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Some Polynomials for Complex Quadrature

By David K. Kahaner*

Abstract. Equal-weight Chebyshev quadrature is not generally used because the nodes

become complex for large n. However, interest in these schemes remains because of recent

work on minimal norm quadrature as well as schemes for doing real integrals of analytic

functions by complex methods. This note presents some properties of these Chebyshev

quadratures that may be of interest to other researchers in this area. Proofs are sketched

to save space.

Equal-weight Chebyshev quadrature is not generally used because the nodes

{*<"'} "-i become complex for n = 10. However, interest in these schemes remains

because of recent work on minimal norm quadrature [1], [2], and [3] as well as schemes

for doing real integrals of analytic functions by complex methods [5]. This note

presents some properties of these Chebyshev quadratures that may be of interest to

other researchers in this area. Proofs are sketched to save space.

The nodes for Chebyshev quadrature are defined as the unique solution set of

the system

"Ê [*!"']' =  f x'dx,      y- 1, ... ,«.
n i-i J-i

Let Pn(x) = n?-i (x - *:n)).
Theorem \.Ifn = 2m, Pn(x) has at least two real zeros in (—£„, £„) where £„ is

the zero of largest magnitude of the nth Legendre polynomial.

The proof is immediate by using a Gauss quadrature formula on Pn(x). A little

known result of Kuzmin [6] is

Theorem 2. P„(x) has 0(log n) real zeros.

Using this, we can prove

Corollary. Again, with n =  2m, Theorem 1 is true with the smaller interval

For n = 2m = 100, computation gives exactly two real zeros of P2m(x). Hence,

using the known symmetry of P2m, we get

Corollary. The positive real zero ofP2m(x) lies in the interval^, £m+i), 2m ^ 100.

The zeros of P„(z) are given for n g 47 in the microfiche section of this issue.

Theorem 3. Let f(z) be analytic in a closed domain including the curve T (defined

below) in its interior. Let In be given by
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/. = - Z Kx<n>) «  í   /to dx = /.
n i-i J-i

Then /„ -» /.

Prao/. The curve r is the logarithmic potential curve

r = Iz : f   log \z - t\ dt = f   log |1 - <| dt\-

Kuzmin [6] has shown that the zeros of P„(z) have an asymptotic distribution

about r, if the zero at the origin for odd n is excluded. This eye-shaped curve has a

maximum height of .52 at x = 0. Numerically, the zeros approach T quite slowly

from the inside.

Figure 1

Logarithmic Potential Curve
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The curve is given by r = {z: /Lj log \z — t\dt = /Lx log |1 — t\dt\. The interior tic-marks are the

zeros of Pi<¡(z).

By Runge's Theorem [4], we may approximate f(x) uniformly in r by a complex

polynomial. Hence the quadrature sum (2/n) 22l-i 1(x<in)) maY be replaced by an

expression of the form
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,_o     \n i_t /

with an error e, independent of n. Since the quadrature is exact for polynomials, the

theorem follows.

Corollary. If\u\>l + e,

(a)

(b)

lim log(Pn(«))1/n = ~ [   log(« - t)dt + k,
n->» -¿  J-l

lim(P„(«))1/n = C expQ J   log(« - f) dt) ,

where the principal branch of both the log and nth root functions are used.

Proof. We can show [8] that if |«| > 1 + e,

r1 dx    2d,  „,. . j~ 1
/    -= - — log P„(«) + E\-    ,
J-i u — x      n du \_u — xj

where E\\/(u — x)] is the error in the estimate of the integral of f(x) = l/(u — x).

If we integrate from u0 to U with respect to u (u0, U and the path of integration remain

outside the circle \z\ = 1 + e and on the principal branch of the logarithm),

[   log(U - x) dx = - log[P„(t/)] + f   E\ —^— \du + K - - log[P„(«„)].
J-i n JUo     \_u — xj n

For finite u0 the last term is bounded as n —> œ. Thus

log(P„(i/))1/n = i f log(U ~^dx + H   Elu7^n\ du + °(1)-

Since \x\ ^ 1 and j(x) can be approximated uniformly by polynomials in x for

\u\ > 1 + e, by the previous theorem the second integral goes to zero with increasing n.

Taking limits, we get (a). Exponentiating first, we get (b). This convergence theorem

and its corollary are interesting not only for their own sake, but also because they

mirror theorems about real quadrature formulas. Thus Krylov [9] has shown that

Theorem 3 is true for a general class of interpolatory quadrature formulas with real

nodes, and Shohat [7] proves the corollary in the case where the xin) are real and

asymptotically uniformly distributed on [—1, 1].

Computation. Although we know that the quadrature scheme converges for func-

tions analytic in a compact set including r, we are only able to obtain error estimates

for functions analytic in a somewhat larger set G:

L(G) = length of dG,

D = max {dist(4n\ [-1, U) ,••• , dist(^n), [-1, 1])J œ .52,

d = min {distil"', dG), ■■■ , dist(4"', dG)\,

5 = min    {dist(x, G)}.
-lSiSl

Thus, in particular if /(z) is analytic in |z| = f, we get geometrical convergence.
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Moreover, because of the nature of r, we get similar convergence for functions

analytic in the rectangle R centered at the origin of height 1.05 and width 3.0. Finally,

for finite n, we get geometrical decrease in the error initially, even for functions

analytic in much shorter rectangles, because of the slow convergence of the zk to r.

For example, when n = 30 the largest imaginary part of any zk is .36.
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