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An Algebraic Theory of Integration Methods

By J. C. Butcher

Abstract. A class of integration methods which includes Runge-Kutta methods, as well

as the Picard successive approximation method, is shown to be related to a certain group

which can be represented as the family of real-valued functions on the set of rooted trees.

For each integration method, a group element is defined corresponding to it and it is shown

that the numerical result obtained using the method is characterised by this group element.

If two methods are given, then a new method may be defined in such a way that when it is

applied to a given initial-value problem the result is the same as for the successive applica-

tion of the given methods. It is shown that the group element for this new method is the

product of the group elements corresponding to the given methods. Various properties of the

group and certain of its subgroups are examined. The concept of order is defined as a

relationship between group elements.

1. Introduction. In the study of Runge-Kutta methods for the integration of

ordinary differential equations, a complicated set of algebraic conditions arises

which must be satisfied for a method to have some specified order. These algebraic

conditions can be written as a set of equations in which the left-hand sides are certain

polynomials in the coefficients of the method and the right-hand sides are certain

rational numbers. Discussions of the properties of general Runge-Kutta methods

and the derivation of particular methods can typically be formulated in such a way

that the properties of these polynomial equations come under close scrutiny. In the

author's papers on this subject, a combinatorial interpretation of the equations has

been used. That is, use has been made of the relationship between the graphs known

as arborescences (or rooted trees) and the forms of the various equations.

In this paper, the same point of view is taken and it is shown that, in a certain

sense, a given method is characterised by a real-valued function on the set of rooted

trees (the word "trees" will be used as an abbreviation for "rooted trees" for the rest

of this paper). In fact, the images of the various trees describe the method in much

the same way as moments describe a measure in integration theory.

For the purposes of this paper, it is convenient to generalise considerably the

concept of a Runge-Kutta method. Not only will it not be assumed that the method

is explicit but it will not be assumed that the number of stages in the method is finite.

One consequence of this is that the theoretical solution to a differential equation

itself may be thought of as being produced by a particular method (the Picard method).

Also, it becomes possible to study the properties of the various methods in terms of a

certain group that arises naturally. To say a given method is of order n, for example,

will be equivalent to saying that the method and the Picard method have group

elements in the same cosets with respect to a certain normal subgroup.
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In the next section of this paper, certain notations and properties of trees will be

developed. Section 3 will be concerned with a formulation of the general type of

initial-value problems we are considering in this paper and Section 4 will prove some

analytical results necessary for the later sections. In Section 5, we shall prove the

basic result that the tree functions referred to above characterise the integration

method and in Section 6, a group which is relevant to the theory is introduced and

some of its properties are studied there and in Section 7.

Applications of the various theoretical results are not considered in this paper,

but an outline of such applications is given in Section 8. The appendix, Section 9,

gives various tables for reference purposes.

2. Some Properties of Trees. Consider a nonempty finite set o- and a binary

relation p on a. The pair (<r, p) will be called a labelled graph and the elements of <r

will be known as labels. (<r, p) and (V, p') will be said to be isomorphic if there is a

bijection <p: u —* a' such that p contains ((p(x), <p(y)) if and only if p contains (x, y).

We will think of the class of all labelled graphs isomorphic to a given labelled graph

as the graph corresponding to the given labelled graph. We will speak of a labelled

graph as a labelling of the graph corresponding to it. Usually, we will not distinguish

explicitly between a graph and a labelling of it.

Table 2.1

{0} I }

{0,1} {(0,1)}

{0,1,2}       {(0, 1), (1, 2)}

{0,1,2}        {(0, 1), (0, 2)5 oV 7-r-r

7{0,1,2,3}    {(0, 1), (1, 2), (2, 3)}     o/ t(t-tt-)

{0,1,2,3}    {(0, 1), (0, 2), (2, 3)}      oV tt*tt ~ (t*tt)t

Y{0,1,2,3}    {(0, 1), (1, 2), (1, 3)}     oi t(tt-t)

{0,1,2,3}    {(0, 1), (0, 2), (0, 3)} (tt-tit
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If 7! = (au pj) and 73 = (02. P2) are graphs such that C\ <r2 = 0 and such

that <7! W o-2 = cr, Pi W pa = p, where 7 = (<r, p) is a graph, then we call (71( 72}

a disconnection of 7. If 7 has no disconnection, then we say that 7 is a connected

graph.

A connected graph 7 = (0-, p) is called a tree (as has been already pointed out,

we are not using this word in the usual way) if there is an element r of <r (/ will be

called the root of 7) such that for each y £ A!7"} there is a unique x £ a such that

(*> y) £ p and there is no x £ er such that (x, /•) £ p. The order of a tree is the

number of elements in a. We denote by T the set of all trees. In Table 2.1, the eight

trees of order not exceeding 4 will be listed together with a diagrammatic representa-

tion in which the elements of a are represented by points and the elements of p are

represented by arcs. The root in each case is labelled with the symbol 0. The final

column will be explained later.

We now define the product of two trees. Let (cru pj) and (<r2, p2) be labellings of two

trees 71 and 72 such that <ri and <r2 are disjoint and let rx and r2 be the roots of (<ru pt)

and (cr2, p2). We define the product 7! • 72 as the tree which may be labelled as

(o-! U o-2, ft W p, W {(/•,, r2)\).

It is easy to see that this is a labelled tree with root rx. If the order of a tree is defined

as the number of elements in a for a labelling (a, p), then we see that the order of a

product is the sum of the orders of the factors. Also, we see that if yit y2, 73 are

trees then

(2.1) (7i-72)-T3 = (7i-73)-72-

We now prove a factorisation principle in terms of this product.

Lemma 2.1. If t is a tree of order greater than 1 then there are trees u, v such that

t = u-v.

Proof. We take (er, p) to be a labelling of / and we shall prove that there are pO

and (o-2, p2) such that 0-1 r\ <r2 = 0, o-j W <r2 = a, p = pi U p2 W {(/1, r2)}, where

rl9 7*2 are the roots of (ctu pj and (<r2, p2). This will be proved by induction on the

order of /. For t of order 2, we have if (0, p) = ({0, 1}, {(0, l)j) then (o-j, pO =
({0}, { }) and (<r2, p2) = ({1}, { }). We now suppose the result to be true for orders

less than n where n > 2 and prove the result for t of order n.

Since p_1 is a function on a\{r\ to cr, where r is the root of (<r,-p), and since a

has 1 more element than o\{r], p'1 is not surjective. Hence, there is an x £ a such

that there is no y £ cr such that (x, y) £ p. Let z be the unique element in a such

that (z, x) £ p. We define (</, p) = (a\{xj, p\{(z, *)}). It is easy to see that (cr', p')

is a tree with root r and order n — 1. Let (crj, p(), (c^, p0 be formed corresponding

to a factorisation of (<r', p'). We distinguish two cases:

Case I. z £ <r{. In this case we define (au pO = (a[ W {x}, p{ U {z, x}), (o-2, p2) =

(y2, P2).

Case II. z £ cr2. We define (o-j, Pl) = « p[), (cr2, p2) = (<r^ W {*}, p^ W {z, *}).

In each case, we see that (o-l5 pO and (<r2, p2) are trees satisfying the required

conditions.

Let t denote the unique tree with order 1. Then, using Lemma 2.1, we see that

all trees are generated using t and the product that has been defined. We also see

that an induction principle can be used for recursive definitions of functions of
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trees and in the proofs of certain results. The principle is that if a result is true for r

and for / • u whenever it is true for t, u £ T, then the result is true for all trees. Stated

formally, this is the next result.

Lemma 2.2. IfU is a subset of T with the properties that r £ U and /•«£[/ for

all /,«£[/ then U = T.
Proof We shall prove by induction on n that every tree of order n is a member

of U. For n = 1, we have only the tree r and r £ U. For n > 1, we assume the result

for orders less than «. If t is of order n, then, by Lemma 2.1, there are trees u, v such

that t = u-v. But by the additive property of orders, u, v are of order less than n

so that u, v £ U. Hence, / = u-v £ U.

At this point, we make a comment on notation. The product of trees which we

have denoted by • will also be denoted by juxtaposition. We will use the two notations

interchangeably except that we conventionally suppose the juxtaposition operations

to be performed first. This convention is intended to reduce the number of times

that parentheses must be used. For example, (txt2-tzt^)t&-t6t7 will denote the same

tree as (((*,• /2)-(/3- ?„))• ts)-(tB-17). Using this notational device, the various trees of

Table 2.1 are shown in the last column written in the form of products generated

by t. Note that the trees tt-tt and (t-tt)t are identical by Eq. (2.1).

For many purposes, it is convenient to label trees with some standard type of

symbol. Thus, we introduce the set S defined as the union, for n = 1, 2, 3, • • • , of

the sets of h-tuples of positive integers. That is,

S = {(1), (2), ••• ,(1,1), (1, 2), ••• , (2, 1), ••• , (1, 1, 1), (1. 1, 2), •••}.

If x £ S is an n-tuple, then we define x~ as the (n — l)-tuple formed by omitting

the final integer from x. Conventionally, we write x~~ = ( ) £ S if x is a 1-tuple.

Let F denote the set of finite subsets of 5.

If <r £ F, then we can associate with a the labelled graph (er, p) where

p = {(x~, x): x, x~ £ cr}.

We define a labelled forest as a labelled graph (a, p) such that (<r, p) can be discon-

nected into (o-j, p,), • • • , (<rm, pm) (with m possibly equal to 1) where each of (<ju pi),

• • • , (o-„, pm) is a labelled tree or such that (a, p) = (0,0). The following lemma is

stated without proof.

Lemma 2.3. Any finite subset of S represents'a forest and any forest can be represented

by a finite subset of S.
Now, consider the set M of real-valued functions on F. We will define a binary

operation on M. However, we first define a partial ordering g on F by writing

ax ^ <t2 if oi q a2 and x £ uu x~ £ a2 => x" £ ov If a, ß £ M we define the product

aß by

(2.2) («0)(a) = D a(<rVW)

for all a £ F and the summation is over all members a' of F such that er' ^ a.

If we write + a2 + ■ • • = <r to indicate that tru <r2, • • • are disjoint ?ets whose

union is a then we may rewrite (2.2) as

(o0)(<r) =       Z a(<rs)ß(<r2).
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"We now show that the operation we have just defined is associative.

Lemma 2.4. For a, ß, y £ M, (aß)y = a(ßy).

Proof. We have, for all a £ F,

<2.3) ((aß)y)(cT) = £ «(ff,)«ff2)Y(ff»).
ff i +ffa+ff»"ffIffsSffl^aSfiUffa

(2.4) (a<Py))(<r) m £ «(«r,>3(«rs>y(ff,).
ffi+ffj+ffj—ff ; ff aVJffa äff ; ff a SffaUffi

To show that the right-hand sides of (2.3) and (2.4) are identical, it is sufficient to

. show that if <ju <r2, <r3 are disjoint then

{2.5) <r3 :S cti \J <x2 W <r3

and

(2.6) tr2 ^ er, W cr2

if and only if

{2.7) <r2 yj tr3 5= er, U <r2 U <r3

and

(2.8) o-3 ^ <r2 \J cr3.

The relations (2.5)-(2.8) with ^ replaced by C are automatically true. Hence, we

may write the following equivalent form of these four statements.

(2.9) x £ cr3 => x~~ £ ff! W <r2,

■(2.10) £ffi,

{2.11) *Gff,U

(2.12) x £ cr3 => a:" £ tr2.

That (2.9), (2.10) are equivalent to (2.11), (2.12) is immediately clear.

With the operation defined by (2.2), M is a semigroup with identity e defined by

e(0) = l,e(a) = Oifo- £ F\{0\. The subset M0 = {a: a £ M, «(0) ^ 0J with the

operation is a group. To show this, we see that if a, ß £ M0 then (aß)(0) = a(0)ß(0)

9± 0 so that a/3 £ M0 and we show how to construct an element a L £ M0 so that

<*af1 = e. We do this by defining of '(<r) recursively on the number of elements in a.

We have

(2.13) «-'(0) = a(0)-\

(2.14) «"'(ff) = -(    S    «(<rV)«" V)) / «(0).

fora £ F\{0).
We consider further the subset Mi of M0 defined so that a £ M[ if and only if,

whenever <jx and cr2 correspond to the same forest, then a(<xi) = a(<r2). It is easy to

see that Mi is a subgroup of M0. However, our main concern will be with a subgroup

M2 of Mx which we now describe.

An element a £ Mi is said to be multiplicative if a(0) = 1 and if, whenever
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(cru <r2) is a disconnection of u (that is <rx + tr), then a(<r) =

a((Ti)a(o-2). We define M2 as the set of multiplicative elements of Mx. This means

in effect that members of M2 can be represented by functions on T to R. That M2

is a subgroup is shown by the following lemma.

Lemma 2.5. If a, ß £ Mx are multiplicative then aß and a~l are multiplicative.

Proof. Suppose (<r,, a2) is a disconnection of a then there is a bijection between

the set of pairs (a[, <r'2) such that <r( ̂  o^, ^ <j2 and the set {tr' £ F: a' ^ <rj. In

fact, the bijection is such that a' = a\\J a'2 corresponds to (<x[, a'2). In the inverse

relation, (<r[, c!2) = (<r, C\ tr', tr2 C\ a') is a disconnection of the corresponding </

and (o-1\ar1'J (r2\a'2) is a disconnection of <r\<r'.

We now have

(aß)(cr) = £ a(a\cr')ß(cr')
ff' ^ff

=    E    E a(<r,V.'V(02VO/3(<r;)ß(<r2)

= (aflGrO-feflfo)

so that a/3 is multiplicative.

To prove a-1 is multiplicative, we proceed by induction. Thus, we suppose

a_1(<r') = a~ 1(<r{)a~ 1(?'2) whenever (<rf, <t'2) is a disconnection of the forest a' with

fewer elements than a. We now have

= -     E <*(<rV)a~V)

= of Vi)""'^) —EE a(ffiVi')o:(02V2)a"1(cr1')a",((r2)

a \<Tl)a l(a2).

We now observe that if o- £ F is a labelled tree and tr' § tr, then either a' is a

labelled tree or a'    0. Hence, in this case, (2.2) takes the form

(a/3)(tr) = E a(cr\cr')ß(a')

(2.15)
= «0r) +      E „ «('VW)

where the summation involves values of /3 evaluated only at trees.

Let a, b be functions on T to R corresponding to a, ß £ M2. That is, if <p is a

function on the nonempty connected members of F to T defined so that for each a,

<p(<t) is the tree corresponding to a, then a = a o <p~\ b = ß o <p~\ If t £ T is given

by ? = p(er), then (2.15) becomes

(2.16) (ab)(t) = a(r) + X(a, f)(*)

where for a given a and X(a, *) is a certain linear functional on the set of functions

on T to R.

In later sections of this paper, the function \ will assume some prominence so

we now consider its main properties. First, however, we make some definitions.

We define G as the set of functions on T to R with the composition rule given by

(2.16) so that G is a group isomorphic to M2. The identity of G maps all / £ T\o 0.
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We also define for t £ T, the linear functional i (or t") on G defined by i(a) = a(t)

for all a £ G.f will denote the set {i: t £ T\ and G* will denote the set of linear

functionals on G spanned by f. That is, if p £ G* then there is a function cp on F

to R such that {* £ T: cp(0 ^ 0} is finite and so that for all a £ G,

Pia) = X cv(t)a(t).

For /, fi £ f we define the product f ■ m by i■ ü = (fw)~ and if /?, £7 £ G* we define

/>o £ G* in such a way that it is a bilinear extension of the product defined for f.

. That is, if p = Xier cv(J)t, q = Xier cQ(t)t then we define pq as

PQ =   X cp(f)c„(w)ta.
i,«£r

We note that X is a mapping on G X F to G*. The following result enables us

to determine X using the induction principle for F given by Lemma 2.2.

Theorem 2.6. For a £ (7, ana* «, d £ F we toe

(2.17) X(a, r) = f,

(2.18) X(a, «©) = \(a, u)\(a,v) + a(i;)X(a, u).

Proof. (2.17) is equivalent to (a/3)(<0 = a(o-) + ß(a) in the case when a £ F

has exactly one member. This is clear because if a' ^ <r then a' = 0 or a' = <r.

The proof of (2.18) is more involved. Let o- £ F correspond to t = uv and let

<T!, <r2 correspond to « and v, respectively. Without loss of generality, we may suppose

that the root of a is (1) and the root of tr2 is (1, 1). The only connection between

a,, and o-2 is ((1), (1, 1)) so any subset of o-j not containing (1) is not connected to

any subset of <r2 and any subset of <r2 not containing (1, 1) is not connected to any

subset of o-j. Furthermore, if a[ fg <ru a'2 ;£ <r2 and c[ = 0 only if a'2 = 0

then <j[ KJ a'2 ̂  <r. Also we observe that the relationship between such pairs (c[, a'2) as

have these properties and u' = a[ VJ a2 is a bijection. Hence, we have

(«0X*) = £ a(irV')ß(ff')
IT ' äff

= «(*) +    Z «(<riVi')a(<r2)^(<T{)

+      X      «(.r.v.x^ViWCffj u <r'2y

and this is equivalent to (2.18).

A final property of X we will consider is

Lemma 2.7. If a, b, c £ G and t £ T then

(2.19) \(ab, 0(c) + Ma, /)(6) = X(a, t)(bc).

Proof. This result is simply a reformulation of the associative law for G. We have

((ab)c)(t) = X(ao, 0(c) + (ab)(t)

= X(a6, 0(c) + Ma, t)(b) + a{t),

(a(bc))(t) = Ma, t)(bc) + ait),

and (2.19) follows by equating these expressions.
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3. The General Integration Method. Let //'denote an arbitrary set and B(H) the

set of bounded real-valued functions on H. A(H) will denote the set of bounded

linear operators on B(H) to B(H). If we are given H and a £ A(H), then we can

consider an "initial-value problem" defined by a Lipschitz-continuous function /

with sufficiently small Lipschitz constant on a Banach space X to X and by a fixed

element r;0 £ X. The problem is to evaluate t\x = y(hx) for hx a fixed point in H and

y a bounded function on H to X (we write Y for the set of such functions) which

satisfies

(3.1) y = voe + a X (Joy).

Here, e denotes the unit in B(H) so that i)ae will be defined by (r\0e)(h) = t/0 for all

A £ i/. The notation a X denotes a linear operator on Y to 7 defined bypo(aXy) =

a(P 0 y) for all p G. X* (the dual space of X). In order to ensure that a X is defined,

we will assume that X is reflexive. For a given h £ H, the mapping that takes p to

a(p o y)(h) is linear and continuous and is thus equal to x. £ X** for some x £ X

(a X j>)(A) is thus defined as x. In later sections of the paper, we shall, in fact, suppose

that X is finite dimensional.

To illustrate the type of initial-value problem covered by our general method,

we point out that if H is a finite set, then the procedure for evaluating rh is just that of a

Runge-Kutta method. On the other hand, if H = [0, 1] and a is defined by

(3.2) a(x)(h) = f x(t) dt
Jo

for h £ /fthen y(h) defined by (3.1) is the solution at t = /z'to'the Cauchy problem

(3.3) ^ (0 = KKO),      J(0) = i»o.

It is of interest to consider then a subset of B(H) containing e, the (pointwise)

product of any two members and a(x) for any member x. Thus, such a subset would

contain e, a(e), a{a{e)), a(ef, a(e)-a(a(e)), • • • . We will be interested later in a Banach

algebra containing such elements but for the present, we concern ourselves only

with the smallest subset of B(H) with the properties described. It is convenient, for a

fixed a to relate the various members of this subset to T and, in fact, the subset is

the range of the function \xa now to be defined.

For a given a £ A(H), we define the mapping y.a on T to B(H) such that

(3.4) M.(r) = e,

(3.5) tUhts) = Ha(ti)aQia(t2)),

for tlt t2 £ T where the multiplication on the right of (3.5) is pointwise. It is typical

of this type of recursive definition of functions on T that it is necessary to verify that

the definition of the image of txt2 is such that the images of txt2-t3 and txt3-t2 should

be equal. In the present case, we have

ßa(,txt2-t3) = ixa(tx)-a(iia(t2))-a(pa(t3)) = pa(txt3-t2).

It is also convenient to introduce a mapping vtt = ixa ° <? where <p is the mapping on

T to T defined by <p(t) = rt. Thus,
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<3-6) „;o) = a0».(0)

and the elements in the range of v„ can be regarded as generators of the range of na.

To illustrate the notation introduced so far, the eight trees of Table 2.1 are listed

in Table 3.1 with the expressions for \ia and va in each case. The range of <p will be

Table 3.1

t ßaO) V«{t)

t e a(e)

tt a(e) ß(a(e))

t-tt a(a(e)) a(a(a(e)))

tt-t a(ef a(a(ef)
t(t-tt) a(a(a(e))) a(a(a(a(e))))

tt-tt a{e)a{a{e)) a(a(e)a(a(e)))

t(tt-t) <a(e)2) a(a(a(e)2))

(tt-t> a(e)3 a{a(ef)

denoted by U so that U £ T. We now define for each a £ A(H) an equivalence

relation on H. hu h2 will be equivalent if and only if, for all t £ T, fia(/)(A) = pjj)(h2).

It is clear that in this definition we could replace n by v or, what is equivalent, we

could replace T by U. Let Pa be the partition of H corresponding to this equivalence

relation. Thus, there is a function wa mapping H onto Pa such that x„(Ai) = ica(h2)

if and only if hu h2 are equivalent and for all h £ H, h £ tJJi).

In Section 5, we will show that, under certain conditions, the solutions to (3.1)

have the same values for all equivalent members of H. In this sense, we may identify

these members and this result will have important consequences in the rest of the paper.

However, it is first necessary to make a closer study of the operator a and this

we do in the next section.

4. Analytical Preliminaries.   In this section, we will be concerned with a fixed

member a of A{H) so, without risk of confusion, we will omit the subscript in

va, tta and Pa.

Since for all t £ T, v(t) maps equivalent elements to the same image, the relation

v{i) o tt" 1 is a function on P. We now impose on P the weak topology generated by

the family \v(t) o tt'1: t £ T\. That is, P will have the weakest topology for which

all functions in this family are continuous. With this topology, P has the following

property:

Lemma 4.1. P is a Tychonoff space (that is, P is a completely regular Tx space).

Proof. Consider the family of closed bounded subsets of R, {Q(j): t £ T] where

Q(f) is defined as the closure of the range of v(f). Let Q denote the product space of

this family, so that Q is compact and Hausdorff and hence Tychonoff.

We write q(f) for the projection of Q to Q(t) and define a function r from P to Q by

(4.1) q(t) o r ox = v(t)

for all t £ T. Let the range of r be go so that Q0 is Tychonoff since QQ £ Q. r is
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injective since if hu h2 £ H are such that irQi^) j± nQi2) then there is a t E T such that

v(J){hi) ̂  KOC^a). Hence, we find

(<K0 o rXxfA)) * (ff(0 o r)(r(A,))

so that rCKAO) ̂ r(ir(h2)).
Since r is a bijection from P to the Tychonoff space Q0, it will follow that P is

Tychonoff when we have shown that r is, in fact, a homeomorphism. This follows

since for t ET, v(0 ° 1 = 9(0 ° r is continuous and thus r is continuous. Moreover,

by the definition of the weak topology on P, r is open. The proof of Lemma 4.1 is

now complete. Let ß(P) denote the Stone-Cech compactification of P. We extend in

the usual way functions in C(P) to functions in C(ß(P)) and the extension of x £ C(P)

will be denoted (in this section only) by x or by In particular, for / E T, (p(f) o it-1)"

is defined. Let V denote the set of real-valued functions on T such that all but a

finite number of members of T map to zero. We now consider the set D defined as

the closure in C(ß(P)) of functions of the form

(4.2) £c(0G»(0 SO',
ter

where c E V and the summation is defined in the obvious way as the sum of the

nonzero terms. We have the following result.

Lemma 4.2. D = C(ß(P)).
Proof. We first show that D is an algebra. It will be sufficient to show that if

Cn c2 E V then there is a c E V such that

( Z Ci(0m(0)• ( Z c2(0m(0) - Z c(0M0-

However, this follows by noting that if tu t2 E T then there is a / G ^ such that

m(0 = m('i)m(^) and this is clear because m('0> m(4) can be written as products of

factors of the form v(t').

We next note that D separates points of P since if hu h2 E H are such that icQiO ̂

ttQi2) then there is a / £ I such that m(0(A) ^ m(0(^2)- Thus (ß(t) o w'1)" E D

takes on different values at ^/zO and x(/j2).

We note also that ß{P) is Hausdorff and compact and that D contains the unit

(the unit is in fact (ju(t) o it-1)'). We can now make use of the Stone-Weierstrass

theorem to obtain the result of the lemma. .

We now define Ca(H) as the subset of B(H) such that its elements are of the form

(x I P) o tt where x E C(ß(PJ). [The notation (x | P) denotes the restriction of x

to P.] Using the previous lemma we see that elements of Ca(H) can be approximated

in the sense of the norm-topology by functions of the form

(4.3) Z c(0m(0

where c ^ V. We now have a basic result.

Lemma 4.3. If x E C£H) then a(x) E Ca(H).
Proof. We must show that for each x £ Ca(H) and positive number e2, there

exists x2 of the form (4.3) such that |\a(x) — x2\\ < e2. Let tt > 0 be such that t, | |a| | <

c2 and let

xi = Zci(0m(0,
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where cx £ V, be such that \\xx — x\\ < tx. We now define

*2 = E ca(Oa(/x(0) = 2 c,(rM<KO)

= E (ci ° *»_1)(0M0.
i€c7

Let c2 £ Kbe defined by c2 | U = c^-1 and c2(0 = 0 if f £ (7. We now see that

x2 = E c2(Om(0

' and, since x2 =        we have

||x, - a(x)\\ g - *fl =s |[«|| «i <

5. The Main Results. We now return to Eq. (3.1) with the assumption that X

is finite dimensional. This ensures that X is reflexive as was assumed in Section 3

and also ensures that the weak and strong topologies for X are identical. As was

stated in Section 3, we suppose that / is Lipschitz-continuous. (Throughout the rest

of this paper, X, / and 770 will have the significance they had in Section 3.) Suppose

the Lipschitz constant is L where £[|c|| < 1. We may now regard the space Y as a

metric space with metric d given by

d(y,z) = sup \\y(h) - z(h)\\

so that the mapping which takes y £ Y to j?0<? + a X (f0 y) is a contraction.

We write Ca(H, X) for the subset of Y such that y £ Ca(H, X) if and only if

for all p £ X*, p o y £ Ca(H). Our first main result will be stated as Theorem 5.4 but

we precede this by three lemmas necessary for its proof.

Lemma 5.1. Voe £ Ca(H, X).

Proof. For p £ X* we have p o (n0e) = p(vo)e £ C„(H).

Lemma 5.2.      £ Ca(H, X) then / o y £ C„(#, A7).

Proof. Since / satisfies a Lipschitz condition, p o f is continuous in the norm

topology. Hence, it is continuous in the weak topology. Hence, p ofo y is continuous

in the topology of H. Hence / ° j £ Ca(H, X).

Lemma 5.3. Ify £ Ca(#, X), then a X J £ C0(//", X).

Ptoo/. /? o (a X J>) = a(p o j) = a(x) where x £ Ca(H). But, by Lemma 4.3,

fl(*) £ C„(#). Hence, a X J> £ Ca{H, X).

Theorem 5.4. y satisfying (3.1) is a member of Ca(H, X).

Proof. If y is evaluated as the limit of the sequence (y0, yu y2, • • •) where y0 = rj0e

and, for n = 1,2, ••• ,

(5.1) yn = voe + a X Cf <* y.-i)

then, using Lemmas 5.1, 5.2, 5.3, we see that y0 £ Ca(H, X) and that, if j„_i £

Ca(H, X) then yn £ C^//", X)- Hence, by induction, for all n, yn £ 0,(77, X- Since

Ca(H, X) is a closed subspace of T, it follows that y £ Ca(//, X)-

As a consequence of this theorem, we have

Corollary 5.5. If y satisfies (3.1) and ifhu h2 £7/ are such that Tra(hi) = xa(A2)

then yQii) = y(h2),

Proof. Since y £ Cfl(77, X), then, for all p £ X", p ° y £ Ca(77). Let x £ C.(ß(P.))
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be such that p o y = (x \ PJ o Va then (p o j;)(A,) - (/jo j/)(A2) = (x | Pa\^JJi{)) -

(x I PaXirXh)) = 0. Hence, /HXA) - yQt2)) = 0 for all p E X* and the result follows.
The theorem which next follows expresses our second main result that in a certain

sense a method (H, a, AO is characterised by the function which takes t £ Tto va(f)(hi).

Theorem 5.6. Let (H, a, Ax), (K, b, /<0 be two methods such that for all t £ T,

»Mihi) = vb(t)(ki). Let y, z be the solutions of

(5.2) y = VoeH + a X (/ ° y),

(5.3) z = VoeK + b X (/ oz),

wAere / is Lipschitz-continuous with constant L such that L\\a\\ < 1, Z,||o|| < 1 and

eH, eK denote the units in B(H), B(K) respectively. Then y(hi) = z(/c0-

Proof. Without loss of generality, we suppose that H C\ K = 0. We now consider

c £ A(H VJ K) (we recall that A(H) is defined for a set H in Section 3) defined by

(5.4) c(p)(h) = afp I H)(h),

(5.5) cfpKk) = b(v I K)(k),

for v £ B(H VJ K), h £ H and k £ K. It is found that

|jeO>)|| = max(||a(b | ||6(d | K)\\)

ä max(||a||, ||*|J>-||p||-,

so that ||c|| g max(||a||, ||A||). (In fact, it is easy to see that ||c|| = max(||a||, \\b\\).)

Hence, L||c|| < 1.

If w is defined as the bounded function on H W K to X satisfying
m  ' tttöw. dl    i--JtU9iw* i\awt mua«iA. uiO .fft)..0 3 \ <\     3 <j He i

(5.6) w = r)aeHyjK + c X (/ ° w),

then w is given by

(5.7) w \ H = y,      w I K = z.

To see this, we evaluate the right-hand side of (5.6) at A £ //with w satisfying (5,7)

(the similar calculation for k £ K will be omitted). We have

<.V*«vk + c X (/ o *0)(A) = ,0 + (a X ((/ o w) I //))(A)

= r,o"+ (a X (/ ° (w I //)))(A)

= (ijoe« + a X (/ o jO)(A).

This shows in particular that w(A0 = yQiy) and> similarly, that wikx) = z^).

We also see that if / £ T, A £ H, k £ K then iic(0(A) = ßJMh) and p.e(0(k) =
nb(f){k). We verify this in the case of A £ H using the induction principle for T.

Thus, for / = t we have fic(0W = ^//u/c(A) = 1 = <?//(A) = ßa(f){h). To complete the

induction argument, we write t = uv and assume that ßc(u\h) = m„(m)(A), pc(v)(h) =

j"o(d)(A) for all A £ //. We now have

Mc(0(A) = /Xe(wXA) = (Mc(")c(McOO))(A)

= M.(«)(A)-aG*.G0 I /0(A) = *i.(h)(A)-«0«.(d)KA)

= Mo(0(A).
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It now follows that for all / £ T, vc(0(A) = y«(0(A) = "i(0(^i) = ".(0(^0 so that
wc(hi) = irXki). Hence, by Corollary 5.5, w(A0 = w{ki). That is, >>(Ai) = z(kr).

Definition 5.7. Methods such as (i7, a, AO, (K, b, kx) related as in Theorem 5.6

will be called equivalent methods.

If the methods (H, a, AO, (K, b, kx) are so related that there exists a bijection

<p: H —> K such that ^(A0 = kx and such that whenever x £ B(K), A; £ AT

then a(x o <f>X<P~1(k)) = b(x)(k), then it is easy to verify that the two methods are

equivalent. However, this special type of relationship is a much closer one than

equivalence. For example, it can be verified that <p is a homeomorphism between Hand

K when the topologies of Section 4 are imposed and we have for all A £ H, t £ T the

relationship m„(0(A) = Mi-WCvW)- Methods related in this special way will be regarded

as identical. This means that whenever we have two different methods (H, a, AO, (H'y

a', h[) to consider together for any purpose we can suppose (by replacing one of them

by an identical method) that H and H' are disjoint.

6. The Group of Integration Methods. For two integration methods (H, a, AO,

(K, b, &,)> where H C\ K = 0, we define the product as the method (H W K, c, &0

where c £ A(H W K) is defined for x £ B(H VJ K), h £ H and k £ K by

(6.1) c(x)(h) = a(x I H)(h),      c(x)(k) = a(* | #)(«,) + &(* | K)(k),

that is, by

(6.2) c(x) \ H = a(x \ H),      c{x) \ K = a(x | //)(A0<?X + b(x \ I).

The significance of this definition is that the product of the two methods is the method

that results by applying each of the given methods in order. This result is stated more

precisely in the following.

Theorem 6.1. Let (H W K, c, kt) be the product of (H, a, AO and (K, b, and let

j satisfy a Lipschitz condition with constant L such that L\\c\\ < I. If Vi, V2, Vs are

defined by

(6.3) = r]0eH + a X (/ ° yi), Vi = .Vi(A0»

(6.4) y2 = r\xeK + b X (/ ° y2), V2 = J^i).

(6.5) y3 = 7?0f?„uK + c X (/ ° y3),      i)3 = y3(ki),

then t?2 = r?3.

Proof. We first show that ||a|| ^ \\c\\ and \ \b\\ g ||c|| so that yu y2 are well defined.

If x £ B(H) and x' is an extension of x to H\J Ksuch that \ \x'\\ = \\x\\ then |\a(x)\| g

||c(x')|| g ||c||-||;t||. Hence, ||a|| ä ||c||. Now, let x £ B(K) and let x' be the extension

of x such that x' \ His the zero function. We have c(x') \ K = b(x) so that ||A(x)|| ä

||c(x')|| ^ ||c||-|W|and||/3|| ^ ||c||.
We now show that if y3 satisfies (6.5), then y3 \ H = yx and y3 \ K = y2 are the

solutions of (6.3) and (6.4) respectively. We have

y3 I H = VoeH + (c X (/ o ^3)) I H

1 ijoe* + a X ((/ o j;,) I //)

= i»0e* + a X (/ o (y3 | //)).
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Note that in this computation we made use of the result that (cXy)\H=aX(y\ff)

where y is a bounded function on/fUÄ'toI This is easily verified by noting that,

for any p £ X*,

p o ((C X y) I H) = {c(p o y)) I H = a(p o j | //)

= «(p o Cv I //)) = /> o (a X (y I //)).

We now perform a similar calculation with K taking the place of H,

y3 I K = r,0eK + (c X (/ o y3)) | Ä"

= r,aeK + a X (/ o y3 I ff)(«i>* + * X ((/ o y3) \ K)

= «hex + b X (/ o (y3 I AT)),

where we have used that fact that y3 \ H and ^ are identical.

For a method m = (//, o, AO, we may form the numbers e„(0(Ai) for t £ 7\

Definition 6.2. We define a function w on the class of all integration methods to

the set G defined in Section 2 by v„(0(Ai) = w(w)(0 for all / £ T. We denote by G0,

the range of w.

Theorem 6.3. If mu m2 are integration methods, then

(6.6) w(mlm2) = wim^wim^.

Proof. The multiplication on the right of (6.6) is, of course, that of the group

G in Section 2. We will write w: = (H, a, AO, m2 = (AT, b, kj) so that mim2 = (HVJ K,

c, ki) where c is given by (6.1) or (6.2).

The proof will require a use of the function X defined in Section 2. We recall

that for a given g £ G and t £ T, \(g, t) is a member of G*. That is, X(g, 0 =

]C< 'er A<'('')" where for each r, only a finite number of t' £ Tare such that /,,. ^ 0.

We write g = vv(mO so that the numbers /,,< for t, t' £ T take on definite values.

We will now show by induction that, for all / £ T,

(6.7) ßc(0 I H = pjf),

(6.8) Me(0 I K = £ /„./!»(/'),

(6.9) ,c(0 I // = vM,

(6.10) r.(T) I A: = Z '«."»(»') + w(mi)(t)eK.

For t = t, we have by (3.4), ^(0 = e^u«, ßXO = eH, ßb(t) = eK and from (2.17)

we see that /,,- = 1 if t' = r and /,,- = 0 otherwise. Thus, (6.7), (6.8) are easy to

verify in this case.

For any t £ T, if (6.7), (6.8) are known to hold then (6.9) and (6.10) follow by
a calculation (which we will omit) based on (3.6) which gives in this case vc(t) =

c(ßX0).
To complete the proof of (6.7), (6.8), (6.9), (6.10) we will prove (6.7), (6.8) for

t = ud on the assumption that the four equations hold for t = u and for t = v where

«, v £ T. From (3.5) we have ßc(uv) = ßXu)vXv) (with pointwise multiplication

on the right-hand side) so that
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ßc(uv) I H = 0*.(h>«(o)) I H = (Mc(«) I H)(ye(v) \ H)

= <-la(«K(l>) = H*(UV)

which is (6.7).

For k G AT and for g'GG defined by g'(0 = utO'Xk) for all f' G    we also have

ßc(uv)(k) =  (Z '«.'/•»(«')( Z '..'"»fcO + *(«,)(!>>*))(*)

= ( E L.'L.toiu'u') + w(ma)(i;) Z A»>M»(«'))(*)

= (X(tv(m1), «)Xdv(m,), v) + wim^mWrni), "))(*')

= X(H'(m1), w)(g')

Z '«...-.«»(/')(*).

so that (6.8) follows. Now, evaluating (6.10) at kt we have

w(mim2)(t) = w(mi)(t) + X(w(/n1), t)(w(m2)) = (w(mi)H>(m2))(r)

by (2.16).
Since w(mim2) can be determined just from w(mi) and w(m2) and making use

of no other property of mi or m2, we have the following theorem which we state

without detailed proof.

Theorem 6.4. If Mu M2 are equivalent classes of integration methods then {mim2:

mx G Mu m2 G M2\ is an equivalent class of integration methods.

We now see fairly precisely the sense in which w(m) characterises m. If w(m) is

given, m is specified up to an equivalence class. Furthermore, the numerical result

produced by a method is determined by w(m) (for / with small enough Lipschitz

constant). We also have the convenient results of Theorem 6.3 that the products

in G0 correspond to successive applications of different numerical methods.

We might ask the questions: are there methods corresponding to the identity

elements of G0 and to wfrn)"1 where m is a given method? The answers to both these

questions are in the affirmative as shown by Lemma 6.5 below.

Suppose m = (H, a, hi) and h0 G H then we will be concerned with two methods.

The first is

(6.11) «0 = ({Oj, b, 0)

where b G ^({0}) is defined for x G -S({0|) by 6(x)(0) = 0 and the second is

(6.12) mi = (//U {h0},c, h0)

where c G A(H\J {h0})is defined for x G B(HKJ \h0\) by

c(x)(h0) = — a{x I H)(hi),

c(x) I H = a(x I H) — a(x \ H)(hi)eH.

Lemma 6.5. If m0 is given by (6.11), then w(m0) is the identity of G. If mi is given
by(6.\2) then wQrii) = w(m)~l.
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Proof. It is trivial that w{ma\t) = 0 for all t G T. Hence, w(m0) is theridentity of G.

We now form the product of m amd ml. However, it is necessary to replace m1

by an identical method, say (//' W {A0 j, c, A0), where 77' is a copy of 77 which we

regard as disjoint from it. If A G 77, we write A' G 77' for its partner in a bijection

between 77 and 77'. The product method is (77 W 7/' W {A0}, d, A0) where d is defined

for x G B(H U 77' VJ {A0}) by

</(*) I H = a(x I 77),

d(x) I 77' = a(* I 7fXAi)e„. + a'(* | 77') - a'(x | H')(h[)eH,,

</(*)(A0) = a(x I 77)(A1) - a'(* | ff'XAD.

and a' corresponds to a in the identification of (77, a, AO and (//', a', AO-

Let B' C 5(7/ \J H'KJ {A„}) and 5" C 7i' be the sets defined so that if x G B'
then for all A G 7/, x(A) = x(A') and if x G 7i" we have the additional property that

x(h0) = 0, then it is easy to verify that if x G B' then d(x) G B". We also see that

B' is a subalgebra of B(H \J H' \J {h0}) (regarded as a Banach algebra with point-

wise multiplication) and B" is an ideal of B'. We shall prove by induction that pd(t) G

B' and cd(0 G 7i" for all t G T. In fact, since ehkjh-u < a . i G 7?' we have that ^d(r) G

Hence, vd(T) = t/(M(i(r)) G 7i". If < = ae, where ^d(«) G B', vd(v) G 7i" then ßd(uv) =

Pd(u)vd(c) G 7i' and hence, ^(wü) G 5"- Evaluating vd(t) at A0 for any t E. T gives

the result 0. Hence, w(mm0 = z (the identity for G). Hence, w(m0 = w(m)_1.

The following theorem will be stated without proof. It is a corollary to Lemma 6.5.

Theorem 6.6. G0 is a subgroup of G.

It is clear that G0 is not identical with G since an element of G0 satisfies the condi-

tion of Theorem 6.8 below. In this result and in Lemma 6.7, r will denote the function

on T which assigns to t G T the order of t. Thus, r will satisfy the recursive definition

«t) = 1,

(6'13) r(uv) = /•(«) + r(u),   for all u,v G 7".

Lemma 6.7. If m = (77, a, AO then for all t G T,

(6.14) |*(m)(0|^||a|r(".

Pa-oo/. In fact, we will prove that, for all t G T,

(6.15) IMOII ̂  ||a|

(6.16) |k(0|| ^ Ha||rl"(

where, if \\a\\ = 0 and t = t, then the right-hand side of (6.15) is replaced by 1.

For t = t, (6.15) is trivial since each side equals 1; for all t G T, (6.16) follows

from (6.15) since

iwon = iiaöi.(o)ii ^ iMiHWoif.
Furthermore, if t = uv then

lk(«G)ll * ik(«>.(«v)|| g lk<»)ll-lkWII
and an inductive argument completes the proof of (6.15) and (6.16). Equation (6.14)

now follows since w(m)(t) = va(t)(hi).
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The theorem which now follows restates this result without making explicit

reference to m.

Theorem 6.8. If a £ G0, then the set {|a(»[1/r(": t £ T\ is bounded.

Proof. Write a = w(m) where m is as in Lemma 6.7. The result holds with an

upper bound

Although G0 5^ G, there is a sense in which elements of G can be approximated

by elements of G0. The result is as follows.

Theorem 6.9. If a £ G and T0 is any finite subset of T, then there is ß £ G0 such

that a I T0 = ß I T0.

Proof. It is sufficient to prove the result in each of the cases T0 = Tx, T2,

where for n = 1, 2, • • • , T„ is the set of trees of order ^ n. We will prove this result

(which is trivial for n = 1) by induction on n.

We first define a function 5 on T X T by the formulae

S(t, t) = 0, for all t £ 7\

<6.17) 8(uv, 0 = <5(m, 0. where m,b, * £ r andu ^ /,

8(uv, t) = 8(u, 0+1,   where u, v, t £ T andu = /.

If r(t) ^ r(«), we see that 5(t, u) = 0 and if for all u £ T, 5(4, w) = 5(4, m), then

4 = <j. Also, it can be verified that, for a method m, = (77, a1} AO, if t (E, T„ (where

« > 1), then

(6.18) M„,(0=    n ^(")!(,-).
«er,-,

From the method mx, we can form a new method m2 = (77 VJ {A2}, a2, h2) where

A2 £ 7/ and a2 is defined by

a2(x) I 7/ = a^* | H),      a2(x)(h2) = x(hx).

It can be verified that for all t £ T we have

»..(0 I 77 = »Ol(0,       iwftXM = MrtXfc)'

Hence, using (6.18) we see that, for t £ Tn,

(6.19) w(m2)(t) =    II (H<«iX«)),<'"i
«er,-,

By the induction hypothesis, a method mx exists so that w(mx) takes on any re-

quired values on T„_i. Let Sx denote the set of all real-valued functions on Tn which

satisfy (6.19) for some w(mx) \T»~t, Also let S2 denote the linear span of Su let S3

denote the set of all real-valued functions which are restrictions to Tn of members of

G0 and let St denote the set of all real-valued functions on Tn. By definition, S3 C 54

and we have already shown that Si C S3.

We now see that S3 is a linear subspace of St. This follows by observing that if

c £ R, ai = w(mx), a2 = w(m2), mx = (Hi, ax, hi) and m2 = (H2, a2, h2) where Hx (~\

11-2 = 0 then cai = w(m3) and ai + a2 = w(m4) where

m3 = (Hi \J {h3),a3, h3),      mx = (77, W 772 W {A4}, a4, ft4),

^3 (£ 7/i, A4 £ Hi U 772, and a3, a4 are defined by

a,(*) I Hi m a,(* I 770,      a3(x)(h3) = cax(x \ Hx)(hx),
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a4(x) I #i = a^x I //,),      a^x) \ H4 = a2(x \ H2),

a^xW = ai(x I Hi)(hx) + a2(x \ H2)(h2).

Thus, we see that Sj c S, c S4 so that S3 = 54 will follow when we have shown

that S2 = St.

We first show that S2 is a subalgebra of S, in the sense of pointwise multiplication.

Let £, 17 £ S2 be defined by

(6.20)

«0 = II C,(M)ä<'-",
i67 «6f,-,

for all t £ rn where 7, 7 are finite index sets and for / £ I and y G J, ct and a", are

real coefficients and C,, Z>, are real-valued functions on

The (pointwise) product $17 is now defined by

(fi?)(0 = «077(0 =     Z       a,   II (Ci(H)fl,(«)),t,,")
(i.ije/x/ «er,-,

so that £y E S2.

We next observe that the subalgebra S2 distinguishes points of Tn. That is, for

tu U G with ti 7* t2 there is £ £ 52 such that £(4) ^ If « E Tn.x is such

that 5(4, u) 7* 5(4, w), then we can, for example, define £ by (6.20) with I = {1},

Ct = 1, Clip) = 1 for p ^ m and d(w) = 2. Furthermore, S2 contains the unit function

since this is just £ defined in (6.20) with I = {1}, Ci = 1 and O(w) = 1 for all u.

Hence, S2 = S4 and the proof of Theorem 6.9 is complete.

7. Some Properties of G0 and G. In this section, we will develop some prop-

ties of some special elements of G0, some of its subgroups that have a numerical

significance and factor groups corresponding to some important normal subgroups.

Since G is, in some ways, simpler than G0 it will be convenient to study properties

of G0 in terms of the corresponding properties of G.

For example, if K is an invariant subgroup of G such that every element of G can

be written as the product of an element in K and an element in G0 then the factor

group G0/K C\ G0 is isomorphic to G/K. Thus, we can avoid explicit consideration

of the group G0/K (~\ G0 by considering G/K instead.

It was mentioned in Section 3 that if H is a finite set then the integration method

m = (H, a, hi) is simply a Runge-Kutta method. Write H = {1, 2, • • • , n + 1}

and define a as the linear operator represented by the matrix

an   a12   ■ • ■   a,„ 0

a2X   a22    • • ■    a2n 0

a„i an ann 0

LA    b2     •■•    bn 0J

and write hi = n + 1. This leads to the integration method represented by the equa-

tions
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= la + X <*uf(y(j))>
i

y(2) = vo+ H a2,j(yU)),
i

y(n) = t?o + X an,f(y(J)),

Vx = rjo + X WC/)).

It is easy to see that w(m) maps a given tree t onto the corresponding polynomial

$ as defined and used in [1], [2].

The special method m = ([0, 1], a, 1), where a is given by (3.2), will be referred

to as the Picard method and we will write p = w(m) in this case. Let r : T —» R be

defined by (6.13) so that r(t) is the order of t. We then see that, according to [1] in

which for a given t, pit) was written as 1 /y, p would satisfy the recursion given by

(7.3), (7.4) below. More detailed information is given in the following theorem.

Theorem 7.1. For the Picard method we have

(7.1) ßaiOih) = P(t)rWw-\

(7.2) Va(t)ih) = p(t)hrl'\

for h £ [0, 1], t £ T where p is defined by

(7.3) p(T) = 1,

(7.4) p(uv) = p(u)p(v)r(u)/r(uv)  for u,v £ T.

Proof. We shall verify (7.1) and (7.2) when t = t and when t = uv given that

they hold for t = u and t = v. For any t, (7.2) follows from (7.1) by the formula

vait)(h) = [ ßa(t)ik) dk.
Jo

For / = t, we have ^(OC/Y) = 1 which is the correct result. We also have, for

t = uv,

ßa(uv)(h) m ßa(u)(h)vMih)

= K">(")/^r(","1K^r<",

= p(u)p(p)r(u)r(uv)hT lu')'1/r(uv)

= piuvytuuW^-1

so that (7.1) is proved in this case.

For a real number A, we define, for a £ G, the element aM> £ G such that,

for t £ T,

(7.5) au)(t) = A'wa(t).

This definition is motivated by the observation that if a = w(m) for m = (H, a, hi)

then aA) = w(m') where m' is the same as m except that a is replaced by Aa. This

corresponds to a change in step size by a factor A.
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The next result is concerned with a special property possessed by p.

Theorem 7.2. For A, B £ R, we have

(7.6) P   P     — P

Proof.

where for x £ B[0, 1], y £ B[2, 3], a and b are defined by

Pu> = "(([0, 1], a, 1)),      P(B> = w(([2, 3], ft, 3)),

a(x)(h) = A /  *(£) 600(A:) = B /   X£) 4.
JO J 2

for A £ [0, 1], k £ [2, 3].
Hence, pU)p(B) = w(([0, 1] U [2, 3], c, 3)) where c is defined for x £

P(T0, 1] W [2, 3]) by

c(*)(A) = A [ x(0 d£,      c(x)(k) = A [ x(Z) c%+ B [ x(0 4
Jo •'o J2

for A £ [0, 1] and k £ [2, 3].
As for the proof of Theorem 7.1, it can be verified that for all t £ T, h £ [0, 1]

and k £ [2, 3] that

Mc(0(A) = MOKOMA)""-1,

xe(0(A) = />(0UA)r<",

nAOik) = pWKOU + B(k - 2))rc<)

(7.7) vc(0(k) = p(f)(^ + ß(A: - 2))r(".

Setting fc = 3 in (7.7) we obtain the result.

This result is characteristic of p. For example, we have

Theorem 7.3. If a £ G is such that a = a2) and a(r) = 1, then a = p.

Proof. The expression for a\t) is 2a(?) plus terms involving trees of lower order.

On the other hand, al2\t) equals 2r(na(t) so that for r(t) > 1 there is only one pos-

sible value for a(t) so that the two expressions are equal. For r(t) = 1, we have only

t = r.

At this point, we introduce a certain type of subgroup of G.

Definition 7.4. For n a positive integer, we define Kn as the subset of G such that

for a £ K„ and any / £ T such that r(t)    n we have a(t) = 0.

Theorem 7.5. Kn is an invariant subgroup of G.

Proof. If a £ Kn we have, for all t such that r(t) g n, \(a, t) = i. This follows

since X(a, r) = f and if r(u), r(v) ^ n then

X(a, uu) = a(t;)X(a) u) + X(a, u)\(a,v) = (uv) .

(Note that X(a, t) = i also for r(0 = n + 1.)

Hence, if a £/C, and K0^ "then

(a/3)(r) = «(0 + i(ß) = ß(t)
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so that (aß) (t) = 0 if and only if ß(t) = 0. Thus, if a £ A„ then aß £ A", if and only

if ß £ Kn. Thus An is a subgroup.

To show that Kn is a normal subgroup, we will prove that if ß £ G then the sets

{aß: a £ A"„}   and   {ßa: a £ A„}

are identical. We shall show, in fact, that each of these sets is the subset of G con-

taining 7 £ G if and only if for all f £ T such that r(t) S n we have 7(0 = ß(t). Call

this set S. We must show that

(i) a £ A„ =» a/3 £ S,

'     (ii) a £ /C => /3a £ S,

(iii) 7 £ S -» ( 3 a £ /Q(a/3 = 7),

(iv) 7 £ 5 =» ( 3 « £ *„X/3a = 7).
Proof of (i). We have already seen that if a £ A", then (a/3)(f) = /3(f).

/Voo/ 0/ (ii). For fixed ß, we have

X(/3, 0 =     X)   c(t')(t'f + t
rn'Xr(l)

where c is some real-valued function on T. Hence, if a £ A„ and r(f) :g « then

X(/3, fXa) = 0. Hence, (/3a)(f) = /3(f).

Proof of (iii). This is equivalent to (i) since ß = a-17 and a-1 £ A"„.

Proo/ 0/ (iv). Similarly, this is equivalent to (ii).

The factor group G/K„ (=G0/(Kn r\ G0)) will be denoted by Gn. We use the

usual group-theoretic convention of writing aA"„ where a £ G for the coset con-

taining a.

Definition 7.6. If a £ pK„, then we say that a is of order n. The greatest number n

such that a is of order n is called the order of a.

Note that we will use the word "order" as applying to a method m such that

w(m) = a in the same way as it would apply to a. Sometimes it is convenient to

generalise the concept of order and we say that a method m or a = w(m) is of gen-

eralised order n if a £ p(aU) 'A"n and we call the greatest such n the generalised order

of a (or of m).

Definition 7.7. Let Jn denote the set of elements of G of generalised order n. That is

/. = KJ{plS)Kn: 6 GR}.

We have the following property of generalised order, which is not possessed by order.

Theorem 7.8.    is a subgroup of G.

Proof. Suppose a £ pU)Kn, ß £ //B,An = A^'*' for real numbers A and B.

Then a/3 £ />u,AnA„P<fi). Since A:„A„ = K„ and K„plB) = plB)Kn we have

aß £ />    p a„.

However, by Theorem 7.2, //-'V*' = p{A+B) and it follows that aß £ 7„. To prove

that a'1 £ Jn where a £ pU)Jf, we will show that a-1 £ p{'A)Kn. Let a = p{A)k

where & £ A„ then

ap      K„ = p   kp      Kn = p kK„p

— P     a„p        — p    p       ft„ — a„

and this last set contains the identity of G.
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We now introduce some other subgroups of G that will be useful in the search

for special numerical methods. First, however, we introduce some notational devices.

For t £ T, we will, in this section, define ta, tu t%, • • • by

(7.8) ta = *'

/„ = f.-xT       (« = 1, 2, • • •)•

We recall that X : G X T -> G* was defined in Section 2. We now define A : G X

G* —» G* in such a way that A is linear over G* and such that A(a, ?) = X(a, 0

whenever t E T.

Definition 7.9. The function A : G X G* -> G* is defined by

(7.9) A(a, E c(0Z) = E c(')X(a, 0

where a £ G and c: T—> R takes all but a finite subset of Tto zero.

The following properties of A that will be stated without proof are easily verified

by substituting A in terms of X in each formula.

Theorem 7.10. If U £ G* and a, ß E G then

(7.10) U(aß) = U(a) + A(a, U)(ß).

Furthermore, ifU, V E G*, a E G ana* c E R then

(7.11) A(a, t) = f,

(7.12) A(a, £/ + V)= A(a, U)+ A(a, F).

(7.13) A(a, cU) = cA(a, f/),

(7.14) A(a, (7K) = A(a, t7)A(a, F) + F(a)A(a, ZT).

Let L„ (n = 1, 2, • • •) denote the subset of G defined as that a E -£<» if and only

if, for m = 0, 1, • ■ • , n — 1, it holds that

(7.15) a(rm) = a(.r)m+1/(m +1).

Since r0 = t, Lx is identical to G.

Definition 7.11. A subgroup H of G is said to be homogeneous if a E H and

/f £J! imply that aw E

It is easy to see that G0, K„(n = 1, 2, • ■ •) and Jn (n = 1, 2, • • •) are all homo-

geneous.

We also have

Theorem 7.12. For n = 1,2, ■ • • , Lnis a homogeneous subgroup of G andp £ L„.

Proof. From its definition, it is easy to see that Ln is homogeneous and, from the

definition of p we see that p satisfies (7.15). It remains to prove that Ln is a subgroup.

We first show that, for m = 0, 1, 2, • • • and a £ G,

(7.16) \(a, rj = E ( TW^t—«>
i-0  \ 1 /

For m = 0, both sides of (7.16) reduce to f. To complete the inductive argument we

assume the result for numbers lower than m. We have
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Ma, rm) = Ma, t„-!t) = Ma, rm-i)\(a, t) + a(r)X(a, tm_j)

= E\      •   1 Mr)'r + «(t) X ( m •   ' WWi-i
i-o \     1     / i-o V     I /

i-0  \« /

Hence, if a, ß G G,

(«jsxt») = «(r„) + E rkrm^o
i-0 \ I /

so that

(o/3)(t„)-«^K'-))"+1
m -f- 1

= few - dri^r1) + § (;H«t-) - ff^>
Hence, if /3 G it follows that a/3 G A» if and only if a G Ln. Thus, An is a sub-

group.

The next subgroup to be defined is actually a subgroup of Ln. Let Uu U2, • • ■ ,

U„ G G* be defined by

(7.17) Um = «W.., - fm

so that a brief calculation gives for a G G, m = 1,2, • • • , n,

A(o, £/_) = E ( WW)* t/m-i + (ma(rm_,) - a(T)m)f.
i-0  \ I /

If a £ In we have

(7.18) A(a, Um) = E (W)a(r)' [/m_,..
i-o \ 1 /

Definition 7.13. We define S° = {£/",, U„ • • • , Un\ and S* • • •, recursively

by the formula

(7.19) $* = \tV: t G T, V G       ) U|F(:l£r, V G -S^"1)

and we define <S„ as the linear subspace of G* spanned by the union of S°, SI, • ■ ■ .

Finally, we define A„,„ as the subset of Ln containing a £ I, if and only if

(7(a) = 0 for all U G Sn, and Lm,n = Lm Pi £„,„ for m 2; «. The next two lemmas

establish properties of L„, n that will enable us to prove it is a subgroup.

Lemma 7.14. If a G A„,„ aw/ F G <Aen

(7.20) A(a, K) G Sn.

Proof. By the linearity of A, it is necessary to prove (7.20) only when V G S'n for

some i. We prove this by induction on i. For i = 0, the result follows from (7.18).

For / > 0, we assume the result has been proved for V G S'„_1. Let V = UW where

U G S'»-1 otWE S'n-\ We have
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(7.21) A(a, V) = A(a, U)A(a, W) + W(a)A(a, U).

If U E S*_l, then both terms on the right of (7.21) are members of S„. If W E 5;_1,

then W(a) = 0 so that again we see that A(a, F) E Sn.

Lemma 7.15. If a E £„,» and ß E L„ are such that for all, V E Sn,

(7.22) A(a, P003) = 0,

//zen ß E £„,„•

Proo/*. By the construction of S^, its elements are of the form m ü — d where

u, v are of the same order (say k) and m is an integer such that m ä «• Suppose that

for all m'<2' - & E U< £ such that /•(«') = r(i/) < k it holds that (m'zT - *>')(#) = 0.
Then, we will prove that (mü — 0)(/3) = 0.

Let ßa be defined so that ß0(f) = ß(t) when r(t) < k and /30(r) = 0 when r(t) ^ k.

Thus, /30 E i»,»so that, by Lemma 7.14,

A(a, mü - v)(ß0) = 0 = A(a, mü - u)(ß).

By writing X(a, «) = ü + ^„x, c(0?, X(a, v) = i + X-ox* d(f)i and e(/) =
wc(r) — d(f) we see that

A(a, ffiö — ß) = »i« — ß +   X e(0?>
r»><*

so that

(/n« - Ö)(/3) = A(a, mi/ - t5)03) -   £ e(0?(j8)
r(IX*

= A(a, m« - ß)03b) -   X e(0/?o(0
r(l)<*

= (m/5 - (5)03o) = 0.

Theorem 7.16. A„,B is a homogeneous subgroup of L„ andp E Ln,„.

Proof. If a E £„ .„, ^ E Sn and /3 E     we have

(7(a/3) = (7(a) + A(a, (7)03) = A(a, (7)03).

By Lemmas 7.14, 7.15, aß E if and only if ß E Ln,n. Hence, L„,„ is a sub-

group.

The proof that L„,„ is homogeneous is trivial and will be omitted. We will now

show thatp E L*.n- That is, for all U E Sn, U(p) = 0. This is readily verified for the

case of Ui, U2, ■ ■ • , Un defined in the proof of Theorem 7.12. In fact, using (7.3),

(7.4) and the fact that r(rm)=m+l for m = 0, 1, • • • , we find that p(rm)= l/(m+l),

p(rrm-i) = \/m(m + 1) so that UJj>) = (mf?m_i — rm)(» = 0. Thus, we have

proved that U E S'n implies U(p) = 0 in the case i = 0. We now proceed by induction

on i. Suppose mü — ß E S'»'1 is such that (mü — V)(p) = 0 and we wish to prove the

corresponding result in the case of (mü — ü)t and i(mü — 0). Since mp(u) = p(v),

r(u) = r(v) and r(tu) = r(tv) = r(ut) = r(ot) we are in a position to evaluate

((mü — ö)tXp) and (i(mü — $))(/?) making use of (7.4). In each case the result is zero.

In order to introduce our final subgroup, it is convenient to extend the notation

given by (7.8) to elements of G*. If U E G* we will, for the remainder of this section,

write Ua = U, Ul = U0f, U2 = Utf,

Let L" be the subset of G containing a if and only if for m = 1, 2, • • •, n — 1 and
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for all U £ G* we have

(7-23) (mf.j, U - r(a)mU + £/.)(«) = 0.

Note that U C L„ since, if (7 = f, (7.23) reduces to (7.15).

Theorem 7.17. A" is a homogeneous subgroup of Ln and p £ A".

ZVoo/. We will omit the trivial verification that Ln is homogeneous. To prove

that p £ L" it is sufficient to verify (7.23) with a = p (so that ?(a) = 1) and U = f

for all t ET.lt is found that

UJft) = iit)p(t)/(m + KO). = /»(0/(« + K0)

so that (7.23) can easily be verified.

Since £/, = I/,--if", we can easily show, inductively, that

A(a, (7m) = £ ("j«(T)'A(a, tO»_<

so that

+ ,(/z(m:1)aWv,,

A straightforward calculation, making use of these results gives, for m = 1, 2, • • •,

»- 1,

(mfm_,[/ - r(a/3f 1/ + t/m)(a«

= (mfm^U - #(«)" (7 + £/„)(<*)

+ E (?W)M(m - OtWiAfe. 10 - '?03)m"'A(a, U) + A(a, 10—-1 (P)
i-0 \I /

+ t/wEf^TyK« - i)tm-r-m - mm~'\
i-0   \ ' /

= (mf^U - f(.a)mU + Um)(a)
■

if ß £ A". Hence, a/3 £ A" if and only if a £ U. Thus, L" is a subgroup.

Definition 7.18. Z£.. = V C\ Lm,n.
Note that, as the intersection of homogeneous subgroups, Llm<n is a homogeneous

subgroup. Also Vm n contains p. We also see, since V C L„ that we can assume with-

out loss of generality that m ^ /. In fact we can take m as / + n — 1 as the next

theorem shows.

Theorem 7.19. If I ^ 2, then Lj,,. C
/Voo/. Replace m by i in (7.23) and write [/ = fwhere y ^ «. We then have,

for i < I,

(7.24) Wi-tfiri ~ ftoVi + *<+*->)(«) = 0

for all a £ £^

Since t<_1t<_1  = (tt,_0.-i and since a((rT,_0.-i) =  a(rbecause
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X*f ,_!>«_, - (f,)._! G Sn, we deduce from (7.24)

(7.25) (i + ;)r. + i-i(a) = /ffo)'f,-,fa).

Since (7.25) holds for / < / and / g w, it follows that kt ^(a) = ?(«)* for all k <

l+n.

8. Applications and Extensions. In this paper, the concept of order has been

introduced in a purely algebraic way although its true significance is analytical. It is

the author's intention to present in a later paper an error analysis for Runge-Kutta

methods that will fit very much into the spirit of the present paper and in which the

concept of order will play an important part.

In another proposed contribution, a characterisation will be given for Runge-

Kutta methods which, for appropriately smooth functions, have a global truncation

error with an asymptotic expansion in even powers of the step size. Such methods

will yield generalisations of the Romberg quadrature method. In particular, the

implicit methods based on Gauss-Legendre quadrature have this property.

Again, the author intends to introduce a type of explicit method which, though

of low order, may be made use of in a way which makes it effectively of higher order.

In particular, a five stage method will be presented which can be used in a special

way to yield answers that have the properties of answers produced by a fifth order

method.

Finally, it is the author's hope that the results in Section 5 can be generalised

by relaxing the assumption that X is finite dimensional.

9. Appendix. In Table 9.1 are listed trees of order up to 5. Also for given t £ T,

the corresponding values of r(t) and X(a, r) for a £ G are given.

In Table 9.2, the expressions for (aß)(t) are given for t £ T of order up to 5. To

simplify the notation, the various t are numbered serially /0 ■» r, tt m tt, t2

= tt-t, • • ■ and (aß)i, at, ß> denote (a/3)(/,), a(t(), ß(t() respectively for i = 0, 1, • • •,

16. For convenience, r,- = /•(?,) is also listed.

In Table 9.3 the values of piti)"1 are given where t0, tu • • •, tie are the trees of

order up to 5 numbered in the same way as in Table 9.2.

Finally, we present Table 9.4 to enable certain computations to be conveniently

performed in Ll_2. Let t0, tu • • • f16 be as shown in Table 9.2 and let a be a member

of L\ i2. Because of the relations which define this group, it can be seen that a, for

/ 5^ 0, 4, 8 or 10 can be written in terms of aa, a4, as, a10. Where there are entries

under the heading a,, expressions for these quantities are given. Also in this table

are expressions for (aß){ where ß is also a member of L\_2 and / = 0, 4, 8, 10.
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Table 9.2

(«/3).

0 t 1 a0 + ft

1 tt 2 «1 + ft + Ctoßo

2 tt' t 3 oi     jjj + 2aoft + aoft

3 t • tt 3 as + ßi + «oft + aift

4 (tt-t)t 4 a» + ßi + 3aoft + 3aoft + a30ßo

5 tt * tt 4 as 4" 05 + «oft + «oft + «oft + «ift + aoaift

6 t(tt-t) 4 «» + ßi + 2aoft + «oft + «2/3o

7 t(t-tt) 4 a7 + (37 + «oft + aift + a3ft

8 (tt-t)t-t 5 at + ß> + 4a<ßt + 6c£ßi + 4alßi +

9 (tt-t)-tt 5 a, + ft + aoft + 2aoft + 2a20ßi + «oft + agft + aift + 2aoaift

10 tt-(tt-t) 5 aio + fto + aoßt + 2aoßs 4" ajjft + 2<*oft + «oft + a2/3i + aoaift

11 tt-(t-tt) 5 an + fti + «0/87 + aoft + «oft + «ift + «o«ift + «sft + «o«3/3o

12 (t-tt)-tt 5 au + ft2 + 2«o/35 + «oft- + 2aift + 2«0«1ft + ajft

13 t-(tt-t)t 5 a]3 + ft! 4" 3aofti 4" 3aoft 4" <*oßi + a4/3o
14 t(tt-tt) 5 au + ßn + aoßt + aoft + aoft 4" aift + ao«ift 4" «sft

15 t-t(tt-t) 5 am + ft5 + 2a»/37 4" «oft + «sft + «sft
16 t-t(t-tt) 5 «i6 + fte + aoft + aift + a3ft + a7/3o

+ a(jai|8»

Table 9.3

i 0   1   2  3  4  5    6    7  8    9   10   11   12   13   14   15 16

piti)-1      1   2   3   6  4   8   12   24   5   10   15   30   20   20  40   60 120

Table 9.4

at (««.■

0 a0 + ß0

1 2«0

2 Wo
3 6«0

4 a4 + 0« + *0ßl + Icftßl + alßo
5
6 \a0 — a4

8 a8 + ßs + 4a0/34 + lalßl + 2a30ß20 + a*0ß0

9 ha*
10 aio + fto + lao^o + täßl + K^o + Woßo

11 l^io
12 Ja,
13 a0a4 — a8

14 §a0<*4 — 2<*8

15 — «o«4 — «10

16 \al — \aaa4 — \aia


