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A Quasi-Newton Method with No Derivatives

By John Greenstadt

Abstract. The Davidon formula and others of the "quasi-Newton" class, which are used in

the unconstrained minimization of a function /, provide a (generally) convergent sequence

of approximations to the Hessian of /. These formulas, however, require the independent

calculation of the gradient of /. In this paper, a set of new formulas is derived—using a pre-

viously described variational approach—which successively approximates the gradient as

well as the Hessian, and uses only function values. These formulas are incorporated into an

algorithm which, although still crude, works quite well for various standard test functions.

Extensive numerical results are presented.

1. Introduction. The so-called variable-metric method for minimizing functions,

which was discovered by Davidon [1] and developed by Fletcher and Powell [2], has

been so successful that it has attracted a great deal of interest. Various theoretical

studies, as well as new, related algorithms, have appeared in the literature ([3]—[6],

among many others).

So far, all but one* of these variants of the DFP (Davidon-Fletcher-Powell)

method have required the explicit evaluation, at each step, of the gradient of the

function / to be minimized. From these computed gradients, the inverse of the Hessian

matrix is gradually constructed, and the Newton formula (which is used to compute

the next step direction) becomes gradually more accurate.

In a previous publication [7], it was shown how DFP-like formulas could be

derived by solving a certain variational problem. In this paper, the same method will

be applied to finding quasi-Newton** formulas which do not involve the explicit

calculation of gradients. Clearly, since the gradient is needed in the Newton formula,

the new algorithm will have to estimate it—as well as the Hessian— in the same way

as the inverse Hessian is estimated in the DFP method.***

The basic notation to be used is as follows: /(x) is the function of the variables

(xu x2, • • • , xN) in Rh which is to be minimized; g and G are the gradient and Hessian

of /, respectively. In the course of the work, certain estimates of these quantities will be

discussed; these will be denoted by g and G (without bars). Further, H = G~l. At

certain stages, vectors specifying directions for line searches are introduced; the

letter d is used to denote these. When a direction vector d has been normalized (in a

sense to be outlined later), the normalized direction is denoted by the letter s. Using a

starting point x0 and a unit direction s, a straight line in Rx may be expressed para-

metrically as follows:
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* This is the method of Stewart [4] which, however, computes the gradient by finite differences.

** The term "variable-metric" is reserved by convention for those methods in which the Hessian

remains positive-definite (and hence can be regarded as a "metric" tensor).

*** A method due to Fiacco and McCormick [16] also estimates the gradient and Hessian using

only function values. A comparison is made in Appendix B.
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146 JOHN GREENSTADT

(1.1) x(a) = x0 + as,

where a is a parameter which measures the distance from x0 to x(a). If a line search

along such a line has terminated at a certain value au the displacement vector

x(ax) — x0 will be denoted by a, so that a = aas.

At appropriate places, subscripts may be appended to any of these symbols, to

label the various steps with which they are associated. At other places, the context

permitting, the subscripts will be dropped.

2. The Role of the Constraint in the DFP Case. In the DFP procedure, after

the kth step from xk to xl+u a new estimate Hk+i to the inverse Hessian is sought,

which is to replace the current estimate Hk. This new estimate is required to satisfy

the quasi-Newton condition (also known as the DFP condition):

(2.1) Hk+1yk = ak,

where yk is defined as (gk+1 — gk).

Where does this constraint come from? Basically, it is an identity which holds

for quadratic functions. At the beginning of the kth iteration, we have a quadratic

approximation to /(x), say:

(2.2) Qk(x) = ak + brkx + \xTGx,

(where the superscript T denotes the vector transpose) and, during this iteration,

we make a step from the point xk to a point xk+u At these two points, we have

evaluated the exact gradient vectors:

(2.3) gk = V/(**);      gk+1 m V/(x*+1).

A new, improved quadratic approximation Qk+i(x) is now forced to fit /(x) at these

points, in the sense that the gradients calculated from Qk+i(x) match the exact ones:

(2.4a) gk+i(xk) = bk+1 + Gk+lxk = gk,

(2.4b) gk+i(xk+i) = bk+1 + Gk+1xk+i = gk+i.

It follows that the new Gk+1 satisfies the condition:

(2.5) £t+1 — gk = Gk+i(xk+1 — xk) = Gk+1<rk

which is equivalent to Eq. (2.1).

The method used in [7] to derive correction formulas was briefly as follows: The

correction to Hk was written as:

(2.6) Hk+i = Hk + Et

and a quadratic norm of Ek was minimized subject to (2.1). (This amounts to a

constraint on Ek.) In addition, it was required that Ek be symmetric so as to preserve

the symmetry of Hk+U given that of Hk. This amounts to another (linear) constraint

on Ek. This constrained variational problem was solved, leading to a class of correc-

tion formulas. These formulas resemble the DFP formula, and it was, in fact, shown

by D. Goldfarb [13] that the variationally derived class contains the DFP formula.

3. Constraints in the Derivativeless Case.  We now have the task of trans-
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lating the variational procedure to the case when there is no independently calculated

gradient. The first thing we must do is to find an appropriate constraint corresponding

to the QN condition.

Clearly, the new condition cannot contain g explicitly, since g cannot be inde-

pendently computed. Hence, the only admissible ingredients are the values of / at

various points.

As in all treatments of quasi-Newton methods, we assume /(x) to be approximated

by a quadratic function (as indicated previously). The approximation for / is Q,

given in (2.2). If we replace b in favor of g, we obtain:

(3.1) Q = a + gTx - \xTGx.

This form for Q(x) has turned out, in practice, to be more convenient (less subject

to rounding error) than that in (2.2), but it must be remembered that g depends on x.

Let us now assume that we are at some point x0 and do a line search along some

s (with length parameter a) for the minimum of /. For any x on this line (x = x0 + as),

we have for the estimate g, based on Q:

^ 2j g = b + Gx = b + G(x0 + as)

= (b + Gx0) + G(as) = g0 + aGs.

Correspondingly, for Q:

(3 3) Q = a + (g0 + aGs)T(x0 + as) — §(xa + as)TG(x0 + as)

= (a + glx0 - \xlGxo) + (gTos)a + h(sTGs)a2.

At some value au we find the minimum value fx. The corresponding x value is

Xi ( = x0 + axs).

The spirit of the QN condition in the DFP case is to require that the estimated

set of "parameters" \Hik\ be such as to make the quadratic representation Q "fit"

the independently computed gradients. What corresponds in the present case is to

require the "parameters" g0 and G to be such as to make the function Q(x) "fit" the

independently computed values of f. Thus, we shall require for our next estimates,

g*Q and G*, say:
■

(3.4a) Q0 = 0(0) = a + gfx0 - hxT0G*x0 = /„,

(3.4b) Q, m Q(Ul) = U-

As in the DFP method, we eliminate what amounts to an additive constant

(viz., a) by taking differences:

(3.5) Af = Aß = Ö! - Qo = (gfs)ax + \(sTG*s)a\.

There is another independent constraint, based on the fact that / is a minimum

at ax. Hence, the derivative of Q, with respect to a, is forced to vanish at ax:

(3.6) (^j    = ggTs + (sTG*s)a1 = ir(g0* + axG*s) = sTg? = 0.

Thus, we have two "QN conditions" at each step. Other combinations are possible,

of course, such as fitting Q(a) to / at three distinct points along s. (This would also

lead to two conditions.)
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For reasons which will be apparent later, it is not feasible to attempt to correct

go and G after only one step. We therefore take more steps than one in each "correc-

tion cycle", and distinguish between a minor step, involving a line search along a

single direction, and a major step, which will be a sequence of such minor steps.

In what follows, we shall suppress the major step index k, and concentrate on

the set of minor steps which constitute a major step.

Starting from x0 (the starting point of a major step), the first minor step direction

dx is calculated by Newton's formula, using the current estimates g0 and G:

(3.7) d. = -G_1g0

and dx is then normalized with respect to a positive-definite matrix L, to be chosen

later. This gives the unit vector su defined as follows:

(3.8) ft m dx/(dTxLdx)u\

Note that it is necessary to solve a simultaneous linear system for dx, since G-1

will not be directly estimated, as in the DFP method. The reason for this is that G

is involved in Eqs. (3.5) in such a way, that replacing it by H'1 would unavoidably

lead to a nonlinear constraint on H, thus rendering the variational problem intractable.

After the line search along su yielding ax and fu the direction of the next minor

step may be generated by combining sx with some other direction. A simple choice

is one of the coordinate directions, say ex. Then

(3.9) d2 = ex -f- pxsx

with pi chosen so as to make d2 orthogonal to sx, in the sense that d^LSi = 0. d2 is

then normalized to give s2, and a line search is performed, yielding a2 and /„. Next, a

new direction d3 is found by combining e2, sx and s3 linearly, and requiring d3 to be

orthogonal to sx and s2 (with respect to L). d3 is then normalized, etc.

If it should happen that one of the coordinate directions is a linear combination

of the already computed direction vectors, it is simply dropped. In all, a total of N

minor steps are attempted. In what follows, the index / will be a label for the minor

steps within a major step.

. If we denote the fth minor step by a,, we have:

(3.10) Xj = Xj-X + <Ti.

n is next defined as the total displacement from x0 to x,:

(3.11) Ti = Xi — xa = Z

Then, based on (3.2), we will impose the condition:

(3.12) g* = g0* + G*ri = gf_, + GV,

and, corresponding to (3.6), we satisfy:

(3.13) <r;gf = (/(go* + G*r.) = 0

for each t;.

Corresponding to (3.5), we have:
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A/.- = /, - U-i = Q{ - Qi-i

(3 14) = £?r(*.-. + r4) - (gf - gv/x,.,

- J(*.-i + vd'CfQCi-i + *{) + Kr-iG*x.-i

= rf** - i^g*^ = -i»Tcv.
the last equation resulting from (3.13).

In summary, our constraints are:

(3.15a) A/< + le'G+rt = 0,

(3.15b) ffrigS + m 0.

It is important to note that the only independently computed functional quantities

here are the {A/<}.

We are now going to consider the major step as an independent cycle, and make

the corrections to our old estimates, g0 and G, at the end of it. The corrections will

be denoted by y and V, so that the corrected values g* and G* will be:

(3.16a) g0* = g0+y,

(3.16b) G* = G + r.

Then the constraints (3.15), considered to apply to the new estimates g% and G*,

are translated into constraints on y and T as follows:

(3.17a) 1/rV, = -{A/, + iflGf,] a p<1

(3.17b) a\y + a^Tr. = -{cr;g0 + ff7Gr,) = e,-.

Now, there are N parameters in g0 and %N(N + 1) in G to be estimated. But in

each major step, we have at most IN constraints. Hence, when N > 1, there are

fewer constraints than parameters; so that one major step does not determine all the

parameters. Since each major step is treated independently of the others, any method

based on these constraints will not necessarily be an "TV-step" method. In fact, the

formulas to be derived need not necessarily generate the exact G, even for quadratic

functions. This is not to say, however, that it is impossible to construct "A-step"

formulas (by other means).

4. The Variational Procedure for the Derivativeless Case. We now have the

problem of setting up a functional to minimize, which somehow embodies, the

norms of y and of Y. The most obvious norms to choose, which are quadratic, are:

(4.1a) fMr-T*^.

(4.1b) ||r||2 as Tr(0T»Tr),

where V and W are positive-definite matrices of some sort.

A difficulty arises in somehow combining these norms in a natural manner. One

wishes to have a quadratic function of the elements of y and T which is also positive-

definite. These two quantities are not really comparable, since it is easy to construct

functions for which they have arbitrary values. The obvious device of simply adding

them leads to the problem of insuring that their "units" are consistent. This might
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be accomplished, for example, by taking W = G~l and V = ||g0|r2L where / is the

unit matrix.

The most practical form, which was found after some trials, was the most obvious

one, viz., a simple sum:

(4.2) *0 = hT Vy + \ Tr(WYWTT),

and a large number of numerical trials, wherein various forms of V and W were

chosen, seemed to indicate that the choices V = I, W = vi (where v is some arbitrary

number) worked best in practice. However, we shall defer this specialization to a

later section, but leave V and W arbitrary so as to show the general form of the

corrections.

Incorporating the constraints (3.17) into the functional via the Lagrange multi-

pliers fr/,} and \ di} gives:

* = $0 — 52 f<(i«r<r<r< — Pi)
(4.3)

- Z eMy + ATt. - e<).
i

We should add to this the additional constraint TT — V, but will dispense with doing

this explicitly, and simply indicate the change in the formula for T, necessary to

include this requirement.

The necessary conditions for a stationary <£ are obtained by differentiating, as

follows:

(4.4a)       ^ = Vy - 52 M< = 0,
ay i

(4.4b)    — = wvw - 52 *-wf - § Z et(9tr! + ryt) - 0.

(The symmetrizing of the term is a result of taking account of the symmetry

condition on T.)
If we define A = V'1, M = W~l, we have:

(4.5a) 7 = A 52 0,<r,.,

(4.5b) r = hM{ Z + 52 *<(<M-f + r.9rt)l M.

We now solve for the Lagrange multipliers {77,} and {0<} by applying the con-

straints to 7 and T. The resulting equations are rather complicated, but they reduce

to the following (in matrix form):

(4.6) AO + Br, = e,       BT6 + Oj = p,
I

where

(4.7) e - je,},      p - {p,

(4.8a) Ait m X„ + Htfß.? rüMl,

(4.8b) Bti m kßut^V.

(4.8c) C„ m iMÜVJ"
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and

(4.9a) \u = t/Aff,,

(4.9b) ß\y = t^Mt,-,

(4.9c) ■ AUeu

(4.9d) & m c^Mo-r,

i and j run from 1 to    and are not summed in (4.8).

If M and A are now chosen to be proportional to L, we gain a great simplification

in the formulas for 7 and V. We set (as suggested previously):

(4.10) W = vV;   or   Af = - A
v

and, in addition:

1
(4.11) A = L,   so that M — - L.

V

We then have, since {Si\ is now an orthonormal set with respect to L:

(4.12a) hi = </Aff, = |<r,-1 kl/Z-r, = ff2«,-,

and, similarly:

(4.12b) n\V = <rTiMo-j = - ff <Z.ff,- = — ff2 6,,-,
v v

so that { X,-,-} and       j are diagonal. Since, from Eq. (3.11), t, =        ff»> we nave:

„«> . 1 2 vr,La, = 1 E ff2 6ri

(4.13) " "

= <r)/v,   if i 7,

= 0,      if i < j,

so that {Mi;' I is a lower triangular matrix.

Bearing in mind that the products in Eq. (4.8) are not matrix products, but

element-by-element products, we see that:

1. {m«)M<*)) is diagonal because {y}^} is;

2. U<2>m/f) is diagonal because (m;2>} is triangular;

3. (m!*>^<?*) is diagonal because [p,?] is.

Hence, Ati, 2?,, and C(, all form diagonal matrices, and have the values:

(4.14a) A{, = jff2 + ^2 (r2<r2 + ff4)| Su,

(4.14b) B.,=^2ff4o„.
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where

(4.15) t2=£,
2

ff»,

all of which follows from the orthonormality of js.J with respect to L.

The solution of Eq. (4.6) has the form:

(4.16a) 8 = (A - BC'1BTT1(( - BC'1 p),

(4.16b) v - C~\p - BTB)

and these expressions may be easily evaluated because all the matrices are diagonal.

The result is (by components):

(4.17a) 0, =
2v\ti - 2p.)

2/~ 2     I        2 2, >
(Ti(2v   + T,  — ff,)

(4.17b) Vi = — Pi - 28.,

so that the evaluation of y and r does not really involve any matrix inversions.

The algorithm now runs as follows:

1. Assume G = I, and estimate g„ at the starting point by first differences. (See

explanation in Section 5.)

2. To start a major step, compute a direction sx from Eqs. (3.7), (3.8).

3. Do a line search for a minimum of / along s (for each minor step).

4. Save a, r, p and « as defined in Section 3. If a total of N independent directions

have been generated, skip to step 6.

5. Form a new direction from the previous step directions plus a new linearly

independent direction, and orthonormalize. Go to step 3.

6. Compute 6 and r\ from Eqs. (4.17).

7. Compute y and V from (4.5).

8. Correct g0 and G (Eq. (3.16)) to form g% and G*.

9. Translate g% using g** = g% + G*tn (referring to Eq. (3.12), since the new

x% is x0 + tn).

This completes a major step.

10. Test for termination (||g**ll < threshold, say). Otherwise, go back to step 2.

There are the usual complications in the program for this algorithm, mostly as

a result of rounding error. These have not been described here.

5. Computational Experience. This method was programmed in the APL

language for the IBM 360 computer and a good many trials were run on a few test

functions. There was a good deal of tinkering necessary to get the method to converge

reliably and reasonably efficiently, but the most effective choice of various arbitrary

quantities turned out to be one of the simplest.

The worst difficulty with this method is that the successive estimates of G are

not necessarily positive-definite. This precludes setting L — G (hence A = G and

M = G/v) since minimizing a quadratic form with an indefinite metric can (and did!)

yield very large, unstable corrections y or T. The choice L = I turned out to be the

most stable (and the simplest) choice, and almost always led to the fastest convergence.
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The best choice of v turned out to be 0! Of course, one cannot simply set v = 0,

and evaluate y and V, since Eqs. (4.6) become singular for v = 0. It is possible, of

course, to find the limiting solution as v —* 0, and this is described in Appendix A.

In many instances, the correction computed in this way caused G to become

indefinite. This is easily detectable in those cases when a diagonal element becomes

negative. This was cleared up in most instances by letting v —► °°, instead of v —> 0.

(The former case is analyzed in Appendix A.) When this device did not help, the

indefiniteness was allowed to remain, and the next major step was begun. Near the

point of convergence, this pathological effect nearly always disappeared; however, it

' did have the effect of slowing down convergence.

As will be seen from the printouts of some of the examples shown, the convergence

does seem to be superlinear in many cases. This has not been proven and may not

even always be true.

There is certainly no assurance that a variational derivation will yield formulas

having the most desirable properties. It is likely that a deeper theoretical analysis

of this type of QN method will yield better procedures with better properties (such

as positive-definite G's).

As in the DFP method, the unit matrix was taken as a starting value for G. For a

starting value of g0, there is no "natural" vector, although, in principle, it is possible

to start with any vector. When this was done (for example, by taking g0 = (10000- • •)

or go = (111 • • •), the method converged, but often with great difficulty. Ultimately, a

rough estimate of g0 was computed at the outset (by simple forward differences),

and this stabilized matters quite considerably.

6. Numerical Examples. Tables 1-3 following are printouts generated at a

terminal by the APL program. The entries are as follows:

NSTEP   The major step number.

P      The number of minor steps in the major step; in these tables, P = N

in all cases, except when some minor steps are too small. (The

formulas for 6 and 77 remain the same, except that N is replaced by P.)

NFUNC The total number of evaluations of / after each major step.

F      The value of /(x).

X      The position vector.

In these printouts, g0 is denoted by GZ and G is denoted by GG. When G is found

to be indefinite, the notation: IG (indefinite G) with the major step number is printed.

The value of v is then changed from 0 to 00. When this still gives a detectably in-

definite G, the same notation is printed again. The entire process was regarded as

having converged when ||g0|| < 10-5, or, failing this, that no minor step > 10~7 was

possible. If the size of the major step falls below 10"6, the notation "SPF" is printed,

and the iteration terminated.

The functions tested were as follows: (The starting values in each case are listed

on the first line with NSTEP = 0.)

(a) Quadratic Function 1.

/ = x\ + 100(*2 - l)2 + fr, - 2)2
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whose Hessian is equal to:

Gi =

2 0 0

0 200 0

0    0 2

and minimum at (0, 1, 2). Various starting values were used,

(b) Quadratic Function 2.

f - (*i + *a - 2f + 10\Xl - x2)2

with Hessian:

G2 =
20002 -19998

-19998 20002

and minimum at (1, 1).

(c) Quadratic Function 3.

/ = (x, + 2x2 + 3x3f + I00(x2 - l)2 + (x3 - if,
~2    4 6~

G3 = 4 208 12

6     12 20

and minimum at (—8, 1, 2).

(d) Rosenbrock's Function [8].

/ = 100(x2 - xiY + (1 -

Gr0. = at (1, 1).
802 -400

^-400 200_

(e) Beaks's Function [9].

3

/ = £ let ~ x1(l - x'2)f;      {c<} = {1.5, 2.25, 2.625]
i-l

(Hessian not computed independently).

(0 Powell's Function No. 1 [10].

f = (x, + 10x2)2 + 5(x3 - xrf + (x2 - 2x3f + l0(Xl - xt

{-(»

(Hessian not computed independently)

(g) Powell's Function No. 2 [11].

/ = [1 + Ox, - x2)2] 1 + sin(iirx2x3) + exp^

(Hessian not computed independently),

(h) Cube [12].

/ = 100(*2 - xl)2 + (1 - Xlf,

1802 -600

+ x3

x2

- 2

-600 200.
at (1, 1).
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(i) Random Trigonometric Function [2],

i-l   k i-1 J

(with Aih Bu, and E( randomly generated).

t7RT is variable and the solution is "XNULL", which is precomputed.

(j) Helical Valley [2].

f = 100[(x3 - 1O0)2 + (r- if] + x\

, with

6 = tan-1(x2/xi); /■ = (*i + x2)1/2.

Solution: (1, 0, 0).

(k) Wood's Function [15].

/ = 100(;c2 - x\f + (1 - Xlf + 90(*< - xtf

+ (1 - x3)2 + 10.1 {(x2 - If + (*4 - l)2} + 19.8(x9 - 1X*« - 1).

Solution: (1, 1, t, 1).

It will be seen that various interesting (some good and some bad) things occur

in these problems:

(1) The convergence near the solution is often clearly superlinear (even quadratic

at times), but breaks down for functions which do not have a quadratic minimum

(e.g., Powell 1).

(2) When G at the solution is singular, there is a good deal of difficulty with

indefinite intermediate G's, which slows the convergence drastically.

(3) This method is not as speedy as several others (Simplex, Powell's, Rosen-

brock's) but compares well in some cases.

(4) The successive estimates of G have been printed for Quadratic Function No. 3;

evidently, a good value is generated very soon, which explains the quite rapid con-

vergence in the quadratic cases. (A similar study of what happens to ga has not

been made.)

(5) When P, the number of minor steps per major step is restricted to be <N,

the convergence is slowed considerably. (These cases are not shown.) When P ■» 1,

the correction to g0 tends to make it vanish altogether, thus providing no direction

for the next Newton step. (This was the reason for introducing additional minor

steps in the first place.)

In Table 4 is shown a comparison with other methods for those test functions

for which information is available. The starting points for all comparison functions

are the "standard" ones, i.e., those used most in the literature.

The entries in Table 4 are as follows:

QNWD  stands for "Quasi-Newton Without Derivatives"

H-J       stands for "Hooke and Jeeves"

Ros        stands for "Rosenbrock"

SPLX     stands for "Simplex"

Pow       stands for "Powell"

Stew       stands for "Stewart".

For each case, the number of function evaluations needed to get the function
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Table 1

quad a. furc 2

istcp r Brune
0 0 3
1 3 IS
11»
3 1»

cosvekcld
3        * VI

"0.17993 0.k798k

r
0001108
313kl*01
32721*09
9k201~17

B.9klkl 17

X*
1.0000102

1.0096100
1.0000100
1.0000100

o.ooooioo
9.99931*01
1.0000100
1.0000100

1.0000100 1.0000100

30002"199911
1999a
30002

quack, rune. 1

imp p rfurc r
.0100103
.29611101

I*
.0000100
.1.1.90100111s

«Jjrtfij
2.0573 3.9073 6.0731

3.9073 309 13.065
6.0731 13.06S 19.91.3

3        3        36 l.kJ96I~02 ~7.65kk.I00

1.9107
um
6.9031.

3 3k

3.0031
k.0165

6.00S9
3 k1

1.9992
k.0165
S.9977

5        1 60
»spp 5

corverced
5 1 60
01

"k.3k3«l"9 "3

k.kSkB 6.9031.

309.09 11.91.9
11.91.9 30.003

1.9063I"05 "7.9969100

•■.0166 6.0069

309 13.0S6
12.056 19.997

l.lk9kl~ll      "9.0000100 *

k.0165 S.9977
309 12.056

12.056 20.003
3.k06Sl~17 "9.0000100

3.1.0651*17 "9.0000100

11)11*7 9.63361"10

1.9995
I..0165

5.9976

3.0000100 1.0000100
1 .1901.100 1.697610»

9.97311 01 1.9133100

1.0000I~00 1.9956100

1.00001~00 3.0000100

1.0000100 2.0000100

1.0000100 2.OO0O1OO

k.016S

309
12.056

S.9976
12.056
30.003

quadr. rune. 3

ism  p rfvrc

3 IS
3 26
3 3k
3 1.3
1 56

corverged
1 56

p
9.61.1.0103
2.1191.102

1.3571.1*03
6.09711*01.
3. 06761*11
1.07911*11.

1 . 07911*11.

1»"1.0000101
"9.2552100
*7.871.3100
"7.921B100
'8.0000100
"8.0000100

1.0000101
3.1.072100
1.0018100
9.99951*01
1.00001*00
1.00001*00

1.0000101
9.05631*02
1.91.58100
1.9766100
3.0000100
3.0000100

"8.0000100      1.00001*00 3.0000100

7.21.111*9    1 .62621 6

1.9978
3.8979
5.9977

3.8979
208

11.659

5.9977
11.659
20.002

qu adr. furc. 3

rstep    p rfurc

7 5k
corverged

1.OlOklOk
2.8819103
8.33381*03
1.3k271"06

2.03081*13

1.10731*13

1»
1.0000102
k.9717101

~8.0k26100"8,0037100

"8.ooooroo

0.0000100
k.23kll"01

1.0002100
1,0000100

1.0000100

0.0000100
9.329kl"01
1.991.1100
2,0011100

2.0000100

~8.0000100      1.0000100 2.0000100

2.77191*7    1.86131  5 *6.87kl*8

1.9999
3.99k7

S.9997

3.99k7

208
12.011

5.9997
12.011
20



A QUASI-NEWTON METHOD WITH NO DERIVATIVES

Table 1 (continued)

QUADS. FUliC. 1

»STEP    P KFUUC

3
*SPF

1.1OQ0502

8 .73195~01
l.i.i.i.35~10
2.S580A~12

3.0000500
2.672«5"01~9.*.6335_06

~1.59tt25"06

. OOC0F0O

.0891500

. oooo5"oo

.0000500

1 . ooootoo
1 . 31 Q9i'00

2 .0000500
2.0O0C50O

2.SSH05 12 1.59a2£   06 1.0000500

1.80115 S    0.000651S6 5.77065~10

2.0000SO
2.000052
1 .36 5 5tV">.

1. ui*.or i.
1 .36555"».
2. 0 00 050

QUADS. FUSC. 1

HSTEP    P HFUHC

• SPF 3
COlf VERGED

a . 3 ».».0503

6 . 8 53950 0

1.9M135~11
*..9«39i;"l».

98395 1W

"2.86605 01

2.77365~06~2.II51*.5~10

.2579500

. 0 00 05~00

.0000500

"2.851*.,?  10 1.0000500

1 .0561500
2 . OC00500
2.0000500

"»..3 7».95~6 0.00039373

.000050

. 38385 5

.Qt.t.t,E~7

1 .38385 S ~7.0*.i.*.5 7
2.00005-2 1.60355~5
l.G0355~S 2.000050

QUADS.   FUSC. 1

HSTEP    P HFUNC
1 . 010*.50*.
9.3271503

2.77*.65~06
1.GS895"l5

.0000502

.6079501

.19075*03

.3U».5~Q9

0.0000500
3.92615~02
9.99995-01
1.0000500

0.0000500
7 . B*.7i.5-02

1 .9188500

2.0000500

1.68095 IS 2.111<.£ 09    1.0000500 2.0000500

7.81675"l0    2.65015*7 "5.26935*10

1 .999(150
2.97975"S
2.20985"*.

.97975"5 2.20985"».

.000052 "6.68005"*.

.68005"*. 2.000750

QUADS.  FUSC 2

HSTEP    P HFUNC
3 . 2*.0S502
3.2367502
1 .371.7500

6.95625~1U

I-
1 .0000501
9.99*. 8500
1 .5862500
1 .0000500

1.0001501
9. 9958500

1 . 5862500
1.0000500

6.95625 1« 1 .0000500      1.0000500

20002"19998 19998
20002

QUADS. FUSC 2

HSTEP    P HFUIiC
».. 0000506

2. 2*.915"06
1.39175"13

1.0000501
9.99995"01
1.0000500

1.0000501
1.0000500
1.0000500

1.39705"l5

0 . 008910*.     0 . 01089

20002"19998 19998
20002

1.0000500      1.00005 00



john greenstadt

Table 2

P.OSENBROCKS FUNCTION

HSTEP    P iiFUHC

2 73
2 81
2 90
2 99
2 1 08
2 119
2 127
2 ICO
2 150
2 103
2 173
2 183
2 191
2 199
1 20(1

CONVERGED
1 2011

2.».200501
3.629*8500
3.1.233500
1 .8095500
1.6006500
1 .1819500
B.B».535"01
7.17385~01
5.61975~01

29985*01
3 .16985*01
2.21825*01
1 . 3 3 3E.fi 01

1 .OS". 35*01
»,.».7595*02

3 .09515*02
»..i.3S0A,~03

2.2»>155~03
2.98015*05
6.02 255*06
»,.2131.5*09

8.00285*11

8.00285*11

1.2000500~8.90675*01
~B.».B795"01
~3.39525_01
"2.59195*01
"7.8»,695~02

6. 0-.625"02
1. S30>.£"01
2. 50«.15~01
3.1,1.295*01
»..37155*01

5.31395~0t
6.3».335"01
6.75505*01
7. B8-.65"01
a.26775"0t
9.33985*01
9. 5«.3*.5"01
9.9».585~01
9.97565*01
9.999V5~01
9.99995*01

1.0000500
7.69815*01
7.27675"01
1.27605"01
7.9».375"02
1 .986S5"02
7.89615*03
2.».0915*02
6.17».65~02
1.17975"01
1.92»,». 5*01
2.U7105"01
w.ooaor'oi
».. 57«. «.5*01

0.21375*01
6. B6G25~01
«.73205*01
9.12032*01
9.892Wi'"01
9.95155*01
9.99B75*01
9.99985*01

9.9999*5 Ol    9.999U5 01

5.51085*8    "2.773i.iy Ü

798.76
*C01.73

1.01.73

202.7

BEALES FUNCTION

HSTEP    P NFUUC F
1.C203501
3 .».9955*01
B.71305*02
S.35B05"0-.
1.2B9B5~0i.
9.61».65~07
2.27«95*09
9.0»,99~~13

9.0-.99~"l3

X*
0.0000500
2.1250500
2.1.689500
2.9162500
2.9728500)
2.997C500
2.9999500
3.0000500

0.0000500
2.08915*01
3.26205*01
C.81.935*01

92625*01
•..99395*01
•..99975*01

5.00005*01

3.0000500 5.00005*01

3 . 91. i.«~1 2.98», 12.98",
1.5. 5«.

POWELLS FUtlCTIOt! 2

HSTEP    P UFUUC

7V

as

. 5000500

.C97C500

.8698500

.8971.500

.9999500

. 0000500

.0000500

0. 00.00500
2.19585*01
U . 071.85*01
1. .78805*01

1.0192500
1.0051500
1.001,1.500

1.0000500
8.63355*01
7 .73885*01
8.00915*01
1.0079500
1 .0023500
1 .0017500

2.0000500
1 .G225500
1 .1885500
1.1 5-.2500
9.92885*01
9 . 981.85*01
9.98505*01

. 0000500

.0000500
.0033500
. 0031,500

1. 0019500
1 . 0015500

9.987G5 01
9.99005*01

119
133
I1.1.

.0000500

.0000500

. 000050 0

.0026500

.0 00 0500

. 0001500

1.0012500
1.0001500
1.0000500

9.99365 01
1.0000500
1.00005*00

153
175

.000050C

.0*000500
1 .0000500
1 .0000500

1 .0000500
1 .0000500

.00005 00

.99995*01

cz
2.0B1.B5

WEDGED
3      175 "3.0000500

"5    1.71055*5 "3.17855*

9.99995 01

i. .1302
"8. 0501.

1 . 80 51.

"8.050-,

9.0137"0.57887

1 . 805-,"0.57887

7.791«.



A QUASI-NEWTON METHOD WITH NO DERIVATIVES

Table 2 (continued)

POWELLS FUNCTION

HSTEP    P NFUNC

233
2wb
265

2.1500502 3
3.0957500 6
5.33«.9£"01 5

1.95».75~01 1

6.26255*02 2

2.9B555"02 1

1 .».l.9«.""02 1

1.16355*02 1

7.8».2i,5~03 1

5.23635*03 1

31.175*0», 1

2.910.55*0», 1

2.71».i-5~0». 1

2. 66175*0».
2. 52605*0«.
2.36365*0».

X*
,00 0 050 0 "j,0 00 050 0
,».6035*01 "i. 5 6 W05" 01
,83155*01 "6. -.«1,15*03

,81.005*01 "l.35705*02

,10175*01 "l.85»,15~02

,51775*01 *1.91-.25*02

,39985*01 "l.267i,-"02

317<,5 01

27305*01

1>,015"01

1B7B5~01

10955*01

0B055*01

.07895*01

.06015*01

.03195*01

1.19215 02

"1.22155*02

"1.23185*02

"l.li,a35"02

"1.10065*02

"t.07755*02

"1.07725*02
"1.05775*02
*1 . 028>.5"02

0.0000500
5 .22255"01
3 .30925"01

3, 191.85*01

1.0000500
7 .082». ."""Ol
3.03135*01
3 . »,91t,5"01

2.39935 01 2.-.71.75 01

1.93BO5"01 2.066».5"01

1.55015"01 1.81205*01

1.53 3 55"01 l.GB5»,5"01

l.i.2515"01 l.t,106t-"01

1,27675"01 1.29625*01

i, .960 85*02 5.38735*02

5.12635*02 5.25155*02

5 . 22685*02 5. 286».-"02

5 .121.35*02

5.1-»215*02
5.16085*02

5.21,11,5 02

5.22965*02
5.171»,£~02

22

30

389

23 i. 1.01,

2U I* 1.20
• IG 21.

25 I» 1.38
• IG 25

26 K U53
2 7 (• tt$e
28 i* ifiL

1.99

513
526

32 t* 5W2

33 i* 560
3«. «, 579

35 I. 591,
36 t, 610

• IG 36
37 3 633

• IG 37
38 «V 650
39 i, 665
1.0 i. 678

1.1 U 690

1*2 I, 705
-.3 <« 725

It*. W |*|
«.5 It 755

i, 771
•,7 i. 787

1,8 3 801.

W9 i, 817

50 3 835
51 3 851
52 3 866

53 3 885
51, i, 899
55 i. 913
56 2 935
57 3 958
58 3 978

•SPF 58

CONVERGED
58 3 978

GZ"5,83325*5 "0,

GG

2.30-.75 0».

2.25'.35"0',

2. 06395*01,

1.83365*01.

1.79725*0»,

1 .711.95*0»,

1.6*.». 35*01,

1 .60765*0*.

1 .22695*0».

1 .05115*01.

1.00915*0».
9.61625*05

6.55225"05
5.70955*05
5.605». 5*05
5. 3591.5*05
5.05555*05
»..7Qi.65"05

3.80325*05

2.32215~05
i, .091.05*06

». ,05605~OG

3. 660».5~0g
2.55305~06
2.37215*06
1 . 867»,5"06
1 . 52625"06
1.27725*06
1.23025"O6
7.761.75*07

2.95B95~07

1 . 6261.5*07

1 .1.3655*07
1 .».0075*07
1 .39725*07
1.391,15*07
1 .39095*07

1 .3711, £"07
1,33935*07
1 .22885*07
1.091,95*07

1.09305*07
1.09065*07

1 . 03035 01 1 .02595 02 5.09».»,5 02 5.15925 02

1.02575*01  "1.02355*02     5.0361.5*02 5.1361.5*02

.01715 01 1 . 011.55 02

.87765*02 "9.85705*03

9.78785 02

9.61055*02

9. 5B7t,5"02

9.53885*02
8. 95295*02

9.61055 03

"9.7l.995"03

"9.56365"03

*9. M8B5*03
*B.9«.215~03

-..5 9115*0 2    ».. 71* 155*0 2

i,.59H,5 02    «..6».335 02

i.. 5 5 855  02     i.. 631,95 02

».. 58625"02    i. .59035 02

t..1,9025 02    »..57935 02

I..-.7015 02

3.93035*02

»,. 5-.385"02
»,.03».25"02

8.62935  02     8.G2».05  03     3.81.195  02     3 . 90325 02

.53875 02

.■•1565*02

.18165*02

.27005*02

.031,1,5*02

.91255"02

.90265*02

. 880l£"02

. 61985~02

,03665"02
. C0285"02

8.52605 03
8.1,0605*03

7.16995-03

6.26115*03'5 . 98».85"03
'5.90265*03

5 .909».5"03
5.88li.5"03'5.60995*03

'5. 02895"03

3.60135"03

3 . 828B5"02
3.8».705"02
3,9382£"02
3,98005"02
3.98585*02
3, 91.375*02
3 . 86685*02
3.80315"02

3.59615"02

3.081.1.5*02

1 . 961 35~02

.88255 02

.90615*02

. 95155"02

. 9B».25"02

. 97».i.5"02

. 97615*02

.91055"02

.82115"02

,62015"02

. li,975"02

.95985*02

3.601,05   02     3.60265   03     1.95325  02     1 . 95635 02

,569 85 02

, 39915~02
, 26015*02
,901.85*02
, 2»,B05"02

, 26375*02
02285*02

, 02905*03
23185*03
1,5995*01,

51995*03
62165*03
6 31,35*03
62»,35"03
59035*03
B6»>75"03
39385*03
2».655"03
20875*02

18555*02
1B525*02

~3.57325 03
*3.39855*03
"3.25985*03
"2. 901.85*03

"2.25085*03
*1.26365*03
"1.02295*03
"8. 0301.5*01,

"3. 22515*0».

6.».9785"05
2. 5191,5*0»,
3.62555*0»,
3.63295*01.
3. 62295*0»,
3 .58895*01,

3. 86335*0».
».. 39255*0».

6. 2»,6i,5"0i,
1.20855*03
1,1B5»,5"03
1 .18525*03

1.87025 02
1.•,1815*02
1.18855*02
8.75395*03
2.72185*03"6.21965*03

"8.26795*03
"8.32325*03
"8 .77665*03
"9.10305*03
"9.2i,015"03
'9 .30605*03

"9.30175*03
"9.29585*03
'9. 28815*03

"9. 27t,95"03
'9.2».515"03
"9.0371,5*03
'8 . ',5-.15~03

'8.»,7125*03
"8. »,6625*03

1.87595 02
1 .1,2095*02

1 .18975*02
8 .81185*03
2.77565*03"6. 206*85*03

"«.271.85*03
"8.30575*03

"tt.76895*03"9.10».05"03
"9. 2». 1.15*03
"9.30515"03
"9. 30095*03
"9.29525*03
"9. 2871.5*03

"9. 271,35*03

'9. 2». «.65*03
'9.0371,5*03
■«.».5625*03

«.».7135~03'8.»,665jE"*03

1.09065 07 "l.

00023982     "5.761.55"

18525*02 1.18525 03

5     "3.17335*6

8. ».6625  03     8.1.6655 63

2.9281 20. 311.
20. 311, 198 . 08"1.621», "»..1385

0.6911,1         10. ».18

1.621»,"». .1305

9.8807"13.095

0.6911.1

10 .».18"13.095

9.1.135



john greenstadt

Table 3

i
.IG 2

31
«.3

3 »1
3 90
2 103
3 113
2 130
3 139
2 lka
3 159
3 109
2 179
3 199
3 199
3 309
3 317
2 320
2 23k

3 2k2
1 25k

COR VERGED
1 25k

2.9k991~8

r
k90kt02
2597100

,1930100

03k5100
30921*01
15181*01
139kt~01
k09kl~01
8317l"01

,37381*01
.60091*03
.SkS31~03
,k51kl~03
.klkll"02
.k57Bt~03

.60kll~03

.00k91~03

.99231*03

.11311*03
,klk21~03
.06091~0k
.23271~0k
.Slk61~05

.60501*07

.95371*09

.2 9961*16

.29961*15

"9

1*'1.2000100

"l.30«7l"01"8.2S17I"02

"l.50k7l"03
3.71371'01
3.55671*01
k.k0631~01
S.09351~01
5.7253t"01

6.337kl"01
7.0S931~01
7.25391*01
7.89031*01
«.15361*01
9.k3311~01
9.73371*01
8.99771*01
9.333kl~01
«.kk211~01
9.62391*01
9.77501*01
9.08901*01
9.96111*01
9.99311*01
0.99961*01
1.00001*00

1.0000100
3.50591*03
9.52681*03

S.k0k71 03
3.0k37l"03
k.k5931~03
8.k9761~03
1.33201*01
1.99781*01
2.60331*01
3.607 01*01
3.83361*01
k.91k61~01
S.kl361~01
5.99231*01
6.66951*01
7.38301*01
7.86971*01
8.kl751~01
0.91371*01
9.3k021~01
9.07061*01
9.88371*01
9.97931*01
9.99071*01
1.00001*00

1.00001*00 1.00001*00

1800.3"600.08 600.09
300.35

RAH DOS TRIG. PURCTIOU
XRULl ~0.k9662

9k

105
115
130

5.7102102
9.9780100
8.0360100

k.5219100
3.6389100
I.k680100

1.10721*02
k.92921*03
1.88771*0k
7.k6731*07
1.283kl~08
1.57191*09

10
11

«1*1 11

CORVERGED
11 1      130         1.57181*09

GZ
"0.00076759    0.00072191 0.000k7837

k.30k31 01
"k.970H"01
"k.9k601*01

"k.9302I"01
"k.93k5l"01
"k.91k51"01
"k.87011*01
"k.96881*01
"k.86681*01
"k.86621*01
"k.80631*01
~k.86621*01

1.3336100
1,k301100'1.3933100

'1.3809X00
'1.3715100

'l.3*1)100
1.3030X00'1.3037100

1.3009100
1.300k100
1.300kX00
1.3003100

6.159kl 01"7.72091*01

"7.«5»kX"01

"».1216I"01

"«.2182t"01"8.50291"01
*8.91601*01

"*.93721"01

"«.9k71I~01"9.95161*01

"9.95191*01

"».9S19l"01

k.86631 01     1.3003100 "8.95191*01

30k93"350S.7

991.99

2505.7
215C7
15387

891.99
15397
13091



a quasi-newton method with no derivatives

Table 3 (continued)

HELICAL VALLEI

2.5000103
3.2310101

1 .61.3*101

1*
.0000100
.50 3 61 01

.35281*01

0.0000100
6.767»I"01
6.23821*01

0.0000100
k.1635100

k.OlkBlOO

115
125

1 . 5330101
1.3906101
7.k9Ckl90
6.5997100
3.7337100
3,5229100

7.91961 01"6.92591*01

~l.S0kll~01"5.00091"02

5.26711*01
S,Sk6kt*01

6.17901"01
7.098kl~01
9.7S971"01
1.0019100
B.61351*01

9,5k97l'01

3.901kl00

3.7391100.
3.7332100
2.5519100
1.6k09I00
1,5731100

3 lk3
3 15k
3 16B
3 190
3 207
3 217
3 235
3 2k6
3 259
3 269

3 290
3 291
3 30k
3 313
3 325
3 335
3 3k6
3 359
3 369

3 379

2 39k
1 kl2

COIIVERGED
0 k2k

2.1290100
1.7566100
1.3967190
k.91201*01
2.19261*01
1.27871*01
7.38911*02
1.67761*02
9.9k791*03
3.69k21~03

1.3Sk6!~03
3.82231*0k
6.kSk01"OS

9.391kl*06
3.05911*06
9.53k21*07

2.9kSl!"07
k.55571*09
6.k8k21*09

l.llk71*09
3.57191*10
8.2k031*12

6.39251 01
6.73291*01
7.36031*01
9.19kll*01
9.60111*01
9.91891*01

9.99751*01
9.96731*01
9.98161*01
9.99121*01
9.998kl~01
9.93931*01
9.99991*01
1.00001*00
1.00001*00
1.00001*00
1.0000100
1.0000100
1.00001*00
1.00001*00
1.00001*00
1.00001*00

7.97591 01
7.k0121*01
6.kl351*01
k.2k)31~01
2.85621*01
2.17531*01
1.68971*01
8.16951*02
6.29321*02
3.926kl~02
2.27361*02
1.23201*02
5.05921*03
1.915 21*03
1,10kkl~03
6.15091~Ok
3.39B8!"0k
1.3k731"0k
5.07131*05
2.09591*05
1.193kl*05
1.78811*06

1.k370100

1.3253100
1.151.7100
6.89331*01
k.65231*01
3.36231*01
2.687kl*01
1.290kl~01
9.90531*02
6.07321*02
3.65791*02
1.95381*02
8.03061*03
3.06161*03
1.7klkl"03
9.7598t"0k
5.k2k61~0k

2.12B81"0k
8.0k961~05

3.33861*05
1.88121*05
2.83801*06

7.90561*12
GZ

2.k2k9t"7     1.11991*5 "6.78931"

1.00001  00     1.72kBl~06 2.7k511*06

118.89
520.95"322.86

71.55S
"322.86

202.25

WOODS FURCTIOR

I
• IG 2

»IC
5
6

a 7
9
G a
9
G 9
0
G 10

iruic
5

116
130

193
306
223
337

362
269
296
398
317
3kl
360
377
3*9
kOl
H7
k35
k52
k69
k86

510
536
539
555
57k

r
1 .919310k
3.6916101
1.0*19101

0.3398100

7.7k35X00

7.0013100
6.3793100
5.9995100

5.8109100

5.7klll00

5.k569100

5.k006!00
5.393kl00
5.3669100
5.3k71100

5.3316100
5.3798100
5.337kl00
5.2080100
k.9765100
3.9000100
3.6285100
3.2538100
3.1268100
3.079kl00
2.95k7100
2.935kl00

3.5633100
3.S01010 0
1.9936100
1.77k7100
1.5361100
1.3358100
1.Ik77!00
1.1333190

3.0000100
1.38531*01
3.00791*01

3.6k9kl~01

k.3k29l*01

5.09971*01
5.335kl*01
5.kll31~01

1.0000100
3.66961*01
1.25921*01

1.86991*01

2.25031*01

2.57921*01
3.00961*01
3.17611*01

3.0000100"2.23191*01

~1.119kl00

"1.1208100

"1.1071100

"1.1190100
"1.1571100
"1.1778100

"l. 0000100
1.93261*01
1.1970100

1.3626100

1.29kS100

1.3037100
1.3530100
1.3892100

5.72131*01 3.33931 01 1.17k2100 1.'.07 5100

5.6k891~01     3.35021*01   *1.1856100 l.klSOlOO

6.03931*01     3.5kl01~01     1.2355100 1.5222100

6.00361 01
6.06191*01
6.13591*01
6.16k2l"0l

6.27581*01
6.k0261~01
6.71521"01
6.7k82!~01

7.23721"01
1.O57kl00

1.lOOklOO
1.1631100
1.1777100
1.1905100
1.2kl3100
1.3919100
1.3573100
1.SkkllOO
1.3935100
1.3980100
l.k!82100
1.kl39100

l.klOklOO
l.kllllOO

3.69661 01
3.73k)l~01
3.79101*01
1.95861*01

3.92k91*01
k.12791*01
k.k7861~01
k.56751*01

5.38781*01
1.1339100
1.3100100
1.1906100
1.3958100
1.kl91!0O
1.5kS9100
1.6383100
1.1)38100
1.9076100
1.9159100
1.9570100
2-OOkllOO

1.9999100
1.9909100
1.9813100

"1.2370100

"l.2358100~1. 2386100

"l.2331100

1.5k 22100

1.5367100
1.5365100
1.5300100

"1.2313100

"l.232klO0'1.2351100
'1.3308100

'l.lk97100'7.79581"01
"7.36031"01
"6.57121"01
'6.95361"01
'6.91261"01
"6.62561"01
"6.01281"01

'k.5276l"01
"k.57k5l"01
'2.18811"01

*1.07k01"01
2.317B1"02
1.30011"01
2.3657£"01
2.k6261"01

1.5311100
1.5331100
1.527kt00
1.53k3100
1. 3258100
6.57651*01
5.57921*01
k.k78kl*01
k.999kl~01
k.90511*01
k.k9191*01
3.71kkl*01
2.220kl*01
2.09661*01
5.60121*02
2.2k9kl"02
3.9n601~03
2.10811*07
5.27091*02
5.61951*02
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Table 3 (continued)

36 >>

36 *
37 •>
311 *

39 *
*0 *
*1 *
*2 *

• IG 1.2

1.9

60
SI
52
S3

• JO S3

lb
• IG 5".

•-(7 56

57
• IG 57

sa
•IG sa

59
60
61
62

•10 62

63

6*
65
66
67

• 10 67

CO
59
70
71
72

75
76

95
96

96

596
613
632
6*9
67*
696
700
71S

729

7*5
763
779
79*
909
823
8*5
861
98*
896

913

977

993
1007
1023
1036

1052
106*
1078
1096
1112

1131
1160
1175
1193
1207
1221
1237
1257
1271

* 1289
* 1301
* 1315
* 1330
* 13**
* 1356
* 1378

1 1396
1 1*15
1 1*32

CONVERGED
0 1*5*

GZ"2.3*981*5 2.6:

1.0277100
8.2*551*01
7.59161*01

6.79*51*01
*.67751*01
3.**071~01
3.35661*01
3.27601*01

3.22771*01

12*91 01
72001*01
69881*01
07*11*01
55851*01
252*1*01
*3811*01
339*1*01
25*21*01
22281*01

.21301*01

.20*91*01

.19561*01

.190*1*01

.17101*01

50751'
137S1'
32601'
37961'
51391'
69781'
87991'
096*1'
109*1'
58761'
80*91'
03201'
72881"

8*911'
207*1"
16221"
13*81"
52951"
07 261"

02

1.3837100
1.3378100
1.296*100
1.2711100
1.1978100

1.2373100
1.2*76100
1.2*69100

1.9162100
1.7916100
1.6777100
1.63*6100
l.**78100
1.532*100
1.55*7100
1^556510 0

2.81511 01
3.71911*01
*.*6811*01
*.97811*01
6.*8181~01
6.38701*01
6.*0131*01

6.*6351~01

6.51631*07
1,*9*61*01
2.01391*01
2.53751*01
*.17681*01
*.15171*01
*.089*1*01
*.13511*01

1.2*68100       1.5S70100      6.*6231~t>l     *.17861*01

1.2*69100
1.2*17100
1.2*09100
1.2191100
1.2326100
1.2223100
1.1929100
1.1752100
1.1725100
1.1701100

1.1702100

1.1689100

1.1688100

1.1673100

1.1673100

.11551 01 1,

.07**1*01 1,

.*772I*02 1,

.60211*02 1,

.69291*02

.31931*02

.66021*02

.63981*02

.56511*02

.92801 10 9

~5 0.00010617

1631100
1602100
13*1100
11*3100

.1166100

.1112100

.0950100

.0962100

.0961100

.09JD100

.0882100

.0656100

.060S100

.0*61100

.0*57100

.0*32100

.0388100

.0292100

.007*100

.0032100

.0029100

.0019100

.999*1*01

.99981*01 .

.99971*01

.99961*01

.99981*01

.99991*01

.99991*01

*.91791"

1.5558100
1.5*29100
1.5366100
1.5351100
1.5199100
l.*9*9100
1.39*3100
1.3786100
1.3698100
1.3700100

1.3672100

1.3669100

1.3655100

1.3633100

1.3610100

1.3533100
1.3*65100
1.2957100
1. 2*911.00

1.2*71100
1.2352100
1.1985100
1.202*100
1.2003100

1.1995100
1.18**100
1.1352100
1.12*6100
1.0938100
1.0932100
1.099*100
1.0793100
1.0592100
1.01*9100
1.0063100
1.0058100
1.0037100
9.99881*01
9.99961*01
9.99931*01
9.99921*01
9.99971*01
9.99991*01

6.52211 01
6.90211*01
6.89211*01
6.88791*01
6.93611*01
7.19591*01
7.99621*01
8.13021*01
8.07591*01
8.05651*01

8.059*1*01

8.0*931*01

8.06*51*01

8.07361*01

8.08571*01

8.12791*01
8.15771*01
8.33301*01
8.50S91*01

8.6*971*01
8.69171*01
8.91521*01
8.97661*01
8.99721*01

9.00281*01
9.01*21*01
9.19981*01
9.38511*01
9.60611*01
9.55371*01
9.57571*01
9.57881*01
9.70551*01
9.9*911*01
9.96711*01
9.97301*01
9.99581*01
1.0003100
1.0O0O1OO
1.0000100
1.0000100
1.0000100
1.0000100

*.27781 01
*.7*601*01
*.73371*01
*.7*701*01
*.81721*01
5.16521*01
6.376*1*01
0.61761*01
6.50581*01
6.*7*21*01

6.*9211~01

6.*7951"01

6. *932I*01

6.50*11*01

6.52031*01

6.60291*01
6.6***1*01
6.9*301*01
7.23761*01

7. *8321"01
7.56851*01
7.77*81*01
8.06891*01
9.09231*01

8.09901*01
8.13181*01
8. **9C1~01
9.80*51*01
9.23171*01
9.12521*01
9.16661*01
9.17581*01
9. *1901*01
9.890*1*01
9.93*31*01
9.9*591*01
9.97181*01
1.0005100
1.0001100
1.0001100
1.0001100
1.0000100
1.0000100

9.99981  01    1.0000100 1.0000100

GO

799.6"380.23

51.112"18.939

390.23
205.12"23.93

31.517

51.112"23.93

727.31"378.26

19.938
31.517"378.26

22*.25
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Table 4

Comparison with Other Methods

(Figures taken from [14])

Method QNWD H-J Ros SPLX Pow Stew

Function

Rosenbrock 208(—11) 250(-8)   200(-6)   200(-8) 151(—10)* 163(—12)**
Beale 77(—13) 100(--c) 130(-7) 100(-8)
Powell 1      978(-7) 433(—13)* 407(-10)**
Cube 254(—15) 200(-<=°) 140(-7)
Box 191(-11) 100(--o) 290(-5)
RTF(3)***   130-284 96-120

Av. = 189 Av. = 108
RTF(5)***   312-406 166 - 167

Av. = 370 Av. = 166

* These figures come from [10].

* * These figures come from [4].

*** These are Random Trigonometric Functions of dimension 3 and 5. The accuracy criterion

used is that the maximum error in any x-component is < 10~7. The smallest and largest numbers of

evaluations taken are listed, as well as the averages.

down to a certain value is listed. The number in parentheses is the exponent, to base

10, of the least calculated function value. The value "-co" indicates that / was

reduced to zero.
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Appendix A.

Limiting Cases of v —» 0 and v —» °°.

Case 1: v —> 0. If v is set to zero in Eq. (4.17a), the formula for Oi is not defined,

since t\ = <r2. Therefore, we must consider 0j (and -h) separately. The formula for

0! is:

(Al)

and for t-,, we have:

(A2)

When /*    1, we have:

(A3)

0!  =  (€l  - 2Pl)/c-2

Vi = 4vpJo-\ — 20j.

=    2, 2-2T + 0(v ),
2/ 2 o-i) ■
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(A4) li-S-ft-M«.

When v —> 0, every term in formula (4.5a) goes to zero, except the first term

(for / = 1). The result for 7 is (also replacing A by L):

(A5) 7->£tV-.

For r, we must be more careful. When we replace M by L/v, we have a denomi-

nator which converges to 0, whereas ßx and 771 do not. However, if we evaluate the

terms in the brace in formula (4.5b) for i = 1, we obtain:

(A6) { },_, = tj^xo-f + 2dxa,al

since rx = ax. Replacing r\x by expression (A2), we then have:

4e2
(A7) { }<_i = — PiCiff — 26xcrxo-x + 2dxaxo-x ,

o~x

so that all we have left is the first term. There is no difficulty with the rest of the

terms in Eq. (4.5b).

For convenience, we define:

2(6, - 2Pi)
2,   2 2,.(A8) 6{ - _2,-_2 _2S  > I 9* If

(A9) Vx = —4- ,
<TX

(A10) ^ = -£i - 20,;      i 9* 1,

so that

&i/v2 = 0",- + 0(r2)   and   Vi/V2 - ij, + 0(»2).

Then T becomes (replacing M by £/-•):

(All)

r = 1 f4Z2p1?l£r  ^    ,      ,    , t
2*       I       CTj ftl . J

= ^ Lj",«»,*" + X [^t-it-f + 0,(cT,T,r -f T,cr^)]|z, + Ofr2)

and when v —> 0, the last term vanishes.

Clearly, this limiting procedure has the effect of correcting g0 from the results of

the first minor step only, and of removing part of the first minor step discrepancy

from the correction to G.

Case 2: v —► <». In this case, there is no need to separate out the first minor step.

The limit for 0,- is:

(A12) 0,- -> («, - 2p,)/<72,

but rji still contains a multiple of v2. The formula for 7 remains the same as (4.5a),

but that for V becomes:
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(A13) r " 5 4? '***}-•

and the last term vanishes for v —> co. In this case, g0 is corrected in terms of all the

minor steps, but the (7-correction does not contain the 0's.

In the program used to run the test problems, L was set equal to the unit matrix I,

as mentioned in the text.

Appendix B.
Comparison with Fiacco-McCormick Method. The method described by Fiacco

and McCormick in their book [16] is based largely on a relation identical with Eq.

(3.15a). Let a step <r be made up of a linear combination of at most two coordinate

directions, viz.:

(Bl) c-(,y) = afii + afi,.

That is, let the direction S,,- be specified in terms of coordinate directions <?,• and

eit and do a line search for the minimum of / along that direction, starting at a point

x0. Then the minimum is found at Xi (= x0 + <-<,-,)) and the difference between

starting and minimum values of / is denoted by Af<tfi. We then have, rewriting

(3.15a):

(B2) Afun = -K<»G*--<„

and, replacing (-(t/) according to (Bl), we obtain:

(B3) A/,„, = -l{atfG*e, + la.a/^e, + efc&tA

(remembering that G* is symmetric). But, because the coordinate-direction vector

e,- has the structure: e, = (0, 0, • • • ,0, 1,0, • • • , 0)—where the 1 is in the ith

position—each of the products singles out a component of G*. Thus, e.g.,

(B4) eTtG% = Gf„

so that (B3) becomes:

(B5) A/,,,-, = -htäGTt + TatUiGt, + afÖ*,}.

Now, we choose the first set of directions for o- so that they lie along the

coordinates. Then, we have:

(B6) A/(„, = -ha\G*it

from which we can solve for the diagonal elements G^.

Next, we arrange that «< = a,- (and denote them both by a,,), i.e., we search in a

direction (always starting at x0, as before) which bisects the right angle between et

and e,-. We then have:

(B7) Afui) = -haaiGfi + Gfi + 2G*),

from which we can solve for G,*v, since everything else is known. Clearly, since G* is

symmetric, we need only have done \ N(N + 1) line searches.

Once we have estimated G* in this way, we make use of Eq. (3.15b), using the

results of the searches along the coordinate directions, (r is, of course, the same as a

for a single line search.) We then have:
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(B8) a(ggt + a\m* = 0,

from which we solve for \ga*i\. We may then translate g* to any other point, using

(3.12).
The main differences between this method and the QN method outlined in this

paper are:

F-M QN

1. ^ N(N + 1) line searches

2. Complete estimate of g0 and G

(exact for a quadratic function)

3. Completely new estimate at next

major step

N line searches

Incomplete estimate of g0 and G

Improvement of previous estimates at

next major step
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