A Useful Approximation to e^{-t}

By Richard Bellman, B. G. Kashef and R. Vasudevan*

Abstract. Using differential approximation, we obtain a remarkably accurate representation of e^{-t^2} as a sum of three exponentials.

- 1. Introduction. The function e^{-t^2} occurs in many important contexts in mathematics. In some of these, it is quite useful to replace it by an approximation of some type, such as, for example, a Padé approximation. In this note, we wish to exhibit a surprisingly good approximation as a sum of three exponentials. This is obtained using differential approximation, [1]. The approximation obtained here holds for $0 \le t \le 1$.
- 2. Differential Approximation. Given a function k(t) for $0 \le t \le T$, we determine the coefficients a_1, a_2, \dots, a_N which minimize the quadratic expression

(2.1)
$$J(a_i) = \int_0^T \left[k^{(N)} + \sum_{i=1}^N a_i k^{(N-i)} \right]^2 dt,$$

where $k^{(i)}$ denotes the *i*th derivative. We then expect that the solution of the linear differential equation

$$(2.2) u^{(N)} + a_1 u^{(N-1)} + \cdots + a_N u = 0,$$

with suitable boundary conditions, will yield an approximation to k(t). This is a question in stability theory.

The procedure is most useful when N can be taken small. In this case, N=3 and 5 yield excellent results for $k(t)=e^{-t^2}$, as is demonstrated below.

3. Numerical Results. It turns out that good results are obtained by choosing as initial conditions in (2.2): $u^{(i)}(0) = k^{(i)}(0)$, $i = 0, 1, \dots, N-1$. The coefficients a_i are listed in the first column of Table 1.

For the case N=3, the calculated values of u, u', u'', \cdots agree to eight figures with the exact values k, k', k'', \cdots , respectively. The accuracy is even better for N=5.

If we express the solution of the linear differential equation as a sum of exponentials, we obtain the expression

(3.1)
$$u(t) = \sum_{i=1}^{N} b_i \exp(-\lambda_i t),$$

Received May 3, 1971.

AMS 1969 subject classifications. Primary 6520, 6525.

Key words and phrases. Approximation.

^{*} Supported by the National Science Foundation under Grant No. GP 29049 and the Atomic Energy Commission, Division of Research, under Contract No. AT(04-3),113, Project 19.

where b_i and λ_i can have complex values. These values are calculated and listed in Table 1. The numerical values of function u(t) of the above equation at different time intervals $(0 \le t \le 1)$ are listed in Table 2. In the same table, the absolute errors are also shown.

TA	BLE	1

N	a_i	b_i	λ_i
	2.7403	.7853	.9180
3	7.9511	.1074 + i .1963	.9111 + i 2.334
	5.7636	.1074 - i .1963	.9111 - i 2.334
	4.7471	.6509	.9509
	27.9415	.1795 + i .2204	$.9503 + i \cdot 1.866$
5	62.5129	.1795 - i .2204	$.9503 - i \cdot 1.866$
	109.1101	0049 + i.0163	.9478 + i 3.930
	68.1498	0049 - i.0163	.9478 - i 3.930

TABLE 2

N = 3		N = 5		
Time	Calculated Value	Absolute Error	Calculated Value	Absolute Error
.1	.990020	$.30 \times 10^{-4}$.990049	$.4 \times 10^{-8}$
.3	.913676	$.255 \times 10^{-3}$.913931	$.2 \times 10^{-6}$
.5	.778679	$.122 \times 10^{-3}$. 7 78800	$.2 \times 10^{-7}$
.8	.527665	$.372 \times 10^{-8}$.527292	$.2 \times 10^{-6}$
1.0	.367951	$.72 \times 10^{-4}$.367879	$.2 \times 10^{-6}$

4. Discussion. If desired, we can improve the accuracy of the approximation by taking the values of $u^{(i)}(0)$, the initial conditions, as parameters, $u^{(i)}(0) = c_i$ and then, by determining these values by the minimization of the quadratic expression,

(4.1)
$$J(c_i) = \int_0^T \left[k(t) - \sum_{i=1}^N c_i u_i \right]^2 dt,$$

where u_1, \dots, u_N are N linearly independent solutions of (2.2).

The integrals which arise are evaluated by using the differential equation (2.2) plus the auxiliary equations

(4.2)
$$\frac{dv_{ij}}{dt} = u_i u_i, \quad v_{ij}(0) = 0, \qquad \frac{dw_i}{dt} = u_i k, \quad w_i(0) = 0.$$

Then,

(4.3)
$$v_{ij}(T) = \int_0^T u_i u_i dt, \qquad w_i(T) = \int_0^T u_i k dt.$$

The same technique can often be used in the determination of the coefficients a.

when the function k(t) satisfies a differential equation, linear or nonlinear. In this case, $k' = -t^2k$, k(0) = 1.

Department of Electrical Engineering University of Southern California Los Angeles, California 90007

1. R. Bellman, Methods of Nonlinear Analysis. Vol. 1, Math. in Sci. and Engineering, vol. 61-I, Academic Press, New York, 1970. MR 40 #7508.