite a different point. Consider [6, Table 3] the fields Q((—D(y))l/2)

with

D(y) = 27/ - 74/ + 84/ -48^+12

for y = — 1 (mod 6). We note that D(y) = 1 (mod 4) and list the 2-Sylow subgroup for

several values of y:
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y D(y) 2-Sylow y D(y) 2-Sylow

11        43-7127 C(2) X C(32) -7 17-5569       C(2) X C(4)
29 5-3472213        C(2) X C(64)        -19 977-4153        C(2) X C(16)

35        23-1628059       C(2) X C(8) -25       1249-9413       CT2) X C(2)

For example, for y = 35 we have

a4 = (46, 23, 814041)    and    V«4 = (6103, -1874, 6711)

with the latter nonprincipal. But, if

a2 = (23, 0, 1628059),

then

(WCU = (4533, -304, 8281)

is in the principal genus and we may continue one more step. So n = 3, as shown.

Again, for y = 29,

Ö2 = (2, 1, 8680533)

is nonprincipal, while

a4 = (10, 5, 1736109)

is principal and has

(G4)I/32= (2307, -682, 7727)    and    G2(a4)'/32 = (4335, -1625, 4614)

both in nonprincipal genera.

The quite "different point" referred to is that these Q((—D(y))l/2) for square-free

D(y) have 3-Sylow subgroups that always contain C(3) X C(3) as a subgroup. For

y = 11, C(3) X C(3) is the 3-Sylow subgroup; for y = -19, C(3) X C(27) is this
subgroup; while forje = — 61 (not listed above), C(3) X C(3) X C(3) is this subgroup.

The question arises of constructing an algorithm that does for the 3-Sylow subgroup

what GATESR does for the 2-Sylow. I offer nothing here except the opinion that a

solution would uncover an extensive and interesting theory.

Now consider g((-3-(l + 4-186))1/2) which also (incidentally) contains C(3) X

C(3) X C(9), and also has 22 genera. Since

3(1 + 4-186) = 3-1777-76561 =- 3 (mod 8)

we take —12(1 + 4- 18e) as the discriminant. This does not change the 2-Sylow sub-

group, as we stated (although it does change the 3-Sylow subgroup). This time

a2 = (3, 0, 136048897),        «3 = (1777, 0, 229683),        «4 = (5331, 0, 76561),

are all in the principal genus while \/®2, V&3, and V&i all are not. Thus, we are done,

and C(4) X C(4) is the subgroup, since all other square-roots Q3 y/Q,2, GL4 y/Q«, etc.

must also be in nonprincipal genera.

For arbitrarily many genera 2', and an arbitrarily complex array of factors, such as

C(4) X C(128) X C(128) X C(2048), it is clear that the topology of the 2-Sylow
subgroup may be very intricate indeed. In principle, we may use GATESR to trace

out the entire subgroup. However, the question remains of determining the n, of (11)



852 DANIEL SHANKS

in a minimal number of operations similar to our construction for C(2) X C(2n)

above. We leave this problem for any interested and ambitious reader, and only add

that it is helpful to examine the cycle graph [7, Chapter 2] of the subgroup. For

example, C(4) X C(16) is isomorphic to the 64 residue classes prime to 85 under

multiplication (mod 85), and we see at once the topology of this group in the illustra-

tion of its cycle graph shown in [7, p. 91]. Similarly, the cycle graph (mod 64) on [7,

p. 90] would serve for the example Q((—D(—19))1/2) above, with its residue class 33-

the image of the ambiguous form a4 in the principal genus.

Let us take as our final examples Q(V~ N) for

61 5!»

(59) Ni = Up,      n2 = Up.
p-3 p-2

They each have a very large number of genera, 216, and will enable us to make another

important point. For Ni one could find that all the ambiguous forms

(%2>  Ö3>   " " "    >   ($65536

are in nonprincipal genera. For N2, one and only one is not. This is

(60) a = (2-5-7-13-19-29-31-43-59, 0, 3-11•17-23-37-41-47-53).

The reader may verify (with some pleasure, we hope) that the left coefficient is a

quadratic residue of each prime on the right, and conversely. Then this ft has 65534

square-roots in nonprincipal genera and two, namely,

(61) V« = (19978173394, ±4617823536, 97310430039)

in the principal genus. Finally, all square-roots of V® are in nonprincipal genera..

Therefore

(62) C(2) X C(2) X • • •  X C(2)        (16 factors)

is the subgroup for Ni while

(63) C(2) X C(2) X • • • X C(2) X C(8)        (16 factors)

is the subgroup for N3.

Obviously, these would be very lengthy computations if they were done by the

recipe in Section 1. They were not. As previously indicated, if /Vis sufficiently small, we

can rapidly compute h(—AN) by the method in [2]. Now the N of (59) are hardly small

but the fact that we know a priori that 216 | h(—AN) in these cases gives us sufficient

leverage in the method of [2] that we can nonetheless quickly compute

(64) h(-Ni) = 216-811263,        h(-AN2) = 216-393620.

Since QW—NX) therefore has an odd number of classes per genus, it is obvious that

(62) is its subgroup. The factor 393620 in (64) would leave it open if the subgroup for

Q(V-N2) were (63) or

(65) C(2) X C(2) X • • • X C(2) X C(4) X C(4)       (16 factors).

Actually, though, because of the phenomenon of the dominant factorization [2, Section

7] the methods of [2] lead to (61) and (60) immediately.

So, we repeat: for a "small" number of classes per genus, the method of [2] could.
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easily be faster than the method here. The method here is faster, and even essential, for

such computations as lead to (48).

8. GATESR as an Aid to Theory. Given an F in the principal genus, once a

consistent pair of Bx, B2 satisfying (21) are chosen, the algorithm here gives an un-

equivocal / such that f ~ F. All properties of/, in particular, whether it itself is in the

principal genus, are therefore implicit in the algorithm. Unfortunately, the algorithm

is so intricate that it is usually not possible to determine these properties a priori, and

one must, instead, examine / after the fact. But such an examination may lead to some

new insight.

For example, if F are the forms in (41) for the values n = 48 and n = 56, one

obtains forms / whose middle coefficients are —8192 and —32768, respectively. While

an electronic machine will simply ignore this, a thinking mathematician can hardly

doubt that these — 2 '3 for n = 48, and — 215 for n = 56, are significant. Upon analysis,

he therefore discovers the following

Theorem.

16 | h(-ASim)

for all m, whether Sim is prime or not.

Proof The form

i   _    /0*m *}3m+l     i^   «2»+l     i      .      _r.m+1     /}4t»     i     «3m + l     i      r.2m + l     i      . •.

when squared by algebraic composition, gives

f = (2im + 1,2, 24m + 5).

Therefore, / is of order 8. If Sim is prime, / is in the principal genus since its end coeffi-

cients are s 1 (mod 4). Thus, there is a y/j of order 16. Whereas, if Sim is composite,

there is at least one other factor in the 2-Sylow subgroup. This therefore contains

C(2) X C(8) as a subgroup.
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