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Convergence of Singular Difference Approximations

for the Discrete Ordinate Equations in x-y Geometry

By N. K. Madsen

Abstract. The solutions to two well-known finite difference approximations are shown

to converge to the solution of the discrete ordinate equations which are an approximation

to the linear Boltzmann equation. These difference schemes are the diamond approximation

of Carlson, and the central difference approximation. These schemes are known to give

singular systems of algebraic equations in certain cases. Despite this singularity, convergence

is shown for all cases when solutions exist.

1. Introduction. In this paper, we analyze some of the characteristics of certain

numerical approximations to the time-independent one-velocity linear Boltzmann

equation which is commonly known as the neutron transport equation. The transport

equation is an integro-differential equation whose characteristics and derivation

may be found in [1].

In practical applications, it is rare to encounter a neutron transport problem that

can be solved exactly. Therefore, many different numerical techniques have been

developed to approximate the solution of the transport equation. Our attention in

this paper will be focused on one method, the method of discrete ordinates [1]. The

discrete ordinate approximation was first introduced by Wick [2] and Chandrasekhar

[3]. Discretization error estimates for the discrete ordinate approximation are found in

[4], [5], [6].
After the discrete ordinate approximation is made, there remains a coupled system

of partial differential equations. Again, in most practical applications it is unusual

to be able to solve these equations explicitly. Various finite difference methods have

been used to approximate the solution of the discrete ordinate equations and, in this

paper, we concern ourselves primarily with the diamond difference approximation

of Carlson [7]. The diamond approximation is a second order scheme and is con-

sidered for vacuum, reflecting, and periodic boundary conditions.

If a finite difference formulation leads to a nonsingular system of algebraic equa-

tions, then the existence of a unique solution is guaranteed. However, if the difference

formulation leads to a singular system, then a solution need not be unique and may

net even exist. It is known [8] that for vacuum boundary conditions the diamond

scheme gives a nonsingular system of equations. For periodic boundary conditions

the diamond scheme gives a singular or nonsingular system depending on the partic-

ular mesh chosen, [8]. Finally, for reflecting conditions, the diamond scheme always

leads to a singular system [9]. For these last two singular cases, it is known, however,
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that the singular system always has a solution which, in fact, is unique in a certain

sense, [8], [9].

In this paper, we show that for any of the above boundary conditions (including

the singular cases), the solution of the diamond difference equations converges to

the solution of the discrete ordinate equations. The convergence is shown in two

norms: a discrete L2 norm, and a maximum norm. The convergence rate is 0{h2) for

the discrete L2 norm, where h is the maximum mesh spacing. These results answer

some of the questions raised by Gelbard et al. in [10]. We also show how these same

results can be obtained for the central difference approximation considered in [9].

2. Diamond Difference Approximation. The one-velocity form of the discrete

ordinate equations in x-y geometry may be written as

(1)     or      + a;      + 2 V - £ ""2m'V = Sm,     m - 1, 2,  ... t,
dx dy J-J

where

<bm is the flux in direction ßm,

2r is the total cross section,

ST is the source term,

w" represents the quadrature weights,

Sm " is the scattering cross section from direction £1" to direction £2m,

q", q", 0" are the direction cosines of a™,

t is the number of discrete directions used.

Equations (1) are the two-dimensional discrete ordinate equations and will be

considered in the domain D defined by 0 = x = Lx, 0 = y = Ly. The Eqs. (1) will be

subject to certain conditions prescribed on 3D, the boundary of D. The vacuum con-

ditions are:

If (x, y) £ 3D and ßmn < 0, where n is an outward drawn normal at

(x, y), then 4>m(.x, y) = 0.

The periodic conditions are:

</>m(0, y) = <bm(Lx, y), 0 «g y g L„ m « 1, 2, • •• , r,

<bm(x, 0) = <f>m(x, Ly),      0 = x = Lx, m = 1, 2, • • • , r.

Kellogg [11] has shown that reflecting boundary conditions are really a subclass

of the periodic conditions, so vacuum and periodic boundary conditions are all

that need be considered (the results of this paper can be directly verified for the

reflecting conditions using exactly the same techniques).

To approximate the solution of Eqs. (1), we first impose a rectangular mesh on D

with the lines

x ~ Xo,   x = Xx, ' ' ' , x ä Xjt       0 = Xq <C     ^ ■ ■ ■ ^ Xj = JLX)

y = y0, y = yi, ■ ■ ■ , y = yj,     0 = y0 < yi < • • • < y} = Ly.

The mesh spacings Ax( = x, — and Ay, = y, — y^ are not assumed uniform.

We introduce the mesh variables
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NT.i, 1 £ * £ /. 1 £./£/. 1. *.

K.i. 0 g t g: I, t £ j $ j, h & m g t,

HT.i,      1 ^ i g /, 0 = j = J, 1 = m = t.

These variables are associated with the imposed mesh as shown in Fig. 1. The

discrete ordinate equations for the (i, j) mesh box are now approximated by the

equations

0'

(4)

(5)

+        - £ vtttä.i = ST.,.

NT.i - UK,, + Fr-i.,) = h(n?., + HT.*-i).

where Sf,„ 2™;?, and S™, are the respective values of 2r, 2m,") and S" at the center

of the (/, j) mesh box.

Figure 1. Unknowns for the Diamond Approximation

The vacuum boundary conditions are approximated by

Vo.i = 0, 1 ^ j g /, for all w such that > 0,

F™,- = 0,      t /, for all m such that 07 < 0,

H?,0 = 0,      1 g i ^ /, for all m such that 0™ > 0,

H?,j = 0,      1 g i ^ /, for all m such that 0™ < 0,

and the periodic boundary conditions are approximated by

(6)

(7)
V? ■ = V? ■' o,; —   ' /i p / £ /, l ^̂ m ^ t,

i^i^f.is«^.

Equations (4) and (5), together with boundary conditions (6) or (7), define the diamond

difference approximation to the discrete ordinate equations with vacuum or periodic

boundary conditions, respectively.
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It is convenient to define

(8) 2°;7 = Sf,,. - £ w-zr:,.
n-l

For the remainder of the paper, we make the following assumptions:

T

(9a) £ w" = 4""   and   fm>0   for all zw,
m-l

r,o,m
(9b) S°;7 ^ So > 0   for all i, j, m,

(9c) S"T = 2?;7       for all i, /. m, n,

(9d) 27;," ^ 0 for all i, /, m, n.

If $ = (01, <£2, • • • , <£r) is a vector whose components are functions of the variables

x and y which have partial derivatives with respect to x and y up to order p, then

we define

11$| |t = max max sup 1 i Jt; £

where a = (alt a2), \a\ = oil + a2.

For any mesh function N = (#",•), we define the maximum norm of N as

|N||- = max lTVr.,1,

and the discrete L2 norm as

IN 11 = ]   £ Ax< Ay,V"(/v?.i)2
L , , i . m -I

With the preceding definitions and assumptions we can prove the following theorem.

Theorem 1 (Basic Inequality). 7/N = (#7,), V = (*?.,), H = (#7,,.), and
S = (S™,) are vectors whose components satisfy (4), (5), and (6) or (7), then

l|N||gf ||S||.■^0

Proof Multiplying both sides of Eq. (4) by wm7Y7, Axt Ay,- and summing over

all appropriate i, j, and m, we find that

£ Q7 Ay,wmN7.tin, - F7-i.,)+  £ O; *xtwmH?.tV%,l - B7.,-i)

(10) + £ A*; Ay,- |~£ Sf.^*«,)4 " £ H.V"27:;/V7.i7v7.,I

=   £ Ax,. Ay,- H>"/vT.,Sr.i.

Using (5) and (6) or (7), one can show that the first two summations appearing in

(10) are nonnegative. Using (8), we may rewrite the third summation in (10) as

(11) £ A*, Ay^ZV.KNTj)2 +    £   Ax,- Ay(wmwn2?,7(7Vr;i - <i)7v-,7i.
t , j,m i,j,m,n

Using (9c), we rewrite the second sum in (11) as
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\   £   Ax,- Ay,wmwnS7,7(7Vr./ - KjKi
it i ,m,n

+ TI   Ax, Ay^-tv-SV.TCK,- - WT.i)^.i

= |   £   Ax; AviVv-w-S"; ■«,'- AO"

which is, by (9d), nonnegative. Now, combining these results, from (10), we see that

£ Ax, Ay,.*mZ°/,7(A?,,.)2 =   £ Ax,- Ay,wmN?,tS7.,.

Using Schwarz's inequality and (9b), we have

S„ ||N||2 = ||N|| ||S||   or   ||N|| g - ||S||.

We remark that if (N, V, H) is a solution of the diamond approximation, then

the Basic Inequality establishes the uniqueness of N.

3. Convergence of the Method. If $ = (<p\ <b2, ■■• , <bT) is the solution to the

discrete ordinate equations, and if N = (Nf.ti v = (K.i), and H = (#".,) are the

solutions to the diamond scheme, then we define the error vector e = (e™,) by

*Zi = <A*. - I Ax,, y, - § Ay,) -

Using the Basic Inequality, Taylor's theorem, and a simple averaging technique, the

convergence of the diamond scheme is now easily demonstrated.

Theorem 2. Let $ = (</>', <b2, ■ ■ • , <bT) be in C2[D] and have bounded third partial

derivatives. If assumptions (9) are satisfied, then there exists a positive constant C

independent of h and $ such that ||e|| g C||<£||3-/!2, where h = max,., (Ax,-, Ay,).

Proof Using # = (ab1, <b2, • • • , 4>r), we define the averaged vectors 91 = (31?,,),

"0" C0™;) and 5C = (JC~() by

SC.i = y,) +        y<-x) + *"(*i-i, y,) + <T(*i-i. y.-Oi.

j£« = |&*C*«, y,) + *-(x4, >,_,)],

3C?.,- = !#•(**. y,) + **C*4-i, y,)]-

We remark that these vectors satisfy Eq. (5) exactly. Defining a vector ex = 91 — N,

we see that the vector e — e! has components <bm(Xi — \ Axis yj — \ Ay,) — 917,,- and

hence, by Taylor's theorem,

||e - e,?! = C \\$\\2-h2.

Therefore, it will suffice to estimate HdH. Substituting 91, V, X, and N, V, H into
(4) and (5), subtracting the two respective resulting sets of equations, and applying

the Basic Inequality shows that

IM =S jr l|5||,
^0

where 5 satisfies ||S|| ^ C"||#||3-/!2. The last inequality is obtained by several ap-

plications of Taylor's theorem. Therefore, there exists a constant C such that
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||e|| g C \\$\\3-h2.

Corollary. Let h! = min, ,,(Ax,, Ay,), h = max.^A*;, Ay,), and suppose there-

exists a positive constant Cx such that, for all meshes chosen, h CJi'. Then, under

the assumptions of Theorem 2, we have the following estimate for the maximum norm

of e. There exists a constant C independent of h and§ such that

||e||» Ik C \\$\\3-h.

Proof Let \e™\ ,j = |[e||„. Then we have

Axf. Ay,.w"'(e":.*.)a =   E A* Ay,.wm(er,,)2 = ||e||2.
i,i,m

Solving for |<?"*o f,|, we have from Theorem 2 and the hypotheses that

II.M I <    ^mo)"'/2    .UN < C» 11*11»-*'

(Ax,-. Ay,-„) «

I 2

Using the transformation given in [9] which relates the diamond difference ap-

proximation to the central difference approximation considered in [8] and [9], it is

easy to show that the results of this paper apply to the central difference approxima-

tion when solutions to it exist. The questions of existence of a solution to the centraL

difference approximation for the various boundary conditions are considered in.

[8], [9].
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