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The Orders of Approximation of the First Derivative

of Cubic Splines at the Knots

By D. Kershaw

Abstract. The order of approximation of the first derivative of four types of interpolating

cubic splines are found. The splines are defined by a variety of endpoint conditions and

include the natural cubic spline and the periodic cubic spline. It is found that for two types

there is an increase in the order of approximation when equal intervals are used, and that

for a special distribution of knots the same order can be realized for the natural spline.

1. Introduction. The cubic spline is now a well established tool for smooth

interpolation in a table of a function defined at a discrete set of points. A useful

account of the basic properties of this spline and an algorithm for constructing it

can be found in [1], and an analysis of the convergence of the spline to the function

it interpolates is given in [4].

The present paper is devoted to an investigation of the problem of finding how

well the first derivative, taken at the knots, of the spline approximates the first deriva-

tive of the interpolated function there. It was shown in [4] that there is 0(h3) ap-

proximation uniformly over the range of the knots, as the maximum interval tends

to zero, but as it is often the case that the derivative is taken at the knots, it is felt

that the results may be of some value.

2. Notation. The set of real numbers, t0, h, • • • , tN, will be called knots and will

satisfy

- oo <to < f, < ... < tN_, < t„ < co ,      n ^ 2.

The interval tt rg t ti+1 will have length /z, = ti+1 — r„ / = 0(l)N — 1, and the

maximum interval length will be h, that is,

h =   max hi.
OSiSAT-l

y will denote a cubic spline with the above knots. As stated in Section 1, more than

one kind of spline will be considered but they will have the common property that

each is a member of C2(— oo, oo) and that in each interval they are polynomials of

degree at most three.

x will be a member of C5[t0, tN] and will be the function with which the spline

agrees at the knots. For brevity, define

= idi) x(0,   for ' = tu ' = 0{1)N' r = 0(1)5-
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Then

y.  = Xi> i=  0(1 )N.

The norms which will be used are the uniform norms for functions, vectors and

matrices, namely,

||x|| =   max   |x(/)|,      ||z|| = max ||^|| = max £ \au\.

The domain of the suffixes in the vector and matrix norms will be clear from the

context.

It is convenient to define here

M4=||x(4>||, M5=\W5)\\.

The first and last columns of the (n + 1) X (« + 1) unit matrix will be written re-

spectively as e0, e„; the jth element of the vector x will be denoted by [x],.

3. The Cubic Splines. Four types of cubic splines will be described in this

section. Cubic splines are usually characterized by the value of their second deriva-

tive at each of the knots (see for example [1]), but for the purpose of this note, an

alternative method will be used.

Let

X,. = j»,'1',      i = 0(l)iV,

then, if y(t) takes the same value as x(j) at each of the knots, it follows from Hermite's

two point interpolation formula that, for tt g ; g rj+1,

(1)
*> -ihr1! -    *w^i

+4(^r-(^)">'-4(iti)'-(^)'>....
/ = 0(l)A - l.

A simple calculation shows that

(2) hh™ = 6(*i + 1 - x,) - A<(4X, + 2Xi+a),

hb?+\ - -6(x, + i - x.) + km* + 4X<+1).
:■' -si* späl tevwiBi       at tsdt ho»(«j«» —) j to t^q|

Now, as v G C2(— =°,       the two expressions for j>-2) from the equations which

arise from the intervals (?,_!, /,), (*,, ti+1) must be equal. The identification gives

the equations:

/i\   hinl "t" 2X,   .   2X, -f- X, + 1 Xi + X       x,   .   Xj       Xj-i .       ...... ,
(3) A< i     +-j;-= 3| —^— + —jt-—\ .     i = KDJV - l.

It is convenient to define

a, = A<-i/(A<-i + ht),

then the equations become
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(1 - eOX,.., + 2X, + «,X,+I = 3[«,. (Xi + 1~ Xi) + (1 - a,) (*' ~ -

i = i(l)/v - l,

which can be written as

(1 - a.XX,., - + 2(X, - *,u)) + a,(X, + 1 - x\\\)

= -d \    (1) 1    CD (1)    I    -jl (Xi + 1 Xi)    I    f. \ (Xi Xi-t) I— a,)*,-! — 2x<   — OiXi+i + 3j^a(-h (1 — a>)-jT~"-J •

t = 1(1)/V - 1.

Finally, the use of Peano's method for finding remainders gives the result that

(1 - o,XX,-, - *,'!?,) + 2(X, - xj") + a,(Xi + 1 - x\\\)

where <,_, g r. -£ /j+„ z = 1(1)^ — I.

The sets of Eqs. (3), (4) are satisfied by X0, Xls • • • , Xjv for each of the splines to

be considered. Clearly, two further relations are needed in order that a unique in-

terpolating spline may be found. The equations (3) are the useful ones for the actual

calculation of the splines and, for completeness, the two relations to be adjoined to

(3) will be given for the different types of splines to be described. For this note,

however, (4) are the useful equations and these relations will have to be written in a

form similar to (4).

(A) Natural Cubic Spline. The relations which help to define this spline are [1]

y(0" =      = 0,

whence, from (2), the equations additional to (3) are

3
2X0 + X, - — (*i - x0),

(5a) ho

3
X.y-i + 2X.v  = 7 (Xk JC.v-l)-

With the aid of Peano's method these can be written

2(X„ - xl") + (X, - x[») = - |j hW" - ± hW\ra),

(5b} uiuUZ and

(X„_, - xSii) + 2(xA. - xfi = --2hN.lXT +   ti-JP + ^ h»-*xm(T*h

These equations together with (4) are, in matrix form,
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(50

2 1 0

1 — c*i   2 c*i

0       0 0

(5)

Aat       X^r j ,

where

X — [Xo     Xo   Xi X\

(5d) x(4) =      [0 A0Ai(Ao - A^4' • • • A^A^.fA^ - h^x^l, Of,

(5e)
1

x(5) = -— [A4x(5,(ro) A„Ai(*3 + A2 - AoAOx'5'^) ••• -A4/_1x(5>(rJV)]r.

(B) Cwfc/c iS/j//«e7 .Dl. Here, j0u and      are fitted exactly, and so

(6a) Xo    > 1— Xtf

are the equations to be put with (3) for the calculation of this spline. Further, (4)

can now be written as

(6b)

where

2 a, 0

1 — a2    2 a2

0

0

L o 0 0 1 — atf-i 2

(X - xa)) = x(4) + x(5),

x - xu> = [X! - *;in Aat-i       Xat_iJ ,

24
[hoh^ho — A^xJ4' • • • AAr_2A_w_1(Aiv_2 — AAr_i)xir_1]r,

x(5> = -Jjj [A„A1(A02+ A2 - AeAOx'^r,)

• • • hn-2hN-i(hN-2 -f- Ay-! AAr_2AAr_i)x(s>(TAr_i)]r.

(C) CmA/c S/>/ine £2. If

^ = *f\  *r = x^2),

then, from (2), the equations additional to (3) are

2X0 + X, = — (Xl — x0) — A0Xo2),

(7)

Xtf_i + 2X.v — ,     (xtf     Xff-i) -\- htf-ixli).

Peano's theorem gives the results
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2(X0 - x»1') + (X, - xl") = hlx^ - ^ hUW(r0),

1     .3 (4) 1
(Xjv_i     xjV-i) + 2(\N — x^') —      hN-ix\i) —     Ajv-iX( '(tat)

24 60

On comparison with the corresponding ones for the cubic spline, namely (5b), it is

seen that the matrix equation for this spline is identical with (5c) except that the

terms x£2) and x"} are replaced by zero.

(D) Periodic Cubic Spline. When x has period tN — t0 and x0r) = x^', r = 0,1, • • • ,

then the spline can be taken to be periodic in the sense that

(8a) r = 0. 1, 2.

The Eqs. (3) remain valid but in the first X0, x0 can be replaced by \N, xN, respectively.

An additional equation arises from the observation that ya2) = v"' and is, after

simplification,

(8b)      ß\t + (1 - ftX^ + 2X„ = l[ß(^-^) + (1 - ß)(X" ^ **")] ■

In the required form, this is

ß(Xi ~ xili) + (1 - 0XX*-, - x.v'ix) + 2(X„ - xlr")

(8c)
=      hs-iKQiN^ — //0)at04) — ^ Ajv-iAoC/i^r-i + hi — AAr_,/io)x(s)(ir)

where ß = Ay_i/(Ä0 + Ajv-i), and t0 — A*-i & * & tu

Thus, the matrix equation is

(8d)

where

2 «! 0

I — at2    2 a2

ß 0 0

3i - x(,) = [X,

0

0

1 - ß

• • • Xjy

1 - a,

0 (X - xm) = x<4> + x<

(8e)

(80

x(4) = yA IMMo ~ ^i)x{4 hx-ihoihx-x — A0)x^4 ] ,

= -77; ihhM + hi - Mi)*"(t,)
60

•A.v-A^-i + hi - /V-.AcW)]

4. Error in the First Derivatives of the Splines at the Knots. It will be no-

ticed that the matrices which occurred in Section 3 for each of the splines are strictly

diagonally dominant, and so the equations can be solved. Further, if A represents

any of them then, with the uniform norm \\A~1\\ ̂  1. This follows from the observa-

tion that if \\Ax\\ £ 1 for ||x|| = 1, then g 1. Now, A = 21 + B,
where g 1 and so ||^x|| ^ 2||x|| - ||5x|| and, as ||fix|| g ^ 1, the result

is proved.



196 D. kershaw

Theorem 1. If y is either a cubic spline D\ or a periodic cubic spline, then

(9) - x(1,|| =g j^h2 maX |A<-J ~ h^'Ml + 6ÖhiMs-

Proof In (6b) and (8d), multiply by the inverse of the respective matrices, and

take the uniform norm of each side. Then,

||*-x(1>|| g ||x<4,|| + ||x(5,||,

where x(4), x(B) are defined by (6c), (6d) for the Dl spline and by (8e), (80 for the

periodic spline.

The results now follow on taking the uniform norms of x<4>, x<5).

Corollary. If ht = h, i = 0(1)^ — 1, then, if y is either a cubic spline Dl or a

periodic cubic spline, then

(10) \\X-xM\\^^h4M5.

The remaining types of splines will be taken together as the analysis is common

to them both. The equations for the natural cubic spline are given by (5c). Denote

by A the matrix. Then, after multiplying (5c) by A'1 it will easily be seen that

|X,- - x!"| ^ holC, + hi DA |[^-'e„],| + A*_X[C, + h2N-x D2] [[A'1**},}

(U) + ^ h2 max |A4_, - A<|-M4 + ^ A4A/5,      j = 0(l)N,

where

c,«i|*n.  cs-|ixn,  ß^^ixo4'!,  D2 = ±-4\xp\.

The corresponding inequalities for the cubic spline D2 are found by putting C. =

C2 = 0 in (11) and are

|X, - *Jl>| ̂  hl Dx \[A'\h\

(12) + h%-t D2 \[A->eN],\ +~h2 max |A,_, - A,| M4 + ^ hlM5.

Clearly, the nonvanishing of the multipliers of [A~1e0]i, [^"'cat], have an adverse

effect on the approximations in (12) when the intervals are equal, and for the natural

spline this is apparently disastrous, even when the intervals are equal. But, on ex-

amination, it is seen that to increase the order of approximation in both cases it is

necessary only to make the first and last intervals small enough. The situations can

be saved a little in the general case of unequal intervals as shown in the following

theorems.

| Theorem 2. If y is a natural cubic spline, h < 1 and if N ^ 2 — 2r log A/log a,

there exist integers p, q, 0    p < q ^ N, such that, for p ^ j g q,

|X, - xf \ g fM'tCx + hl DA + \hN-xh'[Ct + A2,-, D2]

+ \- h2 max |A,_, - A;|-M4 + A4M5>
24       , oU
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where the real number a is

(i) 2 + V3 if ̂  = h,
(ii) 2 when the intervals are unequal.

Also

tv - t0 < A[l - r log A/log a],      tN - t, < h[l - r log A/log a].

Proof. This depends on results from [2], where it is shown that for equal intervals

|U-'e0], | = LW2)/ UN+1(2),      |U-,e»],| - U,(2)/ UN+l(2),      j = 0(1)A,

and from [3], where it is shown that when the intervals are not equal

M_1«o],| ̂ }-2'-*,      |U"WJ»1 =g I-2"''.

Now,

(7,(2) (2 + V3)' + 1 - (2 - V3)' + 1

UN+i(2)     (2 + V3f+2 - (2 - V3)A
til, < (2 -f- V3)'"*"1, 7=0(1)^,

^ -r v       — u — v

and similarly,

<7A._,(2)/C/A,+ 1(2) < (2 + v/3r'"1.      7 = 0(1)A.

Hence, (11) can be replaced by

|X, - 4") ?S AofC, + A2, DAoi'' + hN_AC2 + >&* J>,]a*~*_1

+ ^ A2 max        - A;|-A/4 + ^ A5M5,      y = 0(1)A,

where a = 2 + a/3 if h( = h and a = 2 otherwise.

(For simplicity of presentation, the factor f which should occur in these inequali-

ties when a = 2 and the factor 2 — a/3 when a = 2 + a/3 have been replaced by

unity.)

As a > 1, it follows that a~' decreases with increasing j, and so a~' ^ hr for all

j }z p where the integer   satisfies a~v ^ A' < a-"*1, that is

—r log A/log a     p < 1 — r log A/log a.

Similarly, a'~" ^ Ar for all j ^ q where the integer q satisfies

N — 1 -f r log A/log ex < £? S= A + r log A/log <*•

In order that p < q, it is sufficient that

A — 1 — r log A/log a — 1 — /■ log A/log a ^ 0

which is equivalent to

A     2 — 2r log A/log a.

It remains to note that

tv — to ä> ph < A[l — r log A/log a],

«V - t„ ^ (AT - q)h < A[l - r log A/log a].
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(The inequality N Je 2 — 2r log h/log a will be satisfied for sufficiently large N as

Nh^tN- t0.)

Corollary. If y is a cubic spline (D2), h < 1 and if N ^ 2 — 2/* log h/log a then
there exist integers p, q, 0 ^ p < q ^ N such that, for p rg j ig q,

\\, - jtj.fi g I /i0/ir ß, + I D2 + j^h2 max        - h2\- M4 + ^ A4M5,

where a is

(i) 2 + a/3 if hi = h,
(ii) 2 when the intervals are unequal.

Also

tv — to < h[l — r log A/log a],       tN — '„ < h[l — r log A/log «]■

Proo/. This follows from Theorem 2 on setting Ct = C2 = 0.

Conclusions. The approximation of the first derivative at the knots is best when

equal intervals are used both for the cubic spline Dl and the periodic cubic spline.

In each case, the approximation is 0(h*). When unequal intervals are used, it drops

to 0(h3). For the cubic spline D2, the order is generally 0(h3) whether the intervals

are equal or not, but with equal intervals and for a large enough number of points,

the order is 0(h4) at a number of internal knots.

The first derivative of the natural cubic spline is only an 0(h) approximation to

the first derivative of the interpolated function at the knots, although for a suffi-

ciently large number of knots the order can be made 0(h3) or 0(h*) at a range of

internal points if the intervals are respectively unequal or equal.

Similar theorems can be proved for other types of cubic splines with mixed end

conditions. It is worth remarking that if one end only is 'natural', for example = 0,

then the effect of this on the approximation will decrease rapidly as this point is left

(by a factor of 2 — a/3 for equal intervals and 0.5 for unequal intervals).
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