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Abstract. In a previous study, we discussed the expansion of two-parameter functions in

a double series of Chebyshev polynomials, and, in particular, we presented coefficients for

the evaluation of the modified Bessel function (2z I iifne'K,(z) to 20 decimals for all z ^ 5

and all v, 0 g v g 1. In the present study, we give similar coefficients for the evaluation of

ge~'z-»l,(z) to at least 20 decimals where I,(z) is the modified Bessel function of the first

kind and g and p are certain constants which depend on the range of the parameter and

variable for four different situations. The ranges are (1) 0 < z g 8, 0 g v g 4;

(2) 0 < z g 8, 4 g v g 8; (3) z â 8, -1 g v g 0; (4) z è 8, 0 g v g 1.

1. Introduction. In a previous study [1], we discussed the expansion of two-

parameter functions in a double series of Chebyshev polynomials, and, in particular,

we presented coefficients for the evaluation of the modified Bessel function (2z/x)1/2

X e'K,(z) to 20 decimals for all z ^ 5 and all v, 0 g v g 1. Since K,(z) = K.,(z) and

K,(z) satisfies a three-term recurrence formula which is stable in the forward direction,

we have in essence coefficients for the evaluation of K,(z) for all z _ 5 and all v = 0.

In the present study, we give similar coefficients for the evaluation of ge~lz~*I,(z)

to at least 20 decimals where I,(z) is the modified Bessel function of the first kind and g

and p. are certain constants which depend on the range of the parameter and variable

for four different situations as follows.

z range v range p g

(1) 0 < z =: 8 0gK¿4 v 1

(2) 0 < z g 8 4 = k ^ 8 v 1

(3) z = 8 -1 = v ^ 0 -| (2x)"1/2

(4) z ^ 8 0 ^ v =: 1 -\ (2x)"1/2

The recursion formula for I,(z) is always stable in the backward direction but only

conditionally stable in the forward direction. Thus, even with the coefficients given

here, we still lack coefficients to compute e~'I,(z) for all real z and for v sufficiently

large. A study to correct this deficiency is under way and will be reported at a later

date.

2. Chebyshev Expansions for It(z). In [2, Vol. 2, pp. 338-340, 359-367], we gave

coefficients for the expansion of z~'I,(z) in series of Chebyshev polynomials for
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0 < z á 8, n = 0, ±i, ±|, ±|, ±f, ±1, 1, and, similarly, for the expansion of

(2xz)~1/2e"7„(z) for z =■ 8, v = 0, J, i §, f, 1. The coefficients for the range 0 < z ^ 8

are based on the 0fi representation for /„(z) which does not directly reflect the fact

that for fixed v, Iv(z) grows exponentially with z as z increases in the sector |arg z\ <

x/2. Now, It(z) has a representation in terms of a iFi which does reflect this ex-

ponential behavior and, in this present paper, development of the desired coefficients

is based on this representation for 0 < z g 8. The representation used in the cited

reference for z ^ 8 is also used in our present study to derive the desired coefficients

already noted.

From [2, Vol. 1, p. 213], we have

(1) z-°e-*Iv(z) = [2'I> + I)]"1 iFi(a;c; -2z),

a = c/2 = i + v.

In general, from [2, Vol. 2, p. 35],

(2) iFi(a; c;z)=  £ Gk(a, c, X)7?(z/X),
k-0

I1\ ni \\ e*(°)*X*     i?(a + k>      5 + *   LA
(3) Gk(a'C'X) = Y^.2F2\c + k,    l + 2k\X)'

2Gk(a, c, X)      (k + 1) /    (* + 3 - a)      A(k + c)\
- H-^-(Gk+i(a, c, X)

-fGk+2(a, c,

e» (* + a) I (* + 2) X

fA-i -L 2        J1 ,t    I      x   ,    2(fe + IX* + 3 - c)\
(4) +        .       j- (k + a) +-     -{Gk+2(a,c, X)

(A: + 1)(* + 3 - a)
i-a   _L  ->\n   _i_—T~ G*+3(ß. c> A).(/c + 2)(k + a)

In the above,

(5) É» = 1    if k = 0,       6* = 2    if Ä; > 0.

Using [2, Vol. 1, p. 244], we find that for a, c and X fixed,

T(c)(\/Afk°-°
Gk(a, c, X) = -TV-..,-

(6) r(a)*!

1 + X2 - 8X(c - g) - 8(c - a)(c + a - 1) 2

16* ]•

Thus, the expansion formula (2) converges and since the ^ in (2) is one when

z = 0, it follows that

CO

(7) £(-)lG*(«,c,X)= 1.
k-0

Further, after the manner of the discussion given in [2, Vol. 2, pp. 159-166], we can

show that use of the recursion formula (4) in the backward direction is convergent.

Thus, for a fixed X, we can generate the coefficients Gk(a, c, X) for given values of a

and c. Suppose for example that c is fixed and we permit a to vary. Then, we can find

coefficients Dr,k(c, X) such that
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(8) Gk(a, c, X) =  £ DT,k(c, \)T?(a/a),        0 = a = co,

and so achieve a double series of Chebyshev polynomials for the evaluation of

!Fi(a; c; z) for c fixed, valid for 0 ^ z ^ X and 0 ^ a ^ u. The manner of getting

Dr,k(c, X) has been given in [1] and we omit further details.

Next, we seek a descending-type expansion in series of Chebyshev polynomials

for the evaluation of I,(z) in the neighborhood of z = + oo. To this end, we can write

[2, Vol. 1, p. 226, Eq. (9)], [2, Vol. 2, p. 22, Eq. (10)],

(9)

(10)

I,(z) = (2xzrvVF,(z),

F,(z)
i,(,      1 \
A22    h+v,    i-J-

(11) F,(z) =  £ Mk(v, X)7?(X/z), X fixed, X/z = 1, z > 0,

Mk(v, X) = x~I/2e*(—)tG2;3l2X    n , '     '     , ) ,
\ 2, 2   T v>       2   —  v'

\4 I      \\ -'/2    I      \kl^lM   ^        *■ 2   ~  v,       2   +  ''I
M>,X) = x      et(-)G3,^-    ^ _k j,

(12)

and from [2, Vol. 2, pp. 153, 154 and Remark 1, p. 155], we have the recursion formula

2Mk(v, X) _ Í   _ (2k + 3)(* + 3/2 + v)(k + 3/2 - v)
- A* -T- 1^1 2(Ä + 2)(/c + i + ^ + i _ v)«t

+
8X

(13)
(k + * + ¡0(* +

¿-:(Mk<.i(v,
2   -   ")J

X)

+ 1
2(k + 1)(2* + 3 + 4X)\

T^j/AW-,(* + * + v)(k +

(k + IX* + 5/2 + "X* + 5/2 - v)
(k + 2)(* + | + k)(* + è - v)

X)

Mk+3(v, X), * ^ 0.

Actually, (13) is not valid if v is half an odd integer unless k + \ — v > 0. If, for

example, v ■> f + n, (13) is only valid for k > n. However, we can get a further re-

lation if first we multiply through by * + \ — v and then set k + \ — v = 0 for

k = n. In particular, if v = |, we have

2M;

(14)

p^[8X-y+i)]M^,x)-[
8X + 3(* + 2)

*

h 3)

Afl + 2(5, X)

Mk+3(h X),        * > 0,

(15) (8X - 3)A/,(i, X) = (8X + 6)A/2(i, X) + 3M3(J, X).

It can be shown that

(16) M0(\, X) = 2x"I/2 Erf(c),        a;2 = 2X,        Erf(.
» - /"Jo

A.
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(17) A/id, X) = 8X[1 - M0(h X)] - 4(2X/x)vV2X.

With z —> + œ, (H) yields the useful normalization equation

(18) 22(-)"Mk(v, X) = 1.
i-0

From [2, Vol. 2, pp. 23, 24],

(19) Mk(v, X) ~ k'\u exp{-3(2X*VI),/3i + v exp{ -3(2X*VI)I/3}]

where u and p are constants. The two other linearly independent solutions of (14) can

be taken in a form such that they are

(20) 0(*_1 exp{3(2X*2)1/3})    and   0(k'1 exp{ -3(2X*V'T)1/3}).

It follows that the desired solution of (14) is not minimal in the sense of Gautschi [3]

or not antidominant in the sense of Wimp [4], and consequently the backward re-

cursion process for the evaluation of Mk(v, X) will fail unless modified. The necessary

modification is discussed in [2, Vol. 2, pp. 163-164] and studied further in Wimp

[4, Theorem 3]. We now describe this procedure.

Let TV be a large positive integer. Put

(21) gi%k =0,       * = 2, 3, • • • ,        g&?, = 1

and compute gnN), n = N, N — 1, • • • , 0 from (13) with Mk(v, X) replaced by gkN).

(Here we assume that v is not half an odd integer. The case when v — | is treated

later.) Put

(1V+1 \-l

£(-r>r   •
n-0 /

Let iV"i, N2 be two different N values. We can find a number p depending on Ni and N2

such that

(23) p  £  MÏN>\v, X) + (1 - p) £  MiN'\v, X) = (2xX)I/2e-x/,(X).
k-0 k-0

Then

,0A. Hm biMiNl\v, X) + (1 - p)MiN'\v, X)] =  Mk(v, X),

* = 0, 1, •••  .

If v is half an odd integer, another technique must be used as the process just

described breaks down due to the presence of the product (k + f + i-X^ + I — v). To

illustrate, consider the case p = |. In this event,

(25) Fi/2(z) = 1 -e'2'.

We have need for the three normalization relations

CO

(26) 1 - e~A =  £ Mk(\, X),
¡fc-0

(27) 1 =  £ (-)kMk(\, X),
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(28) 1 - <T4X = £ (-)"M2k(h X),
*-o

which come from (9)-(ll) when v = \ and z = 2X, + °° and 4X, respectively.

Again, let N be a large positive integer, set

(29) g{NN+\ = 0,       * = 2, 3, • ■ • ,       ¿ft = 1,

and compute

gnN\ M    =     N,   N   -    1,    •••    ,   1,

from (13) with M4(|, v) replaced by gkN\ Let

(30) Aft     = p     gk    ,        * =  1, 2, • • •  , M0     — go    •

Then from (26) and (27), respectively, we have

CO

i-,... (iv)    i      <Jv>   X~>     (iv) , -2X
(31) go    +P      2-j Sk     — I — e    ,

*-i

CO

(32) g0     + P      1-, ( — ) Sk     = 1.
t=i

Thus

-2X

,.,,.. (iv) _ ~e_
(33) P      = Tv^-^T

■¿   2-llt-O  S2k + 1

and ij0w> can be recovered from either (31) or (32). Let Nu N2 be two different N

numbers. We can find a number p depending on Ni and jV2 such that

(34) p ̂  (-)kMi^(h X) + (1 - p) "jZ (-fMÍ™ (i X)= 1 - e~*\
k-0 k-0

Then

(35) lim [pMlN>\h, v) + (1 - p)M?'\$, v)] =  Mk(h, X),
iV1-.»;W,-.oo;JV1NJVa

* = 0, 1, ••• .

The coefficients can be checked using (16) and (17). Alternatively, we can make use of

(17) to find a number p* such that

8X[M*Mr,)(l, X) + (1 - ji^Jíí'-'G, X)]

+ M*AfíAro(|, X) + (1 - M*)MÍNa)(Í, X) = 8X - 4(2X/x)1/V2X.

Then Mt(§, X) follows as in (35) with p replaced by p* and (28) can be used as a

check.
Another scheme to compute Mk(v, X) for v half an odd integer is to use the pro-

cedure described by (21)-(24) to get Mk(v, X) for v in the neighborhood of half an odd

integer and then employ the Lagrangian interpolation formula.

3. Numerical Results. From (1), (2) and (8), with a slight change of notation,

we have
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I,(z) = zV £ Hk(v)Tí*(z/8),        O < z g 8,

(37) *"°

Hk(v) =  £ Dt,kT%("-=-A ,
r-0 \       I       /

S | » í i + I.

In Tables 1 and 2 of the microfiche section we present values of Dr,k which were

evaluated by the technique described in [1] for s = 0, t = A and s = t = A, respectively.

To develop the numerics, values of T(v + 1) were required. These were obtained by

use of the schema of my previous paper [5]. Numerous checks were made on the

coefficients. In addition to those of the kind discussed in [1], checks were also made

using the recurrence formula for I,(z), namely

(38) I,+i(z) + - I,(z) - I,-i(z) = 0.
z

Further checks were accomplished by comparing values deduced from (37) with

those computed from power series, especially when v is half an odd integer, for in this

instance

(39)

e-In+mV) = (2wzY1/2[An(z) + (-)n+1e-2' An(-z)],

An(z)   =   ¡Fo( —M,   M   +    UTt),

and An(z) is a polynomial in z~' of degree n. Wronskian relations were also used to

get checks. The computations were designed so that the coefficients for 0 ^ v ^ 4 are

accurate to about 25D while those for 4 ^ v 5¡ 8 are accurate to about 27D. To evaluate

e~'I,(z), we must incorporate the value of z". As 0 < z ^ 8, we see that the coefficients

are sufficiently accurate to produce e~lI,(z) to about 20 decimals at least.

From (9)—(11) with a slight change of notation we write

(40) I,(z) = (2xz)-17V £ Mk(v)TÎ(8/z),       z = 8,
fc-0

co

(41) Mk(v) =  £ Er,kT*(v), 0 á p Ú 1,
r-0

CO

(42) Mk(v) =  £ Fr.kT*(-v), -l^SO.
r-0

In Tables 3 and 4 of the microfiche section we give values of Er, k and Fr, k, respectively.

In the development of these coefficients, the appropriate values of (2xX)1/2e~x/,(X),

as required by (23), were obtained from (37) for v > 0 and (38) was used to get the

values needed for v < 0. Again, the coefficients were subjected to numerous checks.

For example, for z = 8, we compared values of I,(z), as obtained from (40)-(42), with

those obtained from (37) and (38) when appropriate. We also used the defining

relation for K,(z) in terms of I,(z) and /_ ,(z) to compare values obtained using the

coefficients in [1] and the coefficients in the present tables. Further checks were gotten

by use of a Wronskian relation. The coefficients are sufficiently accurate to enable the

computation of e~'(2irz)1/2I,(z) to about 22 decimals.
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