
MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 117, JANUARY, 1972

The Finite Element Method for Infinite Domains. I

By Ivo Babuska*

Abstract. Numerical methods (finite element methods) for the approximate solution of

elliptic partial differential equations on unbounded domains are considered, and error

bounds, with respect to the number of unknowns which have to be determined, are proven.

1. Introduction. The finite element method, its theory and practice, has recently

become of interest in numerical analysis, see e.g. [IH'3], and the papers of Aubin,

Birkhoff, Bramble, Ciarlett, Schatz, Schultz, Varga, etc.

The theoretical analyses of the finite element method have been concerned with

bounded domains. Strang and Fix, [1], [2], have, however, analyzed the finite element

method with respect to an infinite domain (the space R,), but their procedure re-

quires the solution of an infinite system of linear algebraic equations.

This paper will deal with the problem of finding, by the finite element method,

an approximate solution of a boundary value problem for elliptic partial differential

equations on an infinite domain by solving only a finite system of linear algebraic

equations.

The approach will be shown on a model problem. Our task will be to find the

solution of the equation (weak solution)

(1.1) -Au + u = 1

on R», where u £ W^IQ and / £ Wk2(R„), k ^ 0.

We will show that the rate of convergence on compact sets of is practically

the same as the rate of convergence for boundary value problems on bounded do-

mains. The rate of convergence will turn out to be determined by the number of

unknowns in the system of linear algebraic equations.

Our approach may be easily generalized to the case of an elliptic differential

equation of order 2m, provided that the coefficient of the zero order term of the

equation is bounded above and below by positive constants.

We will analyze only the case when £2 = R„. By combining the approach described

above with the results concerning bounded domains (see e.g. [6]-[l 1]), it is easy to

get the corresponding results for unbounded domains with bounded boundary.

Throughout this paper, let x denote the n-dimensional vector in Rn, i.e. x m

(xi, ■■■ ,xm) where x, £ Ru i = 1, 2, • • • , n.
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Let INI2 = x] and |*| = XX, |x«|. If a £ *i, let jc + a, = (x„ • • • , x,_u
Xi + a, xi+1, •■• , xn). Let k denote a multi-integer, i.e. k = (ku ••• , kn), where

kt is an integer, i = 1, 2, • • • , n. Let ||fc||2 = gf.., fc< and W = ZXi W- Define the
inequality fc 2; 0 to mean fc< 2: 0, / = 1, 2, • • • , n. Let C denote a generic constant

which may have different values wherever it appears in the text.

2. The Spaces. In this section, we shall introduce the spaces which will be

used in the paper.

Definition 2.1. Let the space W2\ „(.£»), with / Si 0 an integer, u real, be the Banach

space of all functions u such that

(2.1) IM|V....(*.> = f eM    £    (D*«)2 </*<»,

where Dk = dkl+k'+'"+'"/d41 • • • dxl". For u = 0, we get the usual Sobolev space.

For u j& 0, we get a weighted Sobolev space. Note that L3(R„) = fFj_ 0(R»)-

Let us now introduce the so called B splines. For x £ Ru let

(2 2) PiOO =1.   1*1 < h

= 0,   |*| ^ }-.

Let * be an integer Si 2. Starting with * = 2, we recursively define <o,(x) as

(2.3) <p,(x) = Vl(x) * p,_,(x),     f 2: 2,

where * denotes convolution.

Now, for jc £ it*, x = (xu ■ • ■ , xn), define

(2.4) *,,(*) = !]>,(*,),     f 1,

and

n

(2.5) = |»,.,C«!i ~ i)   II  «>«(*/).     * k 2, f - 1, —♦ , n.
i-i;iV<

Let us mention some of the well-known properties of these functions which

will be important later on:

(1) Vt(x) ̂  0, pUx) ^ 0 for all x £ R„r

(2) </>t(x) and (f>,,i(x) have compact support.

(3) Denoting by F((o)(<r), the Fourier transform of <p(x), we have, with

a = (oi, • • • , (rn),

n     / •     i    \ I

(2.6) Fbty& = n ^ .
,-1  \    2°i I

(2.7) F(^,)(<r) = (i"Li£i)'">-   ft f^V.
\   i<Ti I f-ritrU \   2<r; /

(2.8) = -*>,..(*) +        + 1,).

In the following, let U and V denote the functions denned on the set of all multi-

integers k.
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Definition 2.2. Let the space Qlß h, I = 0,1, h > 0, u real, be the space of all functions

U such that

(2.9)- \\U\H,... = h* Yj I U(k)\2 e2"*1*1 < »
k

(for / = 0) and

(2.10)

II BIß*.» =        E S 1.) - £W|V"M" + £ I üfc)f,«*MM] < »

(for / = 1).
Let U G Ql h for / = 0 and / = 1. Define the mapping SJ, j St 1, by

(2.11) S)U= £ VWtofo/h - k),
k

and the mapping Sj-'', y St 2, by

(2.12) » £ IWtoMh ~ *>•

Theorem 2.1. For sufficiently small, there exist constants d and C2, 0 < Ci <

Ca < oo, swcA <Aaf

(2.13) C,||i7||0„..» g ||5}£/|k1>(1i(».) ^ C2| 11/| |0(,,.»,      / = 0, l.y > /,

(2.14) CJIC/llo,..» ̂ HSj-'t/IU..,.^, g C,||C/||0,..».

Proof. 1. Let us first consider (2.13) for / = 0 and u = 0. It is sufficient to prove

this inequality for h = 1.
In [14] we have proved that

(2.15) F(S) U)(<t) = Z,(o-) £ U(k) exp(i(fc. «r».

where

(2.16) Zm =

and

(2.17) <*,*> =

By a well-known property of the Fourier transform, we have

(2.18) \W)U)\\2l.i*.. = drf IlSjthÜ.«.,.

Hence, we may write

(2.19)      U«*Slt0Mi.t*o =Ef   Z £7(*) exp(/<*. *»
i   Ja. I t

|Z,(o- - /)|a do-,

where Q0 = {x; < w}. Since there exists a C such that |Z,(o-)|2 > C > 0 on J20,

we have, from (2.19),
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(2.20) \\FtS)U)\\l.i*.. ^ C f   £ Ufr) exp(i<*. <r»
'o. I i

From (2.20), (2.18) and (2.9), we obtain

(2.21) ||Ä}tf|k<*.> ^ C||£/||0...,

From (2.19), we also have

da h C(2rT £|CW|2.

(2.22) IlWft^Nl.«., ^ f   E £/(*) exp(/<*. ff» &Ez},,
Jo, I i i

with

(2.23) Zf.i = max |Z,(o- — /)|.

From (2.6) it is clear that £, Z2,, < <». Therefore,

(2.24) l|5}C/|U,«,, ^ C||£/H....<i

Inequalities (2.21) and (2.24) together prove (2.13) for the case / = 0 and n = 0.

Inequality (2.14) can be proved in the same manner.

2. Let us now prove (2.13) for / = 0 and u ^ 0. Let U £ ß°J and

U£k) = £/(£>"'*'. Using (2.13) for u = 0 and £/„, we obtain, because of (2.9),

(2.25) [    £ I U(k)\ e*1* W* - k)

On the other hand, we have

(2.26) IlSjtfllV..,.«.) = f £ü(*)p*(*-*)

dx ||f/||02....

C2"UI t£*.

Now since ip,(x) 2; 0 for all x £ it* and since <£>,• has compact support, it follows from

(2.26) that

(2.27)

\\S)U\\Wt...lR.>      (    £ I t/(*)|- e2"*' dx

Scf   £| £/(*), r"*W* - *)
■'S,  I Jb

From (2.25) and (2.27) we obtain

\\S)U]\w.,,Hß.> ^ C\\U\i0,..>.

Now from (2.13) for u = 0, we have with C > 0, that

dx.

C||t/H20,... ̂  C [    £ I £/(*)| e"*W* ■

g f   £ tW*V,C* - k)
Jr. k

k)

dx

dx

[    £ [E/(*y""W* -*)+ U(k)(eßW - e""W* - k)]\ dx
JRn   I    * I

2[ns; t/iiv..+ n2 j |e (twi >w&otW* - *>| «&],
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where |öt(x)| ^ C, independently of k. Hence, we have

(2.28) C\\U\\Q,.., = 2[\\S)U\\2w,.f.^ + m2C||l/||20,..,].

Therefore,

(2-29) Hüll«,.,. = C)\f,V\\wt,,.fßm>,

for sufficiently small |u|.

This proves (2.13) for the case 1 = 0 and u ^ 0, p sufficiently small in absolute

value. Inequality (2.14) can be proved for the case / = 0 and u 5* 0, /* sufficiently

small in absolute value, in the same manner.

3. Let us now prove the theorem for / = 1. We have

«;ö"-*> - i:»)]]

(2.30)        = \ [e (u(k + i.) - imyyptM - *}]

= e m*J* - k),
where

(2.31) V{k) = (U(k + 1.) - U<k))/h

From (2.14) with / = 0, we obtain

(2 32) C.HFllo,... g 6\x,

^ Ci||F| !<,,..»,*.,.

Inequality (2.14) follows immediately from (2.30), (2.311 and (2.32). This completes
the proof of Theorem 2.1.

3. Some Auxiliary Theorems about a Bilinear Form. Let 3C„ = W\,„(/?») X

rVl__£Rn). Define on 3C„ the bilinear form A by

<,.., ■      1 (si^+v
We shall now prove some important properties of this bilinear form.

Theorem 3.1. For sufficiently small \p\,

(3.2) \A(u,o)\ g C^\u\\wi.tH^\\v\\1r^UR.u

(3.3) sup \A(u,o)\ = C\\v\\w„ .,.<*.,,

where C > 0 onrf

(3.4) sup £ CIMU..,.,*.,,      C> 0.

Proof. 1. Inequality (3.2) is easily proved by the following inequalities:
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LJr, j    Ur. j

^ C\\«\W..,h**) IMk..-,"(*.>-

2. Let v G ^.-„(-K») and let w = pe-2"'*'. By direct computation, we have

,, dfoe"2*'*1)      _2„|X| dv _2(lM
(3.6)- = e  *- lue ' vsgaxt.

dx< dXi

Hence,

|2
Wir,.»»».)

(3.7) g 2^   [g e-4"UI(|^)2 + 4«^V4"UI + pV4"*']/»1"] dx

= C|MfV..-..«w

which implies that m G ^.„W.)- Furthermore,

M(^"2"lx',f)|

<3-8>      -1/,, sfe-2—Iteh"1 * + /.pV2"" dx
r.

2

^ I|o|U..-#mb.) - 2/i« ||c|k..-,>u.) ^ C|Hlr,.-,'(«.)•

Inequality (3.8), together with (3.7), proves (3.3).
3. Replacing u by — u in the above discussion we have inequality (3.4).

Let us prove a further theorem.

Theorem 3.2. For sufficiently small \u\, we have

(3.9) \A(sffi, S?bl ̂  cws^uw^^^ws'vWw.^^,

(3.10) sup M(5*c/, ^ CHSjFlk...,.«.,

and

(3.11) sup \A(ShU, SlV)\ = C||5*c/|U,.,.(Än).

Proof. I. Inequality (3.9) follows immediately from (3.2).
2. To prove (3.10), take V G Ö-£ and let U(k) = F(A:)e"2"uu, then

||£7|ß,..» ̂ 2äT^ ZEinn 1.) - VQc)\* .-*"»'»
(3.12) L"   * -1

+ (2^)2C £ I F(*)|2e-2*im + £ I HC*)!1 e-*mi
k k J

which implies that
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\\Ü\\Qt..> = c\\v\\Q_,>,>.

Hence, by Theorem 2.1, we have

Furthermore,

\A(S)U, ShV)\

+ /,.[? wr-vß - *)][?     - *)] 4
However,

(3.15) = g rtfc+lJ- ^„(f-fc)

with g* uniformly bounded, independently of k. Now we obtain

(3.16) \A(S",U, S)V)\ ft C[\\F||20_,..» - 2#*C|| V\\%_^]   with C> 0.

In fact,

I [2 ',,(j - *)][Z r4 - *)] *

-/,.[«""""[? ^'(f-')I
+ [? TOJf/j - *>-.- •—)][? ^ " *)]] *•

Using Theorem 2.1, we obtain

L [? ^ - *>~2""* -      ^ - *)]dx

- L [? 1 vm     " *) lß(m'x'm 2m][? 1 f(jk)l *'(a " a:)]e"2'"1'

^ 2,iC || F|l«-,-».

where Q(u, x, k) is bounded independently of k because of the compact support of

<Pi(x). By a similar argument, using (3.15), we obtain

(3.17)
/,. [£ ? w-""v& -     ? «4 - *)] *
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with \R\ g 2uC IlKHo^,.». Hence, for sufficiently small |u|, we have

(3.18) \A(S)U, S)V)\ = C\\V\\l_ri.> = C\I Sh V\ |V.. .,,<»»,,

From (3.18), using (3.13), we get inequality (3.10). Inequality (3.11) is proved by
changing u to — u in the above discussion.

This completes the proof of Theorem 3.2.

4. The Finite Element Method and its Convergence. In [6] we proved the follow-

ing two theorems.

Theorem 4.1. Let H. and H2 be two Hilbert spaces with scalar product (•, •)#, and

(•> -)h„ respectively.

Let B(u, c),u£ffi,i!6 H2, be a bilinear form on H, X H2 such that

(4.1) S c,||«|U, |MU..

(4.2) sup    \B(u,v)\ = C2\\v\\Ht,
ll«lljr,*l

and ■

(4.3) sup    \B(u,v)\ = C3\\u\\Bl,
I Itl Ifl.Sl

with d < co, C2 > 0, C3 > 0.

Let H'2 be the space of bounded linear functionals on H2. Let j £ H'2. Then there

exists exactly one element u0 £ Hx with

(4.4) IIhoIU, = \\1\\mJC„

such that

(4.5) B(u0,u) = m

for all v £ H2.
Theorem 4.2. Let the assumptions of the Theorem 4.1 be fulfilled. Further, let M,

and M2 be closed subspaces of Hx and H2, respectively. For every v £ M2, let

(4.6) sup    \B(u,o)\ = d2(Mlt M2) \\u\\H,
llullj/.Sl

with d2(Mlt M2) > 0, and for every u £ M{let

(4.7) sup    \B(u,v)\ = d3(Mlt M2) \\u\\H>
I l»l lif.Sl

with d3(Mlt M2) > 0.

Let j £ H2be given and let u0 denote that element of Hx for which

(4.8) B(u0,v) = j(v)

holds for all v £ H2 (such an element exists and is unique by Theorem 4.1).

Assume there exists w £ Mi such that

(4.9) IK - HU> =

Furthermore, let ua £ Mi such that

(4.10) B(ü0,v) = f(p)
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for all d £]Af2. Then

(4.11) «o - «o||ffl g [ 1 +
d3(M,, A/2)J

We will utilize the Theorems 4.1 and 4.2 to analyze the solution of the equation

(1.1) -Am + u = /.

Let us first prove Lemma 4.1.

Lemma 4.1. Let / £ W°._„(/?„), then

(4.12) If —«dx ^ Il/lk..-,•(*.)Il«lk..,•<«.)•

Proof. For any / £ C" with compact support,

1/ f «H-lfUk. ä*.       I |jsn
Iw,._„•(«.) I lMlI w,.,'(«.)•

The functions / £ C" with compact support are dense in the space Wlt.„(RJ,

hence, (4.12) holds for all / £ rV2) ._.ll(IQ. The following theorem will complete the

preparation for the main results of the paper.

Theorem 4.3. Let j £ JF2,„(•&,), / ^ 0, \u\ sufficiently small. Then there exists

exactly one solution u of Eq. (1.1) in W\ „ such that

(4.13) ll«lk..,' + -(*.) ̂  C||/|U,.,,(B.,.

Proof. Since / £ fF2,M(Ä„), we have

T,(ü) = f  fudx,      \\r\Uw,.ßHMy ̂ W,, ,•(«.)•

Using Theorems 4.1 and 3.1, we have

ll«lk,.,.(s.) ^ Cll/Ik..,.«.) = C\\f\\w,_f,,Bm).

Differentiating both sides of Eq. (1.1), using Theorems 4.1, 3.1 and Lemma 4.1, we

obtain

du

dXi
= cn/ik..,.,.., = c||/|U..,,(B.,.

Hence,

l«lk..^ C||/|k...'(s.)

By differentiating Eq. (1.1) / + 1 times and using induction, we obtain (4.13) for

Eq. (1.1).
Let us now describe the finite element method. Let / £ W^ J^R^) and let ^(h) be a

decreasing function of h defined for h > 0. Let

»*.*,,(#) =    Z   Cikypi'x/h - k).(4.14)

Let us determine the coefficients C(k) such that
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.*.».») = /
Jr.

(4.15) A(uh,t.„o) = I fvdx

for all v of the form (4.14).
We can now prove the main theorem of the paper.

Theorem 4.4. Let j £ Wl2t0(Rn) and let ^(A) = h~' for any given e > 0. Let u0

be the solution of (1.1) in W\t0(IQ.
Then on every compact domain Q,,

(4.16) II«. - 8».*.,|k..(0> = CA,+I||/lk...><*.>

for j = I + 2, where

(4.17) iHi™ = /fl[|:(i:)2 + «2]^

Pz-oq/". From Theorem 4.3, we have u £ If^/y. Therefore, h„ £ W^ilQ for

u ^ 0 also. Let us use a cut-off function x(*) £ C"° with x(x) = 1 for |jc| 1 and

xW = Ofor \x\ 2t 2. Define x».,(x) = xtWW^x) and «b.»(jc) = x».*(x)«o(x). Then

»o.*(*) - 0,   for |*| = U(h),

«<..»(*) - «o(*) = 0,   for |*| ^ |^(A),

and

ll„    ll <r /"lull

In [14], we have shown that for j St / + 2 there exist t/(A, A) such that

(4.18) Uo.h - £ oXA. A)*,(* - ä) ^ C,||h0,l|ka,„' + .(än)A'

We have also shown that the support of

V>  „.   ,v   fx       , \
•fW = JL rf(A>       ~ k)

lies in a LA neighborhood of the support of u0,h, i.e. the support of w(x) lies in the set

Q*.t = ix'> 1*1 = #(A) + LA}. Therefore, for A small enough,

G».* = {*; \x\= iA(A)}D 0*%.

For m < 0,     sufficiently small, we obviously have

(4 19)      "M° ~~ W''w'~ 'I"0"* ~~ ̂ ll^"-'''*-' + H"0-* ~ "Ik,.„'<*.>

^ C[A'- H/|k....(i.) +C"*(A>/3 H/lk...,„.,],

since u0.h - u = 0 for |x| g §#$). However, = e"""73 g CA!+1. Therefore,

(4-20) ||«o - 4lr^H*l ^ CA! + 1 ||/|k....<s.,,

and hence, from Theorems 4.2 and 3.2, we have

(4.21) Ik - tf.#;<|[r.>Aj ^ CA! + 1 ||/|k...m*„),

the desired result.
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Let us count the number T of unknowns in (4.18) which we have to determine by

solving a system of linear equations. It is clear that T is of the order h~"ll+'\

Now let the "effective" H (see [7]) be defined by

(4.22) H = (7y~I/n.

Thus H = h1*'. Hence, instead of (4.16), we may write

(4.23) l|Wo ~ H»-*-'ll"V<0> = C(e'        + ll/llir...'(«.)

= C(e, Q)T-(l + 1>/"+' ||/lk...«(..>.

Now, by the same manner as in [7], we can show that the rate of convergence

indicated in (4.23) is the highest possible rate of convergence on every compact

domain, provided that we neglect the e.
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