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Algorithms for Triangular Decomposition of Block

Hankel and Toeplitz Matrices with Application to

Factoring Positive Matrix Polynomials

By J. Rissanen

Abstract. Algorithms are given for calculating the block triangular factors A, Â, B = A'1

and B = Â'1 and the block diagonal factor D in the factorizations R = ADA and BRB = D

of block Hankel and Toeplitz matrices R. The algorithms require OipW) operations when

R is an n X zz-matrix of p X p-blocks.

As an application, an iterative method is described for factoring p X p-matrix valued

positive polynomials R = 2^7_m *<**, R-> = R'i, as Àix)À'ix~1), whereÄix) is outer.

1. Introduction. Let R = {A¿,}, i, j — 0, 1, • • -, n, be a matrix with the entries

Ru as p X /z-matrices of real valued elements. Such a matrix is called a (block)

Hankel matrix if Ru = jRt+i, and a (block) Toeplitz matrix if Rif = /?,_¡.

When all the block (zzz + 1) X (zzz + l)-sections {Ru),i, j = 0,1, ■■• ,m,m ^n,

of either a Hankel matrix R or a Toeplitz matrix R are invertible, we shall construct

the two factorizations,

(1.1) R =  ADA,

(1.2) £/?£ = £>,

where A is a lower triangular matrix with p X /z-identity matrices / on the diagonal,

Â is an upper triangular matrix with matrices / on the diagonal, D is an invertible

block diagonal matrix, and B and Ê are inverses of A and Â, respectively. The algo-

rithms for finding the two triangular decompositions require 0(j>3n2) arithmetic

operations when R is either a Hankel matrix or a Toeplitz matrix.

Special cases of our algorithms have been derived earlier for different purposes.

For p = 1 and R a positive definite Toeplitz matrix, Levinson [1] has derived such

an algorithm for solving predictor problems, which, in effect, also finds the factors

(1.2). A generalization of the same algorithm for p > 1 was derived (slightly im-

precisely) in [2]. For p = 1 and R, a Hankel matrix, an algorithm for finding the

factors in (1.1) was derived in [3] by use of the so-called moments and the Lanczos

algorithm.

The algorithm for finding the factorization (1.1) for R, a Toeplitz matrix, is be-

lieved to be completely new; not even special cases of it seem to have been found

before. In the particular case where R is symmetric and positive definite, this algo-

rithm also finds the related Cholesky factorization, R = ÄÄ' [6].
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The algorithm for the Cholesky factors has an important application in a numerical

solution of the classical spectral factorization problem. This problem, with applica-

tions in prediction theory, representation or identification of random processes, and

a number of other areas as well, is to factor a p X p-matrix polynomial R(x) —

227— m PiX', Ri = R'-i, positive for each |x| = 1, as follows:

(1.3) Rix) =  Äix)Ä'ix-1) ,

where the factor A(x) has the form X)"-o ^x* and is "outer" [4]. In the present con-

text, À(x) being outer merely means that it has the indicated form and is invertible

for |x| ^ 1. Our algorithm requires an order of magnitude fewer arithmetic operations

than the earlier ones in [5] and [7].

2. Hankel Matrices. We begin with the factorizations (1.1)—(1.2) when R is a

(blockwise) (zz + 1) X (zz + l)-matrix {Ri+i} with all the block zzz X zzz-sections

m ;£ n, nonsingular. Consider the following portion of the matrix equation BR =

DÂ =AP:

(2.1)

/
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Bko
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0

0 Pu

...      0

Observe the evident but important fact that these subfactorizations, one for each

k, k 5i zz, form a nested sequence such that a subfactorization for any k!, k' ^ k,

is also a subfactorization of the one corresponding to k.

Denoting the z'th block-row of R as the array (R¡, Ri+X, ■ ■ ■), we find that the

(zc -f- l)th block-row of B satisfies the equation and, conversely, is determined by it:

Bk+i,oiRo, • • •  > Rk) + • • • + Bk+itkiRk, • ■ ■  , R2k)

+ iRk+i,

By picking the block columns 1 to zc — 1 from R, we also have

(2 31       Bk.oiRi, • • • > Rk-\) + • • • + Bkk-xiRk, ■ ■ ■ , R2k-2)

+ iRk+l,

With the notations,

Eo =  Bk + X0,

E, = Bk+XA — Bkii-X, =  1, •••  , k,

(2.2)

(2.4)

R2k+i) = 0.

Ä2*-l)   =   0.
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we deduce from (2.2) and (2.3), by subtraction, the two equations:

(2.5) EoiRo, ■■■ , Rk-2) + • • • + Ek(R„, ■■■ , R2k-2) = 0,        U 2,

and

(2.6) Bk+XioiRk-x, Rk) + • • • + Bk+xjciR2k-x, R2k) + iR2k, R2k+i) = 0,    k ^ 1.

Regard Eqs. (2.5) as p homogeneous equations in the /z-rows of the block-row

(E0, • • • , Ek). As the sections {Ri+i}, i + j Ú 2k, are nonsingular, we conclude

by comparing (2.1) and (2.5) that every row of (E0, ■ ■ -, Ek) must lie in the linear

manifold spanned by the 2p linearly independent rows in the two block-rows

(Bk_x ,o, • ■ ■ ,1,0) and (Bk i0, ■ ■ ■ ,1) of B. Hence, two matrices Ck and Gk_x exist such

that

(¿s0, • • • , Ek) = CkiBk,0, • • • . I) + Gk-xiBk-x%o, • • • ,1,0).

The coefficient matrices Ck and Gk^x are determined by (2.6) in the following way:

First, (2.4) and (2.6) imply

EoiRk-x, Rk)+ ■■■ + E„iR2k-x, R2k) + iPkk, Pk,k+X) = 0.

Then, with the preceding equality, we derive the equality

C"t(0, Pkk) + Gk-xiPk-x,k~x, Pk-X,k) + iPkk, Pk,k+i) = 0

which leads to

(2 ?) Gt-i = -DkD;lx, k è 1,

Ck = -(G„-iPk-ut + Pk.k+i)Dk\       k^O,

where Dk = Pkk. Define G, = 0, if i is negative, and /\,- = 0 and B¡¡ = 0, if i or j

are negative. Then, we get the first recursion:

(2 8)   5*+Ii = Bki-1 + CkBk' + G*-'s*-i"   k^ 0,i = 0, ■■■ ,k + I,

Boo = I,

which implies B¿i = /for i 2: 0; we put Bu = PH = 0 for j > z. Rather than calculate

Pk,k+X and Dk from (2.1) as sums, it is better to obtain them as by-products from a

recursion for the elements Pti as follows.

Equations (2.1) with (2.8) lead to

i
Pjk —  2-1 BjiRk+i

1-0

(2.9) = P,-x,k+i + Cf-xJ»,-!.» + Gj-3Pj-2,k,       k > 0, j = 1, • • • ,k,

Pok = Rk,       k£ 0,

Dk   =   Pkk-

From P, the matrix Â can be recovered by

(2.10) Â = Z)"1/'.

Equations (2.7), (2.9), and (2.10) generalize those in [3]. Equations (2.7H2.10)
give both B and Â in 0(2zz2(/z3 + /z2)) operations.
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By transposing Eqs. (1.1) and (1.2) we have

(2.11) R' = I'D' A',        B'R'B' =  D'.

Therefore, in order to get the factors Ê' and A', we just replace Rt by R'i in all the

preceding equations.

3. Toeplitz Matrices. Consider again the following portion of the matrix equa-

tion BR = DÂ = A P, where all the block k X /c-sections of the Toeplitz matrix R are

nonsingular:

(3.1)

/

Bio

Bko

-Sjfc+l .0

'k.k-l I

Bk+l,k        '

Ro       Ri    ■■■     Rk

R-i      Ro     Ri    Rk-i

R-k

R-k-l

Ro

°oo     -Pol

Pu

0      •••

0

Pok

■■■        Px*

0      Pkk

...      o

We can then deduce the two equations, which, conversely, determine the block-rows

of B:

(3.2)

Bk+i.oiRo, • • • > Rk) + Bk+xx (Ä-i, R0, • • • , Rk-\)

+ ••• + iR-k-x, ,R-i) = 0,

BkoiRo, • • ■ . Rk-i) -\- BkxiR-x, Ro, Rk-2)

+ ••• + (R_k, ■■■  ,R_X) =   0.

With the notations (2.4), we further deduce from (3.2) (by solving the second equation

for (.R-*, ■ • ■ , R-x) and substituting the result in the first:

(3.3)
EoiRi, ■ ■ • , Rk) + ExiR0, ■ ■ ■ , Rk-X) + • ■ • + EkiR-k+x, ■ ■ ■ , R0) — 0,

Bk+x,oRo 4" Bk+X¡XR-X + • • • + R-k-i — 0.

Our plan is to express the first block-row (Rx, • • • , Rk) in the form YX(R0, ■ ■ ■ , Rk-i)

+ • • • + Yk(R-k+n • • • > Bo) where the T,'s do not involve the Bk+Xi's which we

are looking for; for, once this is done, we can deduce from (3.3) an equation of the

form

(3.4) XxiRo, ■■■ , **_,) + • • • + Xk(R-k+1 Ro) = 0,

which has only the solution X( = 0 for i = 1, • • • , n. This is true since the blockwise

k X fc-submatrix of R with the indicated rows is nonsingular by assumption.
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A look at the second equation in (3.2) suggests how the stated goal is achieved:

define R* = {JR*} with Rfi = R,_,; i.e., replace in (3.1) i?, by Ä_<. R* is seen to be
equivalent to R, so that the factorization (1.2), B*R*Ê* = D*, exists. Then, as in

(3.2),

(3.5) BURo, ■■■ , R-k+1) + BftiÄ,, • ■ • , R-k+2) + • • • + {Rt, ■■■ , Rx) = 0,

where the B^'s play the role of the Y('s as planned. By solving (3.5) for iRk, ■■ ■ , Rx)

and substituting the result in (3.3), we get

iEx - E0Btk.x)iRo, ■■■ , Rk-X) + ■■■ + iEk- E0Bîo)iR-k+i, ■ ■ ■ , R0) = 0,

which, since (3.4) has only the trivial solution, holds if and only if

(3.6) £¿ - £„£?,*-< = 0,        i = 1, ■■■ ,k.

The second equation in (3.3) determines E0 as follows: First, (3.3) with (2.4) implies

k

E0Ro + • • • + EkR-k + 2-1 BkiR-\-i = 0.
• -0

Then, with (3.6), we get

Eo = Ck= -FkDV\        k>0,

k

(3.7) Fk =   22 BkiR-<-i, k^O,
i=a

k

DÎ =  22 BtRi-k, k^O.
i-O

By defining Bu = B*¡ = 0 for i or j negative or i < /, and BH = B* = / for i ^ 0,

we deduce from (2.4) and (3.6):

(3.8) Bk+Xti = Bkii.x + CBZtt-i,        i = 0, ■ ■ ■ , k, k ^ 0.

Similarly, we obtain

(3.9) B*+1.< = £?.,_, + C*Bk.k.„        i = 0, ■■■ ,k,k^0,

where

(3.10) Ft =  22 BÎ<Rt+i,       U0,
¿-0

k

Dk =   2-1 BkiRk-¡.
i-0

Further, Dk and D* satisfy by (3.7) and (3.9) the recursions

(3 n) Dk+X = Dk + CkF*,       k\%0,

Do = Ro,

D*+x =  Df + C*Ft,       k > 0,(3.12) k -r    k   k, _

D* = R0.
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Equations (3.8)—(3.12) describe an algorithm for finding the factor B in (1.2). Again,

Ê' can be obtained from the same formulas by replacing R¡ by /?!<. Hence, in particu-

lar, if R is a symmetric Toeplitz matrix and R¿ = R'_¡, then Ê' = B. But even another

simplification results: as was shown by J. P. Burg (unpublished),

(3.13) Ft = F'k    (if/?_, = fi{).

To see this, observe that with (3.2) and (3.5) we have

Ra     Rx

(3.14)      Ff = U,Bt.k-u , Bto, 0)

Rx      R0

lR'k+i

Rk+i

Rk

Ro

0

Bko

B'k.

Fl.

We point out that it is possible to derive a recurrence equation also for Fk and F*.,

as we shall show shortly. However, these recurrence relations save calculations only

when both factorizations (1.1) and (1.2) are determined.

We shall now turn to the problem of finding the factors in (1.1). The situation

turns out to be different from the case with Hankel matrices in that the algorithms

for determining the factorizations (1.1) and (1.2), respectively, are independent from

each other. Beginning with (3.1), we have

(3.15)
Pi,k+i —  2-1 BijRk+x-j, 1 á í Ú k + 1,

Í-0

Pok = Rk, kk 0.

An application of (3.8) to this expression leads to

Pi.k+\   =    Ci-XRk+x   +   Rk + l-i

i-l i-l

+ 2-1 B(-Xtj-xRk+i-j + C¡_i 2^ Bf-x,i-x-jRk+x-j,        k ä; 0.
i-l ¿-1

By adding ¿?¡t+I_, to the first sum and writing

i

(3.16) Qa =   22 B*¡Rk_i + i + x, i = 0, ■ ■ ■  ,k,k^0,
I'-O

for the second sum joined with Rk+X (with i — 1 replaced by i), we obtain

(3 17) Pm.m = Pik + CiQik,       k ^ 0, i = 0, • • • ,k,

Pok = Rk, k£ 0.

An application of (3.9) to (3.16) gives in turn the recursion for the Qik's:

(3 18) Ql + i.k = Qik + C*P,k,       k è 1, i = 0, ••• ,* - 1,

Qok = Rk*i, k ^ 0.

Now observe from (3.16) and (3.15):
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(3 19) Qkk = Ft,       k^O,

Pkk = Dk,       k^ 0.

In order to also get Fk recursively, replace, in (3.15)—(3.16), R{ by ¿?_, and Bu by

B$. Then,

(3.20)

and

(3.21)

Further,

(3.22)

PT+I.M = Pfk + CfQfk,       k à 0, i - 0, • • • ,k,

Ptk = R-k, k 2: 0,

Qti.k = Q% + C,/»?1», k ^ 1, i = 0, • • • , k - 1,

Q*k = R.k.x, k^0.

Qtk = Fk, k^ 0,

Ptk = Df,       k è 0.

Finally, we now can express C, and Cf as follows:

,***-. C-t      ̂  \Jlr¡r*lrk * /C     —      U,

(3.23) *" -

C? = -QkkPlk, k^0.

With

(3.24) i =  Z)_,P,

Eqs. (3.17)—(3.23) describe an algorithm for the factor Â in (1.1). By replacing R¡

by /?!,., the same algorithm also finds the factor A'. In particular, when R is a sym-

metric Toeplitz matrix, Â' = A, and (3.14) gives

(3.25) Q*kk = ßr», (ifÄ-< = R',).

These recurrence relations require 0(4zz2(/z3 + p2)) arithmetic operations to deter-

mine the factorization (1.1), and only 0(5zz2(/z3 + p2)) to find both (1.1) and (1.2)

in case p > 1. In case p = 1, they require only 0(2n2) for (1.1) and 0(3zz2) for both

(1.1) and (1.2).

In case R is a symmetric positive definite matrix, the factorization

(3.26) R =  ÄÄ'

is called a Cholesky factorization [6]. Such a factorization is obtained from (1.1) by

first factoring D as

(3.27) D = GG',

where G may be taken to be lower triangular with positive elements on the diagonal,

and by then putting

(3.28) Ä =  AG.

Therefore, with this addition, our algorithm calculates even the Cholesky factoriza-

tions of symmetric positive definite Teoplitz matrices.
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As was shown in [5] for p = 1 and in [7] for p ^ 1, the Cholesky factorization

has a close connection with the classical spectral factorization problem: Let R = {/?,-,-},

i, j = 0, I, • ■ • , Ru = Rj-i and 7?, = 0 for i > zzz, be the infinite symmetric positive

definite block Toeplitz matrix obtained from the ceofficients of a p X /z-matrix poly-

nomial R(x) = 22?--m BiX', Ri = R'-i, which is positive definite for |x| = 1. Then,

as proved in [7], the rows of the Cholesky factor Ä of R converge:

(^n.n-m,    ' ' *    ,    i.) ~* iAm,   • • ■    ,    Ä0)       US  ZZ  —>   =° .

The limits Ä{ define the outer factor Ä(x) = 22?-o A¡x' of the spectral factorization

(1.3) of R(x).

In this way, the algorithm (3.17H3.23) with (3.27)-(3.28), where now Pik = 0
for k — i > zzz and Q, k = 0 for zc — / 2: m, provides a new method for calculating

the spectral factors with any desired accuracy. These formulas require 0(p3m) opera-

tions for each block-row of Ä as compared with 0(p3m2) with the earlier algorithms

in [5] and [7] which basically are Gauss-type elimination schemes. Finally, in this

case, our algorithm (just as that in [5] and [7]) is also numerically stable as can be

shown by standard stability arguments.
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