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Projection Methods for Dirichlet's Problem in

Approximating Polygonal Domains with

Boundary-Value Corrections

By James H. Bramble*, Todd Dupont** and Vidar Thomee*

Abstract. Consider Dirichlet's problem in a plane domain SI with smooth boundary dSl.

For the purpose of its approximate solution, an approximating domain 0 < It S 1, with

polygonal boundary dilk is introduced where the segments of dük have length at most /;.

A projection method introduced by Nitsche [6] is then applied on Qk to give an approximate

solution in a finite-dimensional subspace of functions Si„ for instance a space of splines

defined on a triangulation of Qk. The boundary terms in the bilinear form associated with

Nitsche's method are modified to correct for the perturbation of the boundary.

1. Introduction. In this paper, we consider the approximate solution of

Dirichlet's problem

(1.1) — Ah = /   in fi,      u=g   on 30,

where Ü is a bounded plane domain with smooth boundary dS2, and where / and g

are given functions in tt and on dtt, respectively.

One approach to this problem is to introduce a new domain Qh whose boundary

do* consists of straight line segments (of maximum length h) and which is close to Ü.

On such an approximate domain, which can be easily subdivided into triangles, some

version of the finite element method or Galerkin's method can be applied to define

an approximate solution of (1.1). This approach was considered by Nitsche [5]

and by Strang and Berger [7] and it was shown that (for a standard Galerkin method)

in general the error introduced can be bounded by Ch2 where C depends on the

solution u of (1.1). Thomee [8] has shown that the power of h in their results cannot

be improved upon but also that the accuracy can in fact be increased to fourth order

by solving a sequence of three problems with successively more refined boundary

approximations.

In [6], Nitsche presented a method for solving approximately the original problem

(1.1), in which he used a nonstandard bilinear form on the domain tt. His method

does not require that the approximating functions satisfy the boundary condition

of (1.1), but his technique demands that the finite-dimensional space of approximating

functions satisfy some auxiliary conditions near the boundary. In general, in order

to satisfy these conditions (often referred to as inverse conditions) when using piece-

wise polynomial approximating functions, something special must be done near
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the boundary. However, for domains with polygonal boundaries, these assumptions

turn out to be natural. Based on this observation, we present here a method which

combines Nitsche's technique with the improved accuracy polygonal domain approx-

imation in [8]. We show that for any natural number k a bilinear form can be con-

structed such that the corresponding Galerkin method is of order 0(hk) as h tends to

zero when applied to appropriate subspaces of approximating functions on the approxi-

mating polygonal domain Qh. These bilinear forms are constructed by modifying

the boundary terms in Nitsche's bilinear form to correct for the perturbation of the

domain. In the particular cases k = 2 and 4, the form, and hence the corresponding

matrix, can be chosen symmetric.

In Section 2, we introduce notation, state some well-known results on the problem

(1.1), and derive some auxiliary estimates needed for the analysis. The main theorems

and their proofs are presented in Section 3. In Section 4, we finally discuss the choice

of subspaces appropriate for application of the theory.

2. Notation and Preliminaries. Let 0 be a bounded plane domain with boundary

dtt which we shall assume for convenience to be of class G°. We shall suppose that

Ü is approximated by a family of domains tih, 0 < h 1, which are contained in

Q and whose boundaries düh consist of a finite number of line segments. For each

fixed h, we may write dQh = \Jf^ dül'\ where each dtt'hn consists of a half open

segment and the d&k!),s are assumed disjoint. With this convention, the outward

normal vector nx to dtth at x is well defined. We shall suppose that h =

max, {length of dtt[n }.

We define, for x £ düh,

We make a further technical assumption about the family Qh, 0 < h ^ 1. For

fixed h and 1 $ j g M(h), define the sets (with the dependence of h suppressed

in the notation)

We assume that there is an integer yV independent of h such that each Q(,) ((dü)',})

meets at most N of the S2(15 ((d0)("), / ^ If the domain Q is smooth and convex

and we take the set dtth to have its vertices on dü, it is obvious that our assumptions

are satisfied. In that case, 5t ;£ Ch2 and the sets QU) (and (dO)''1) are disjoint.

For real-valued functions, we introduce the norms in L2(ti) and L2(dtt) (x =

(Xi, x2), a = arc length along dü),

S(x) = min{s | s > 0, x 4~ snz £ dü},

and shall always assume that

sup 8(x) ^ Ch.

= {y \ y = x +     o < i < 8(x), x £ düiD},

(dü)(i) = {y I y = x + 8(x)nx, x £ BQ^}.

and denote for s ^ 0 by H*(Q) and H\dü) the corresponding Sobolev spaces, defined

for s an integer as the closure of C"(Ö) and C"(dO) with respect to the norms (Da =
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(d/dxl)c"(d/dx2)'", a = (au a2), \a\ = a, + a2)

1/2

2. \\d"v\'

respectively, and defined for nonintegral s by interpolation (cf. [4]). In Lemma 9,

we use the analogous definitions when tt is a domain in Euclidean d-dimensional

space Rd. We shall also use the corresponding norms, with respect to Qh and dtth,

IMU = (E   [ (davf dxX\       \v\0,h = ([ v2dX~-
Mals«  J0h I \JdSlh I

In addition to these norms, we shall need the inner products in L2(Qh) and L2(dtih),

which we shall denote by

(<P, i) = I   <P^ dx   and   (<p, tp) =  /    <p\p da,
Jah •'an*

respectively, and the Dirichlet form

Jah \oX\ axl      ox2 a.

We further define, for k a nonnegative integer (d/dn denotes differentiation

with respect to the exterior normal),

and let 3Ct denote the Hilbert space obtained by closure of C°(Üh) with respect to

this norm. It will follow from Lemma 3 below that the restriction to tih of any function

in hk+1(tt) belongs to 3Ct.

Notice that although these notions all refer to tth, we have suppressed the de-

pendence on h in the notation.

We shall also use the notation

Mk(v) = max sup |Dau(x)|.
lalS* i€ll

We state now two well-known results, the proofs of which can be found in e.g. [4].

Lemma 1.   For any s St 0, there is a constant C such that, for j £ hS(Q), g £

h'+3/2(dU), (1.1) has a unique solution u £ hs + \ü) and

\\u\l+2 ^ c(\\)\l + kl.+3/2).

We shall always assume below that / £ L2(Q), g £ h3/2(dü), so that u £ h2(Q).

Lemma 2.   For any nonnegative integer m and any e > 0, there is a constant C

such that for v £ >7ra+I(S2) the restriction of dav, \a\ = m, to dti is well defined and

E \d"o\ g f|Mi.+, + c-'iWI-
lol-m

We shall need the following similar lemma where the estimate is uniform in h.

Lemma 3.   For any nonnegative integer m and any t > 0, there is a constant C

such that v £ h"'+\Ü) implies (d/dn)mv £ L2(dtt„)for 0 < h ^ 1 and
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\(d/dn)mv\a.h ̂  •1|»(U, + OiT,|M1-

Proof. By choosing local coordinates (£, ??), we may assume for fixed h and j

that dQhn = ((& 0) I 0 g i < l\ and that t? > 0 in Q<0. Wethen have d/dn = d/dy
on dQhiy. Setting 5(0 = 5((£, 0)), we have, for <p = (d/dn)'"v,

0) = <p\t, 5(0) - [ *       (f, 7?) du

= *>*(£, 5(0) - 2 f     V(|, t,)     (£, ,)
Jo Ö1J

and hence, using obvious estimates and integrating with respect to £,

/       <p2 da g I        V da + e, /     (^) tf£ rfrj + eT* /     c^2 d£ fify,
Jant<;> j(dD)"> Jn<>> \Ctj/ Jn<>>

for any es > 0. The result now follows after summation with respect to j, using the

assumption about 0(I> and (d0)(,), and Lemma 2.

We shall need a similar statement for functions vanishing on dO. For convex

domains and the simplest choice of tth, this result is contained in [5].

Lemma 4. There is a constant C such that, for v £ H2(ti) with v = 0 on dü,

we have

Mo.» ^ C8h\\v\\.2.

Proof.   We obtain as above

v(%, 0) = - /      f- (6, f») dV - - 5(0     (£, 5(0) + »7 V-s tt, ij) rfn.
Jo      or; otj Jo ot/

and again after obvious estimates,

f      ,2 da ̂  281 [ da + f « f    (£Y 4 *.
Jaa»'''> J<ao)<'> not;/ j     Jam voij /

The result follows as above by summation over y.

We shall now introduce the finite-dimensional subspaces in which we shall seek

the approximate solution of (1.1). We shall say that the family of finite-dimensional

spaces (SjJ0<*si is of class 5» if Sh C 3d for 0 < h ^ 1 and if there is a constant C

such that

(2.D iimIu isi<7tlWiU. <pEs„.
This inequality could obviously not be satisfied on the whole of 3d for /c S: 1 and

the restriction to Sh is essential. This type of assumption is often referred to as an

inverse assumption. We shall return to a discussion of this condition in Section 4.

3. Approximation of Dirichlet's Problem in 0,,. For k a nonnegative integer and

y > 0, we introduce the bilinear form

**! * - ** »-<&>*)-{%j Ks)'* V! ~ •
defined for <p £ 3d, ^ £ 3d. Set k = max(/c, 1).
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We shall study some properties of Nki 7. First we have the following:

Lemma 5.   For 7 > 0 and k S: 0 given, there is a constant C such that

\Nk,r(<p, +)\ g C||h

Proof. Clearly,

V E 3C£, iE 3Ci.

Ddp, i)
(3.1)

Since bh g Ch, we have

^ D(<p,V)/2DU,, t)U2 + A,/2

^ iihii. iii^iii..

(3.2) \   \dn/ dn
yh \b £ Ch'

d'<p

dn1

L1/2 \d±

o.h v       I dn

Wo.,

=s c||MII, |||*|

Combining (3.1) and (3.2) yields the result.

Considered on SCk X 3Ck, Nk: y is not positive definite. However, under certain

assumptions on Qk we can prove the definiteness of Nk, y on Sk.

Lemma 6. Let k St 0 and suppose that dh = o(h) as h —> 0 and /na? {&) £ 3*.

Then there are positive constants y, h0, and c such that, for 0 < h <. h0, we have

Nk,y(<p,<p) St c\\\<p\\\L sk.

Proof. Using the assumption (2.1) (with k = 1), it is easily seen that, for 7 chosen

sufficiently large,

K.y(<P,<p) ^ cllMH2, ?GS»

(this was proved by Nitsche in [6]). Using (2.1) again, it follows (with a new c) that

No,y(<p,<p)^c\\\v\\\l, <pESh.

Now

We obtain from the definition of the norm

s fwr'UMllL

where C depends on y but not on <p or A. Hence, we may conclude that

Nk.y(<p,<p) >t (c - CSkh~') \\\<p\\\l.

Since 8k = o(n) as A —> 0 the result follows.

We now formulate the problem whose solution we will consider as an approxima-

tion to the solution « of (1.1): Find U E Sk such that

(3.3) N„.y(.U,v) = (j,<p) - ff, |f - TA"1«») ,   for allies,,

where g(.x) = g(x + 5(x:)nI). We have
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Lemma 7. Let k 2: 0 and suppose that 8h = o(h) as h —> 0 and that \ Sh\ G 3*.

Further let y and h0 be chosen as in Lemma 6. Then, for 0 < h ^ h0, the problem

(3.3) admits a unique solution U.

Proof. Uniqueness follows immediately from the positivity of Nki y on Sk (Lemma

6). Since (3.3) is a finite-dimensional linear system, existence follows from uniqueness.

We now prove our first estimate for the error U — u.

Theorem 1. Let k be a nonnegative integer and suppose that 8h = o(h) as h —» 0,

{Sh\ £ 3* and that y and h0 are chosen as in Lemma 6. Then, there is a constant C

such that, if m £ C*+1(q), we have, for 0 < h ^ h0,

\u - U\ ^ C{ inf I" - x| + «r/T1/2m*+1(k)}.

Proof. We consider the case 3: 1; the case A: = 0 is treated analogously. Let

x be an arbitrary element of Sh. Then, by the triangle inequality,

(3.4) \u - U\ + U\

Since x — U £ Sh, we obtain, by Lemma 6,

llx ~ t/|||2 g CNk.y(x - u,x - U)

= CNt,y(x ~ u, x - U)+ CNk,y(u

(3.5)

I/, x - v),

and because of (3.3),

\Nk.y(u - U, x

(3.6)

to I

—0 ]\

S cCm,s+i(«)'

V 1 X'( 3 V    d(x ~ £/)
- 7A-,(x - U)

+ h~l |x - U\0,h

^ C5kh+1 Mk+i(u)h~U2\ \x - u\

8l+'h-1/2Mk+,(u)).

Using Lemma 5, (3.5) and (3.6), we therefore have

(3.7) |||x - U\\\k ̂  C(|f|« - xlll,

Combining (3.4) and (3.7), we get

III" - U\\jk ^ C([||« - xllk + 8lh+1k-1/2Mi+1(u)).

Since x is arbitrary in Sh, the result follows.

We want next to study the error u — U in the L2-norm. We shall do so by a

modification of a method of Nitsche [6]. For this purpose, we need to make a further

assumption regarding the spaces Sh. We thus suppose (cf. Section 4) that there is

a constant C such that

(3.8) inf HId - xllli £ CA|M|2,      v G # (0), 0 < A ̂  1.

We now introduce an auxiliary function w defined as the solution of the Dirichlet

problem

— Aw = e    in Qh,

= 0   in tt\Qk,
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w = 0   on dü,

where e = u — U. We collect some of its properties in the next lemma.

Lemma 8.   There is a constant C such that, for 0 < h 1,

(a) |»|M g CMHk>h

(b) \dw/dn\0,h S C\\e\\0.h,

and

(c) inf m» - xllli ^ C*||e||0.».

Proof. The first inequality (a) is a direct application of Lemmas 1 and 4 to w.

Part (b) follows from Lemmas 1 and 3, and (c) is a consequence of assumption (3.8)

and Lemma I.

We now have the following:

Theorem 2. Let k be a nonnegative integer and suppose that 8h = o(h) as h —> 0,

[Sh] E 3* and that y and h0 are chosen as in Lemma 6. Then there is a constant C

such that, if u E Ck+,(tt), we have for 0 < h g. h0,

||«- U\\n,k i C|(A + 5,/T1/2) HI" - 01||| + «!+,Mt+i(h)}.

Proo/". Using the definition of w, Green's identity, and the definition of Nk, y,

we have

\\e\H,,, =     (Aw, e) = D'w.e) - (dw/dn,e)

with the second term on the right omitted when k = 0. Using Schwarz's inequality

and the fact that 8k     CA, we find that

vrl/2||HII* ~    + A-1/2||H||f |w|o.»
' o«|0,

Hence, using Lemma 8(a), (b), we obtain

(3.9) |fe||S,» ̂ Nk,y(e, w) + CM ■   |ft*IH* Ik

Now from Lemma 5 and (3.6), we have, for arbitrary x E Sh,

Nk,y{e, w) = Nk,y(e, w — x) + Nk,y(e, x)

£ cl\\\e\\\k |||w - x|||, + bkh+'Mk + l(u)(\l

10 . a •

h 'IxIo.a

Adding and subtracting w and using the triangle inequality on the last term, we

obtain

Nk.y(e, w) £ C<i||H|U |||m> - x

(3.10)

+ 5rlMk+1(u)\h-" \\\w - xllli
3 w

dn
Mo,* Jj
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Since x is arbitrary, we may take the infimum on the right side of (3.10) and then

apply Lemma 8(a), (b), (c) to obtain

(3.11) Nk,y(e, w) i£ C\{e\\0,h{h\\\e\\\k + 8k+1 Mi+I(«)j.

Combining (3.9) and (3.11), the result follows.

Except for the case k = 0, the bilinear form Nkt y is nonsymmetric when 5^0.

In the case k = 1, N,, T may be symmetrized in a simple way with many of its prop-

erties unaltered. We define

^   »,.,<,,« - „i.«j -   f) - <|.-ty - (,|. f)

All previous results for Nit y now hold for Ni, y. The proofs are trivial modifications

of those for Nu y. The new form has the additional advantageous property that

Ni, t(v> <p) = Ni, yX<p> <p) f°r 7 = To- Hence, if 7v,, ro is positive definite on Sh for

0 < h ^ h0, then so is N,, y for y >t 70.

We also note that if Nk, y is defined using an approximate d(x) given by <r(x) on

dttk and ab = maxäflA \o(x) — 6(x)| £ C8k, then Lemmas 5, 6 and 7 hold. Theorems

1 and 2 also hold provided 5j;+1 is replaced by (5j + 1 + <rk).

4. Application to Particular Subspaces. We shall now introduce some classes

of subspaces to which our results conveniently apply.

For given positive integers k and /■ with r St k + 1, we say that the family {0<AS1

of finite-dimensional spaces is of class S»,r, if, for each h, Sh £ 3ck and if there is a

constant C such that, for v £ /T(^)> 0 < A £ 1,

inf ||k - xllli ^ CA'"1 |MI,.

Condition (3.8) clearly means [Sk\ £ SIi2. We shall see below that S(,r £ Sli2.

We first prove an interpolation estimate similar to one which was proved in [2]

in a somewhat different setting. In view of possible other applications, we phrase

this lemma in a more general form than is needed here.

Lemma 9. Let Q £ Rd be a bounded domain having the restricted cone property.

Then, for 0 £ k :£ s :S r given, there is a constant C such that, for v £ H"(Q),

0 < h S 1,

inf   {£ A'lk - w\U + A'lMU £ CA'IklU-

Proof. By the Calderön extension theorem (cf., e.g., [1] for a precise statement

and definition of the restricted cone property), there is a constant C0 and for v £ Hs(tt)

an extension v, £ H'(Rd) such that

(4.i) INI*.«') ^ ColHl..
Now let w, £ /T^) be defined by

WeiH) = tj®.      A2(|?|2 + 1) £ L

= 0, A2(|£|2 + 1) > 1,
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where ve and we denote the Fourier transforms of v„ and w„ respectively. We obtain

by obvious estimates

inf   {'Zh'Wu - w\\i + hT\\w\\T\ ̂  E h'\\ve - wt\\,iHR*> + Ä'lk.IUr««)

^ c f  E A2'(l?r + i)'' l«. - *«l2    + f ^(l^l2 + D'l*.!' *

^ c{ f [A2(|£|2 + l)f \ve\2 «+ f [«2(|£|2 + Dl'IM3
WA'(I £ I " + 1)>1 "A* € l SI * -HI) si

- c(L[/,2(l?|2+i)m|2 ^}1/2 - cAsi^H"*(^"

and the result therefore follows by (4.1).

We can now prove the following inclusion lemma.

Lemma 10.   Let r,2: k,■ + 1, j = 1, 2, r, £ r2, kL £ k2. Then

»oo/.   Assume that \Sh] We have immediately, for v G Hr(tt),

inf Hk — xllL £   inf ||k — xllk £ CÄ""-1 |k||,a,

so that \Sk\ G §*„r,. Further, we obtain, using Lemma 3 and the definition of

8»,.,., for w G H"(Q),

inf |||i> — xllk £   inf {||k — Hlk + Ilk — xllk!
xes» xes»

^ c{E - w\\, + A^'INk} ,

or since w is arbitrary, using Lemma 9,

t, +i

inf ||k - xllU, ^ C7T1     inf    < E A''|k - vv| I,- 4- h"\\w\
xG.Sa >£JIr,H)   I i-o

This shows that \S„\ G §*„>•, and hence concludes the proof of the lemma.

Since the domain considered is assumed to have a smooth boundary, it is always

possible to construct % such that 8h £ Ch2. Our theorems then yield the following:

Theorem 3. Let I be a positive integer and assume 8k £ Ch2. Further, let

j G H2l(ü), g G H2l + 3/2(dü) and assume \Sk\ G s,,2i + 2 f~\ 3,. Then the error e =

u — U satisfies

Ikllo.a 4- «||H|[, ^ c«2!+2(||/||2! + |g|2I+3/2).

Proof. This is an immediate consequence of Theorems 1 and 2 with k = I,

Lemma 1, and Sobolev's inequality which implies M! + 1(w) £ C||«j|2I + 2.

We shall now describe some classes of subspaces based on triangulation of qh.

Suppose that for each h the domain tlk is subdivided into triangles TQ, q = 1, • ■ • , Nh,

whose sides have length bounded above by h and below by k/z for some positive k.

Assume further that the angles in the triangulation are bounded below uniformly
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in h. Under these assumptions, any triangle in the triangulation can be mapped onto

one fixed triangle T0 by an affine transformation. The scale of the transformation

will be bounded above and below by a fixed multiple of ff1, and the Jacobian of

the transformation will be similarly bounded above and below by a multiple of h~2.

As a consequence, it follows from the trace inequality (using standard notation)

||«IU,tan) S C\\v\\„,(Ta)

that there is another constant C independent of v, q, and h such that

(4.2) IWU.mt.) ^ c(hin\\v\\KHTj + ft-1/2|mu,(r,>).

Applying this to the boundary terms in ||[ • |||„, we easily find

m+ 1

(4.3) iimiu g c £ ft'-MNI,-,*,
1-0

Consider now the family of spaces V™ consisting of splines (by which we shall

mean functions which reduce to polynomials on the triangles) of degree Am -\- 1

which were constructed in [3, p. 815]. We shall see that { Vmh\ £ Sm,4m+2. To see this,

let, for v £ H4m + 2(Q), pm(v) £ V" denote its interpolation polynomial described

in [3, p. 810]. Then by our assumptions, Theorem 2 in [3] implies that there is a

constant C independent of v, q, and h such that

\\v - ivfr)||jrt(».) ^ CÄ4m+2-,'||ü||s,.+.<r,>,      j = 0, • • • , m + 1,

and hence after squaring, summing over q and taking square roots, since pm(v) £

\\v - pjb)\\,,k ^ ar+'-'WvWu**,,    J = o, ••• , m + 1.

Since, by (4.3),
m+ I

inf   \\\o - xilU h'^Wv - pjp)\\i,h,

it follows that 1 Vmh\ £ Sm.4„+2.

In the case m = \,V\ consists of quintic splines which are in H2(Qh). In the interior

of the domain, the functions in Kk only need to be once differentiable in L2(£lh) and

the functions in V\ then have excessive regularity. We shall now give an example

of a family of spaces in Sl|4 consisting of cubic splines which are only once differen-

tiable in L2(üh). For this purpose, consider the spaces Qh of cubic splines having for

parameters the values of the function and its gradient at the vertices of the T„ and

the value of the function at the center of gravity of Ta (cf. [9] and [3, p. 818]). The

functions in Qh are continuous but not generally continuously differentiable across

the edges of the triangles. However, by definition, their derivatives are continuous

on dtik, which implies that they belong to 3C,. It follows again by (4.3) and triangle-

wise use of the estimate in [3, p. 818] that if p(v) £ Qh is the interpolation polynomial,

determined by v, then

inf Hl» ~ Xllli ̂ CE h'-'Wv - p(p)\\i,» ̂ Ch*\\v\U,
xGO* i-o

so that \ Qh) £ S,,4.



PROJECTION METHODS FOR DIRICHLET'S PROBLEM 879

Let us turn to the inverse assumptions. We shall prove first that j Vmk\ £ 3„.

Obviously, the inequality (2.1) follows if we can prove that, for x £ V\, 1 S= j £ m,

A'_,/,||a'x/5/«'m,(»r.» £ C||gradX|U,(r.).

As in the proof of (4.2) above, this follows from the fact that, for polynomials of

degree Am + 1,

||a'x/3l-'lU.<»r.i ^ C||gradX|U,(r.),

which is obvious, once we note that the expression on the right is a norm in the

finite-dimensional space of polynomials of a given degree, modulo constants. Similarly,

we can see that \ Qh\ £ 3,.

We conclude by remarking that in practical applications of these results, it is

likely that the symmetric form N,,y, used in conjunction with a space belonging

to a family in §,,„ (e.g. the family \Qh] of cubic splines described above), would

be most advantageous. The estimate of Theorem 3 is valid in this case with / = 1

and hence the resulting scheme has fourth order accuracy.
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